ГЕОЛОГИЧЕСКОЕ СТРОЕНИЕ АПТСКОГО ЯРУСА НА ЮГО-ЗАПАДНОМ ФЛАНГЕ ЛАТНЕНСКОГО МЕСТОРОЖДЕНИЯ ОГНЕУПОРНЫХ ГЛИН

С. В. Мануковский

Воронежский государственный университет

Поступила в редакцию 27 мая 2013 г.

Аннотация. Геологическое строение аптского яруса рассмотрено на примере Стрелецкого месторождения строительных песков, расположенного в 10 км к западу-юго-западу от г. Воронежа. Большая часть месторождения и его фланги характеризуются типичным для апта расчленением разреза на три свиты: верхнюю – песчаную разнозернистую, среднюю – алевритово-глинисто-мелкопесчаную, нижнюю – песчаную крупно-зернистую. На северном фланге месторождения отмечается уникальный разрез апта, который представлен только алевритово-глинистой свитой мощностью около 15 м.

Ключевые слова: аптский ярус, месторождение, строительные пески, бетонные пески, каолинитовые глины, модуль крупности.

Abstracts. The geological structure of the Aptian layer is considered by example of the Streletskoye deposit of building sands located 10 km away to the West-South-West from the city of Voronezh. Major part of the deposit and its flanks is characterized by the typical for the Apt division of its cut on three suits: the top – sand inequigranular, medium – aleuritic-clay-fine-sandy, lower – sand coarsegranular. On the Northern flank of the deposit it was noticed the unique cut of the Apt, which is represented only with the aleuritic-clay suite with thickness of about 15 m.

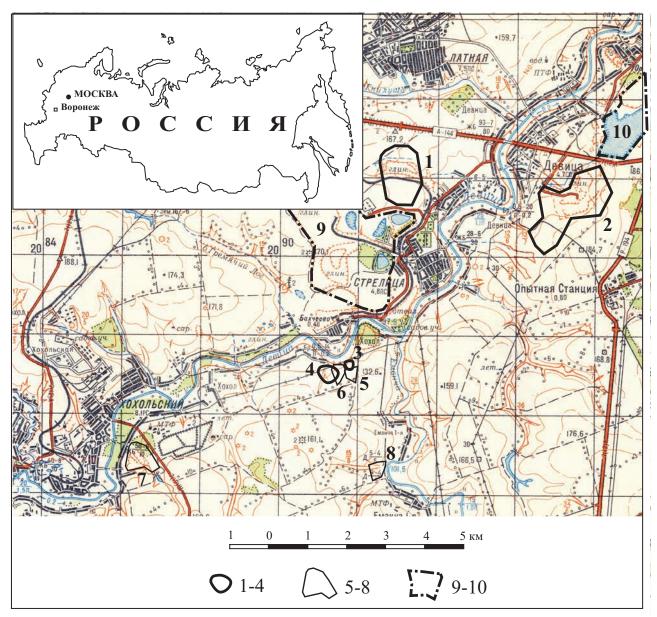
Key words: Aptian layer, deposit, building sands, concrete sands, kaolinite clays, module of fineness

Введение

Рассматриваемая территория находится на стыке присводовой части Воронежской антеклизы и ее северо-восточного склона. В орографическом отношении это восточный склон Среднерусской возвышенности. Правобережье Дона здесь представляет собой пологоволнистую равнину, расчлененную речной и овражно-балочной сетью. Наиболее крупной рекой является Девица, правый приток р. Дон (рис. 1). Абсолютные отметки рельефа колеблются от 115 до 185 м.

В геологическом отношении район хорошо изучен. С северо-востока к нему примыкает известное Латненское месторождение огнеупорных глин

Наиболее полной сводкой по его геологическому строению, качеству сырья является работа В.Г. Люличевой (1961 г.). Большой вклад в изучение Латненского месторождения и аптского яруса внес Н.П. Хожаинов [1-6]. Он расчленил аптские отложения на три толщи. К нижней отнес грубые пески; к средней – огнеупорные глины, алевриты, белые тонкозернистые «пастиловидные» пески; к верхней – разнозернистые пески.


Геологическое строение месторождения Стрелецкое

Региональное положение месторождения Стрелецкое. Месторождение было разведано на юго-западном фланге Латненского месторождения, на правобережье р. Девица (С.В. Мануковский, 2012 г.). Полезная толща относится к континентальным песчаным отложениям аптского яруса. Перекрывается она флювиогляциальными, ледниковыми и покровными образованиями. Подстилаются аптские пески алевро-глинистыми породами неокома.

Геологическое строение аптского яруса сложное. Это связано с разнообразием фациальных обстановок аптского века и с различной степепенью

За последние 40 лет на флангах Латненского месторождения в аптских отложениях были разведаны месторождения строительных песков – Петровское, Хохольское-II. С начала 2000-х гг. ОАО «Воронежское рудоуправление» проводит работы по комплексному освоению Латненского месторождения [7]. В результате В.П. Михиным и В.В. Горюшкиным в 2003 г. было выявлено Богдановское месторождение стекольных песков, а в 2010 г. – Петровское месторождение керамических светложгущихся глин [8–11].

[©] Мануковский С. В., 2013

Рис. 1. Обзорная карта исследуемого района. Месторождения глинистого (1-4) и песчаного (5-8) сырья: 1, 2 – Латненское огнеупорных глин: 1 – карьер «Стрелица Ближняя»; 2 – карьер «Белый Колодец»; 3, 4 – **Петровское** тугоплавких глин: 3 – восточный участок № 1; 4 – западный участок № 2; 5, 6, 7 – строительных песков: 5 – **Стрелецкое**; 6 – **Петровское**; 7 – **Хохольское-II**; 8 – **Богдановское** стекольных песков; 9, 10 – отработанные участки Латненского месторождения

ледниковой эрозии. Мощность яруса не выдержена, колеблется от 10 до 25 м, в среднем 12,9 м.

В строении аптского яруса на месторождении Стрелецкое, так же, как и на Латненском месторождении, в целом отмечаются три различные по литолого-генетическим особенностям толщи [9]. Нижняя — средне-крупнозернистые пески, с примесью грубозернистых и гравийных фракций (русловые, стрежневые фации). Средняя — каолинитовые глины (пойменно-старичные и озерноболотные фации), фациально замещающиеся алевритами и тонкозернистыми, пастиловидными

(иногда – стекольными) песками. Верхняя – разнозернистые, преимущественно, средне-мелкозернистые пески, с линзами песчаников (рис. 2).

Основная часть аптских отложений сложена различными по зернистости кварцевыми песками. Мощность полезной толщи Стрелецкого месторождения от 2,5 до 23,6 м, в среднем 10,6 м.

Пески нижней толщи светло-серые, желтовато-серые, кварцевые, плохо сортированные, разно-зернистые, преимущественно, крупно-среднезернистые и средне-крупнозернистые. Содержание этих фракций примерно одинаково: количество

Рис. 2. Кварцевые пески верхней толщи апта, разнозернистые, ожелезненные, с тонко-волнисто-горизонтальной слоистостью (северо-западный борт карьера месторождения Стрелецкое)

зерен средней фракции (размером 0.25–0.5 мм) изменяется от 18.84 до 48.26 % (среднее 32.00); содержание крупнозернистой фракции (0.5–1.0 мм) в среднем 28.42 %, при колебании в разных пробах от 14.98 до 41.74 % (табл. 1).

Примесь мелкозернистой фракции (0,1-0,25 мм), в среднем 18,24 %. Количество грубозернистых и гравийных включений, в среднем > 15 %.

Аптские средне-крупнозернистые пески с примесью гравия на Стрелецком месторождении вскрыты большей частью скважин. Они отсутствуют только на двух небольших участках, в центре месторождения и на северном фланге. Мощность крупно-среднезернистых песков нижнеаптской толщи от 2,5 до 10,5 м, в среднем 5,7 м.

Изучение этих песков показало, что они удовлетворяют требованиям ГОСТ 8736-93 [12] «Песок для строительных работ» и могут быть использованы для штукатурных, кладочных растворов и сухих строительных смесей. Пески данной толщи,

имея высокий модуль крупности, от 1,69 до 2,71, в среднем – 2,23, пригодны в качестве песка-заполнителя для силикатных бетонов плотной структуры. Бетонные же пески в регионе являются остродефицитным строительным материалом. В Воронежской области их разработка ведется только на трех месторождениях: в русловых песках р. Дон (Семилукское и Кривоборское) и в «подглиняной» пачке Латненского. Бетонные пески разведаны в флювиогляциальных отложениях Приозерского месторождения.

Среднее значение коэффициента фильтрации по пескам нижней толщи (9,30 м/сут.) свидетельствует об их пригодности для устройства конструктивных слоев дорожной одежды (см. табл. 1).

Пески средней и верхней толщ более тонкие, чем нижележащие. Пески серовато-желтые, серовато-белые, кварцевые, разнозернистые: от крупносреднезернистых до мелко-тонкозернистых, преимущественно средне-мелкозернистые (табл. 2).

Таблица 1 Гранулометрическая характеристика аптских песков месторождения Стрелецкое (нижняя толща)

		1 _1	Инторрод опро	Содержание фракции, мм						Voodschuursum	
Номер Номер п/п скважины	Номер		Интервал опро- бования,	частные остатки, %						Коэффициент фильтрации,	
	ины пробы		M	> 2	2–1	1-0,5	0,5-0,25	0,25–0,1	< 0,1	м/сут	
1	1	1/5	13,2–14,4	5,28	7,11	27,11	27,57	22,58	10,35	4,76	
2	1	1/6	14,4–17,6	7,41	9,75	24,17	32,02	22,52	4,13	7,31	
3	3	3/3	13,0–17,0	5,14	8,64	30,87	38,53	13,26	3,56		
4	3	3/4	17,0–21,4	4,23	7,92	29,10	39,33	16,23	3,19	5,58	
5	4	4/3	5,4-8,4	3,57	6,04	14,98	27,52	38,02	9,88	1,60	
6	4	4/4	8,4–12,0	8,52	15,41	41,74	23,07	8,65	2,61	26,34	
7	4	4/5	12,0–16,0	8,63	13,74	37,54	26,26	11,74	2,10		
8	4	4/6	16,0–17,8	10,25	13,42	22,49	36,39	15,71	1,73	23,73	
9	5	5/5	17,8–20,5	1,42	2,17	31,07	40,48	22,65	2,22	13,36	
10	5	5/6	20,5–23,2	1,51	2,59	24,50	48,26	19,77	3,37	3,48	
11	6	6/5	20,3–22,8	12,72	16,50	38,64	18,84	9,36	3,94	22,47	
12	10	10/3	13,6–14,2	4,83	6,14	23,45	37,86	20,92	6,80	0,31	
13	10	10/6	16,5–18,6	7,97	11,51	19,58	28,53	21,84	10,58	0,59	
14	10	10/7	18,6–21,7	10,14	14,10	32,60	23,30	12,06	7,79	0,27	
Среднее значение			6,54	9,65	28,42	32,00	18,24	5,16	9,30		
Минимальное значение				1,42	2,17	14,98	18,84	8,65	1,73	0,27	
Максимальное значение				12,72	16,50	41,74	48,26	38,02	10,58	26,34	

Таблица 2 Гранулометрическая характеристика аптских песков месторождения Стрелецкое (средняя и верхняя толщи)

Номер	Номер	Howen	Номер опробования,	Содержание фракции, мм						Коэффициент фильтрации,	
п/п	скважины	пробы		частные остатки, %							
II/ II CKBQ/KIIIBI		проові	M	> 2	2-1	1-0,5	0,5-0,25	0,25-0,1	< 0,1	м/сут	
1	1	1/4	10,4–13,2	1,95	2,32	19,34	45,24	20,29	10,86	8,57	
2	2	2/3	9,7–11,3	1,59	1,30	8,52	39,15	36,59	12,85	5,56	
3	2	2/4	11,3–15,0	1,42	2,08	15,40	38,02	36,84	6,25	1,97	
4	2	2/6	17,0-19,1	0,00	0,00	0,04	0,53	54,77	44,66	1,68	
5	2	2/7	19,1–21,6	0,03	0,05	0,08	0,66	44,32	54,86	1,82	
6	2	2/8	21,6-23,8	0,49	0,86	2,99	15,81	15,81 51,84		0,51	
7	3	3/2	9,3-13,0	2,89	2,92	14,11	37,34	33,46 9,28		3,46	
8	4	4/2	3,2-5,4	0,00	0,00	0,44	7,56	64,41	27,59		
9	5	5/2	9,0-10,4	1,60	2,77	17,31	40,20	30,76	7,36	5,70	
10	5	5/3	10,4–14,2	0,59	1,03	8,90	33,86	6 47,12 8,51			
11	5	5/4	14,2–17,8	0,08	0,15	3,00	63,26 30,96 2,55		2,55		
12	6	6/4	16,3-20,3	0,69	0,67	4,72	27,66	61,43	4,84	10,92	
13	9	9/4	8,8-11,7	1,47	2,00	9,12	26,08	39,10	22,23	0,17	
14	10	10/1	7,4–8,6	1,56	2,20	8,76	30,90	39,79	16,80	1,60	
15	10	10/11	8,6–11,6	1,49	2,66	17,41	39,96	31,08	7,40		
16	10	10/2	11,6–13,6	3,42	4,50	17,46	42,24	26,47	5,91		
	Среднее значение			1,20	1,59	9,22	30,53	40,58	16,87	3,81	
Минимальное значение				0,00	0,00	0,04	0,53	20,29	2,55	0,17	
Максимальное значение				3,42	4,50	19,34	63,26	64,41	54,86	10,92	

Основная мелкозернистая фракция составляет 20,29-64,41 %, в среднем—40,58 %. В меньшем количестве (от 0,53 до 63,36 %) присутствует среднезернистая фракция, в среднем 30,53 %. Содержание тонкозернистой фракции (<0,1 мм) в средневерхнеаптских песках сильно колеблется: от 2,55 до 54,86 %, в среднем 16,87 %. Значительна также примесь крупнозернистых включений, в среднем их содержание около 10 %.

Модуль крупности песков средней и верхней пачек крайне неоднороден, он изменяется от 0,36 (в пастиловидных, стекольных песках), до 1,92 (в основании средней толщи); средний модуль крупности — 1,36.

Средне-мелкозернистые пески на месторождении распространены широко, отсутствуя только на двух небольших участках. На северном и западном флангах они фациально замещаются каолинитовыми глинами и крупно-среднезернистыми песками, соответственно. Мощность песков средней и верхней пачек во вскрывших их скважинах сильно варьирует: от 2,8 до 15,7 м; средняя — 7,2 м. Прослои некондиционных глинистых песков и песчаников снижают среднюю мощность средне-мелкозернистых песков в полезной толще месторождения Стрелецкое до 4,9 м.

Эти пески удовлетворяют требованиям ГОСТ 8736-93 «Песок для строительных работ» и могут быть использованы для штукатурных, кладочных растворов и сухих строительных смесей. Среднее значение коэффициента фильтрации по пескам 3,81 м/сут. (см. табл. 2), это делает их пригодными для устройства конструктивных слоев дорожной одежды.

В средней толще апта на северо-востоке месторождения Стрелецкое отмечаются прослои белых, кварцевых, тонкозернистых, неожелезненных песков, перспективных на стекольное сырье. По химическому составу испытуемые пески оказались достаточно чистыми: содержание вредных примесей Fe₂O₃ (0,13 %), TiO₂ (0,20 %), Al₂O₃ (0,68 %) не превышает нормативных величин для низких марок стекла [13], в частности, для полубелых бутылочных сортов (ПБ-150). Содержание кремнекислоты также удовлетворительное. Пески оказались недостаточно сортированными, равномерно зернистыми, что усложняет и удорожает процесс плавления кварца. Однако простое фракционирование (снижение содержания одной из двух фракций или > 0.8 мм или < 0.1 мм) может легко сделать эти пески пригодными в качестве стекольного сырья.

Минеральный состав аптских песков. Изучен состав как средне-крупнозернистых песков нижнеаптской толщи, так и средне-мелкозернистых песков из средней-верхней толщ.

Зерна имеют различную окатанность, степень которой в целом снижается с уменьшением зернистости. Хорошо окатаны зерна размером > 0,15 мм. Фракция < 0,1 мм представлена не окатанными обломками кварца.

Минеральный состав аптских песков изменяется от существенно кварцевого (99,0-99,2 %) в нижней пачке, до чисто кварцевых (99,87-100 %) в средней-верхней толщах. В легкой фракции присутствуют полевые шпаты в количестве 0,8-1,0 % и единичных знаков, соответственно. В среднекрупнозернистых песках нижнеаптской толщи в единичных знаках встречаются слюда (мусковит) и глауконит.

Выход тяжелой фракции составил 0,04-0,12 % от объема породы. При этом в песках нижней толщи ее содержание несколько выше. В течение аптского века происходило увеличение мономинеральности в составе песков. Одной из причин сокращения качественного и количественного состава примесей может быть локализация, уменьшение источников сноса.

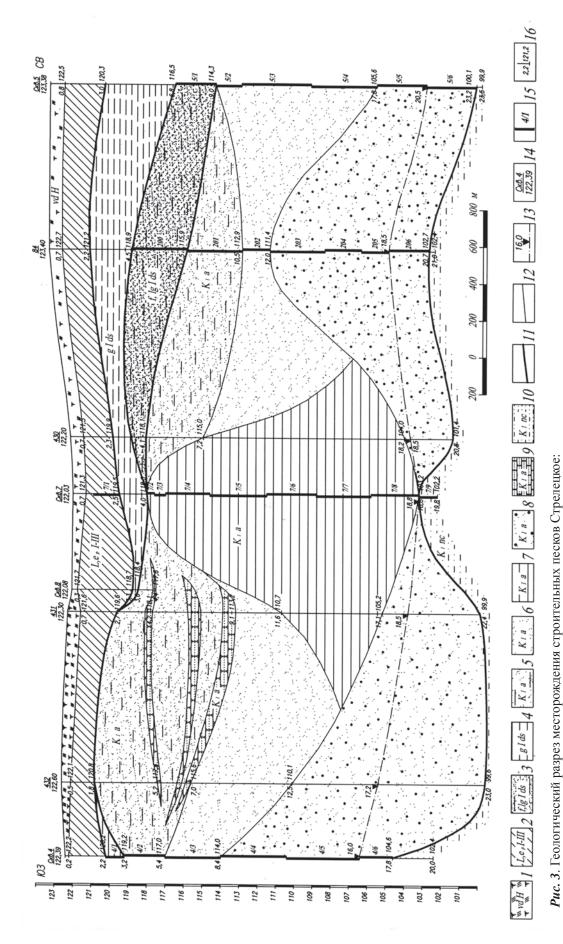
Состав тяжелой фракции представлен 9 минералами в песках нижнеаптской толщи и 12 минералами в песках средней-верхней толщ. Основным минералом во всех пробах является ильменит. Его содержание в крупно-среднезернистых песках в 1,5-2 раза выше. Во всех пробах присутствуют лейкоксен, циркон, дистен, турмалин рутил, ставролит и гранат. Отмечается высокое содержание: дистена в мелкозернистых песках (23,6 %); оксидов железа (19,2 %) – в крупно-среднезернистых (табл. 3).

Для крупно-среднезернистых песков характерна турмалин-циркон-лейкоксен-ильменитовая ассоциация. Повышенное количество турмалина и циркона, относящихся к высоко устойчивым минералам [14], указывает на то, что источником сноса в раннем апте был комплекс магматических пород. В средне-мелкозернистых песках среднего-пазднего апта отмечается ставролит-гранат-дистенлейкоксен-ильменитовая ассоциация. Дистен и ставролит (группа устойчивых минералов) свидетельствуют о смене источников сноса — на метаморфический комплекс.

Особенности аптского разреза. Изменчивость в строении апта на Стрелецком месторождении

Таблица 3

	Содержание в пробах, %						
Минералы	средне-мелкозер средней-вер		средне-крупнозернистые пески нижнеаптской толщи				
	OT	до	OT	до			
Содержание тяжелой фракции	0,04	0,08	0,05	0,12			
Ильменит	30,5	38,1	52,0	60,7			
Лейкоксен	10,0	10,7	6,7	21,0			
Рутил	4,0	7,5	1,0	3,5			
Циркон	2,1	7,3	2,7	11,0			
Группа дистена	2,9	23,6	2,4	4,0			
Гранат	4,3	10,3	1,0	1,4			
Ставролит	4,9	7,7	1,3	1,5			
Турмалин	3,3	7,1	4,5	4,6			
Эпидот	0,2	0,3	0	0			
Пироксены	0,8	1,5	0	0			
Гидроксиды железа	0,2	0,5	1,5	19,2			
Пирит (марказит)	0	0,5	0	0			


выражается в колебаниях мощности яруса и во взаимоотношении его толщ между собой. В четырех скважинах отмечается монофациальный разрез. В западной части апт представлен крупнозернистыми песками; в центральной – мелкозернистыми

песками; на северном фланге – только каолинитовыми глинами средней толщи.

Разрез аптского яраса, вскрытый на северной границе месторождения скважиной 7 (рис. 3), может считаться уникальным (табл. 4).

Таблица 4 Геологический разрез аптского яруса на северном фланге месторождения Стрелецкое

Номер	Геологичес-			вал, м	Мощ-
слоя	кий индекс	Описание пород	ОТ	до	ность, м
1	vd H	Почвенно-растительный слой – чернозем	0,0	0,7	0,7
2	L,e _p I-III	Покровные суглинки, лессовидные, светло-коричневые, с большим количеством карбонатных включений	0,7	1,1	0,4
3	L,e _p I-III	Супесь светло-желтая, кварцевая, глинистая,	1,1	2,5	1,4
4	g I ds	Моренные суглинки, коричневые, с включениями ближнеприносного эрратического материала	2,5	4,0	1,5
5	К ₁ а	Глины каолинитовые, от серых до темно-серых	4,0	4,4	0,4
6	К ₁ а	Глины пепельно-серые, каолинитовые, алевритистые	4,4	5,0	0,6
7	К ₁ а	Глины каолинитовые, от серых до темно-серых, черных, плотные, с зеркалами скольжения по плоскостям наслоения; с глубины 6,4м – слабо алевритистые, с включениями гидроксидов железа		7,4	2,4
8	K_1a	Алевриты темно-серые, с палевым оттенком, кварцевые, сильно глинистые, с включениями гидроксидов железа	7,4	10,5	3,1
9	K ₁ a	Глины на интервале 10,5-10,8 м темно-серые, до черных, алевритистые, с большим количеством углефицированных и пиритизированных растительных остатков; с глубины 10,8м — алевриты темно-серые, до черных, кварцевые, глинистые, с прослоями и линзами заторфованных алевритов, с редкими пиритизированными конкрециями	10,5	13,2	2,7
10	K ₁ a	Глины темно-серые, до черных, с прослоями желтых и серых алевритов, с линзами торфа, с пиритизированными растительными остатками, в интервале 13,2-13,5м — увлажненные, с глубины 13,5м — глины, переходящие в алевриты черные, «перетертые», без пиритизированных и углифицированных растительных остатков.	13,2	18,8	5,6
11	K ₁ nc	Алевриты, переходящие в тонкозернистые пески серые, неяснослоистые, сильно глинистые, в кровле – обводненные	18,8	19,8	1,0

незернистые пески нижней толщи (бетонные пески); 9 – прослои песчаников в верхней толще; 10 – алевритовые глины неокома; 11 – геологические границы; 12 - границы литологических типов и толщ аптекого яруса; 13 – уровень подземных вод и его глубина от поверхности (в метрах); 14 – номер скважины и абсолютная 1 – почвенно-растительный слой; 2 – покровные суглинки; 3 – флювиогляциальные глинистые пески; 4 – моренные суглинки; 5–9 – аптские отложения: 5 – мелкозернистые, глинистые пески верхней толщи; 6 – средне-мелкозернистые пески средней толщи (строительные пески); 7 – каолинитовые глины; 8 – крупно-средотметка ее устья; 15 – номер пробы и интервал опробования; 16 – пересечение скважиной геологических и литологических границ: слева – глубина от поверхности, справа – абсолютная отметка (в метрах)

Аптские отложения на всю мощность, в интервале 4,0-18,8 м, представлены каолинитовыми глинами (!), с прослоями углефицированных глин и заторфованных алевритов. На протяжении всего аптского века здесь существовала старица, периодически заболачивающаяся и изредка переходящая в пойму. Пласт каолинитовых глин шириной 50-60 м протягивается вдоль северной границы месторождения Стрелецкое на 140-160 м. Он является

юго-юго-восточной частью линзовидной залежи, относящейся к восточному участку Петровского месторождения светложгущихся керамических глин.

Химические анализы глин из скважины 7 выполнены по 4 пробам с определением Al_2O_3 , Fe_2O_3 , П.П.П. Содержание глинозема указывает на то, что они относятся к керамическим полукислым глинам (табл. 5).

Таблица 5

Химический состав каолинитовых глин по скважине 7

Номер	Номер	Интервал	Содержание, %					
п/п	пробы	опробования, м	Al ₂ O ₃	Fe ₂ O ₃	п.п.п	Сорт		
11/11						глины		
1	7/2+7/3	4,0-5,0	27,14	1,50	9,8	ЛТПК		
2	7/4	5,0-7,4	24,09	1,10	10,0	ЛТПК		
3	7/6	10,5–13,2	17,2	0,80	11,7	ЛТК		
4	7/7	13,2–16,2	15,03	1,05	5,7	ЛТК		
C	реднее значе	ние	20,86	1,11	9,3			

По ТУ 1438-152-75, принятым на Латненском месторождении, глины верхней части залежи относятся к сорту ЛТПК, нижней части — к сорту ЛТК. Содержание $\mathrm{Al_2O_3}$ (в среднем > 20 %), незначительное количество примесей железа (не выше 1,2 %) и удовлетворительные П.П.П. делают данные глины перспективными на керамические светложгущиеся глины.

Выводы

- 1. В общем строении аптского яруса на месторождении Стрелецкое отмечаются три толщи. Нижняя крупно-среднезернистые пески (русловые, стрежневые фации). Средняя алевро-глинисто-мелкопесчаная (пойменно-старичные и озерно-болотные фации). Верхняя разнозернистые, преимущественно, средне-мелкозернистые пески.
- 2. Пески нижней толщи (мощностью 5,7 м) крупно-среднезернистые и средне-крупнозернистые. Среднее содержание фракций: среднезернистой, основной 32,0; крупнозернистой 28,42; мелкозернистой 18,24 %. Количество грубозернистых и гравийных включений, в среднем > 15 %.
- 3. Пески средней и верхней толщ (мощностью 4,9 м) средне-мелкозернистые и мелко-среднезернистые. Мелкозернистая основная фракция составляет в среднем 40,58; среднезернистая 30,53; тонкозернистая 16,87%. Примесь крупнозернистых включений 10%.

- 4. Все пески нижней толщи и большая часть песков средней и верхней толщ являются строительными. Пески нижней толщи (модуль крупности 2,23) пригодны в качестве песка-заполнителя в бетоне плотной структуры.
- 5. Турмалин-циркон-лейкоксен-ильменитовая ассоциация в крупно-среднезернистых песках указывает на то, что источником сноса в раннеаптское время был комплекс магматических пород. Ставролит-гранат-дистен-лейкоксен-ильменитовая ассоциация в средне-мелкозернистых песках среднего-пазднего апта свидетельствует о смене источников сноса на метаморфический комплекс.
- 6. На трех участках месторождения отмечается монофациальный разрез. В западной части апт представлен только песками нижней толщи; в центральной части песками средней и верхней толщ; на северном фланге только каолинитовыми глинами средней толщи.
- 7. Разрез аптских отложений на севере месторождения уникальный: на всю мощность (14,8 м) представлен каолинитовыми глинами (!), с прослоями углефицированных глин и алевритов. На протяжении всего аптского века здесь существовала старица, периодически заболачивающаяся и изредка переходящая в пойму.
- 8 Глины относятся к керамическим полукислым. Содержание глинозема (>20 %), примесей железа (< 1,2 %) и П.П.П. делают данные глины перспективными на керамические светложгущиеся глины.

ЛИТЕРАТУРА

- 1. *Хожаинов Н. П.* К литологии Латненского месторождения огнеупорных глин / Н. П. Хожаинов // Тр. естествоиспытателей. Воронеж, 1955. С. 88–94.
- 2. *Хожаинов Н. П.* К литологии аптских и альбских песков района Латненского месторождения огнеупорных глин / Н. П. Хожаинов // Тр. геол. фак. Воронежского ун-та. 1955. Т. XXXIX. С. 133—142
- 3. Хожаинов Н. П. Литология нижнемеловых отложений Воронежской и Липецкой областей в связи с распространением огнеупорных глин / Н. П. Хожаинов // Тр. межвузов. научного совещ. по геологии и полезн. ископ. Центрально-Черноземной области. Воронеж, 1957. С. 247—255.
- 4. *Хожаинов Н. П.* Литология толщи огнеупорных глин Латненского месторождения / Н. П. Хожаинов // Тр. Воронежского ун-та. 1958. Т. 48. С 36–47.
- 5. Хожаинов Н. П. Литология терригенных толщ палеозоя и мезозоя Воронежской антеклизы и проблемы их рудоносности: дисс. ... д-ра геол.-минерал. наук / Н. П. Хожаинов. Воронеж, 1972. 662 с.
- 6. *Хожаинов Н. П.* Фации аптской дельты Воронежской антеклизы // Литология терригенных толщ фанерозоя Воронежской антеклизы / Н. П. Хожаинов. Воронеж: Изд-во ВГУ, 1979. С. 3–26.
- 7. *Михин В. П.* Латненское месторождение огнеупорных глин и возможности его комплексного использования / В. П. Михин [и др.] // Геологический вестник

Воронежский государственный университет С. В. Мануковский, кандидат геолого-минералогических наук, старший научный сотрудник НИИ Геологии ВГУ

Тел. 8 (473) 222-65-12 manukovsky@inbox.ru

- Центрального района России. 2000. № 2. С. 57—65.
- 8. Михин В. П. О перспективах выявления стекольных песков в нижнемеловых отложениях Воронежской области / В. П. Михин // Вестник Воронежского ун-та. Серия: Геология. 2003. N 1. C. 184-186.
- 9. Савко А. Д. Литология и полезные ископаемые аптских отложений междуречья Дон-Ведуга-Девица / А. Д. Савко, В. П. Михин, Г. В. Холмовой // Труды НИИ Геологии ВГУ. 2004. Вып. 26. 111 с.
- 10. Савко А. Д. Минерагения аптских отложений Воронежской антеклизы. Статья 1. Огнеупорные и керамические глины / А. Д. Савко [и др.] // Вестник Воронежского ун-та. Серия: Геология. 2011. № 2. С. 116–136.
- 11. Савко А. Д. Минерагения аптских отложений Воронежской антеклизы. Статья 2. Полезные ископаемые песчаных пород / А. Д. Савко [и др.] // Вестник Воронежского ун-та. Серия: Геология. -2012. -№ 1. -C. 155-172.
- 12. ГОСТ 8736-93 Песок для строительных работ. Технические условия. М., 1993.
- 13. ГОСТ 22551-77 Песок кварцевый, молотые песчаник, кварцит и жильный кварц для стекольной промышленности. М., 1977.
- 14. *Бергер М. Г.* Терригенная минералогия / М. Г. Бергер ; под ред. И. Ф. Искара. М. : Недра, 1986. 227 с.

Voronezh State University

S. V. Manukovsky, Candidate of the Mineralogical and Geological Sciences, leading scientific associate of the Science-and-Search institute of Geology Tel. 8 (473) 222-65-12 manukovsky@inbox.ru