ИТТРИЕВЫЕ МОНАЦИТЫ КУРСКО-БЕСЕДИНСКОГО ГРАНУЛИТОВОГО БЛОКА ВОРОНЕЖСКОГО КРИСТАЛЛИЧЕСКОГО МАССИВА: ТЕТРАД ЭФФЕКТ ФРАКЦИОНИРОВАНИЯ РЕДКОЗЕМЕЛЬНЫХ ЭЛЕМЕНТОВ В МЕТАОСАДОЧНЫХ ПОРОДАХ?

С. М. Пилюгин, А. Н. Конилов*

Воронежский государственный университет

*Институт экспериментальной минералогии РАН, Черноголовка

Поступила в редакцию 1 марта 2013 г.

Аннотация. Богатые иттрием монациты были обнаружены в высокотемпературных метапелитовых гранулитах Курско-Бесединского блока Воронежского кристаллического массива. Они представлены мелкими включениями в породообразующих алюмосиликатах и практически всегда встречаются в виде сростков с ксенотимом. (Y)-монациты содержат до 8,5 мас. % Y₂O₃ и до 4,5 мас. % Gd₂O₃, что является аномальным для областей гранулитового метаморфизма. При нормировании по хондриту содержаний LREE в (Y)-монацитах фиксируется положительная цериевая аномалия или, возможно, первая тетрада M-типа.

Ключевые слова: (Y)-монацит, цериевая аномалия, тетрад эффект, мезоархей, Курско-Бесединский гранулитовый блок, высокотемпературный метаморфизм.

Abstract. Rich yttrium monazite have been found in high-metapelitic granulites Kursk Besedino block of the Voronezh crystalline massif. They are small inclusions in rock-forming alumo-silicates and almost always occur as intergrowths with xenotime. (Y)-monazite contains up to 8.5 wt. % Y_2O_3 and up to 4.5 wt. % Gd_2O_3 , which is abnormal for granulite facies metamorphism. When rationing chondrite LREE contents of elements in the (Y)-monazite fixed positive cerium anomaly or the first book M-type.

Key words: (*Y*)-monazite, cerium anomaly, tetrad effect, Mesoarchean, Kursk-Besedino granulite block, ultrahigh-temperature metamorphism

Курско-Бесединский блок (КББ), локализованный в центральной части Курской магнитной аномалии, является одним из двух гранулитовых блоков Воронежского кристаллического массива (ВКМ) (рис. 1). Он сложен архейскими породами, метаморфизованными в условиях гранулитовой фации (магнетитовые кварциты, глиноземистые железистые породы, метабазиты, метаультрабазиты и метапелиты), сохранившимися в виде реликтов среди мигматитов и гнейсов нерасчлененного обоянского комплекса, регрессивно перекристаллизованных преимущественно в амфиболитовой фации. Мезоархейский возраст (3277 ± 33 млн лет) пород гранулитового блока подтвержден U-Pb изохронным методом по циркону из разгнейсованного плагиогранита [1], прорывавшего магнетитовые кварциты.

В магнетитовых кварцитах региона ранее нами были обнаружены уникальные орто- и клинопи-

роксены со структурами распада, позволившие впервые определить ультравысокие температуры пикового метаморфизма пород оцениваемые ≥1000 °C [5].

Ассоциирующие с этими породами метапелиты после интенсивных ретроградных процессов не сохранили классических минералогических свидетельств (например, сапфирин-кварцевых парагенезисов) такого метаморфизма. Однако в них нами были обнаружены полевые шпаты со структурами распада, свидетельствующими о высоких температурах кристаллизации (960–1050 °C) [2], а также зафиксирован ряд высокотемпературных парагенезисов; например, контактирующие зерна низкоцинковой (< 3 мас. % ZnO) шпинели с кварцем и высокоглиноземистый (до 8 мас. % Al₂O₃) ортопироксен.

Изученные породные ассоциации метапелитов, как правило, содержат минералы-акцессории (циркон, монацит, ксенотим), позволяющие при отсутствии каких-либо других минеральных сенсоров определить температуру, а также в некоторых слу-

[©] Пилюгин С. М., Конилов А. Н., 2013

Рис. 1. а – три кристаллических сегмента Восточно-Европейского кратона [6]; б – кристаллические домены Сарматии [16]. Воронежский кристаллический массив (ВКМ) выделен темным цветом; в – схема геологического строения Воронежского кристаллического массива (по [16] с некоторыми изменениями); г – Курско-Бесединский блок ВКМ (район исследования). 1–6 – Архей: (1) зеленокаменные пояса; (2) тоналит-трондьемитовые гнейсы и гранитоиды; (3) поздне- и посттектонические гранитоиды; (4) высокотемпературные метаморфические комплексы с железистыми формациями; (5) полиметаморфические образования обоянского комплекса (мигматиты и гнейсы с подчиненным количеством метабазитов), регрессивно метаморфизованные в амфиболитовой фации; (6) мафитовые интрузии (по геофизическим данным). 7–13 – Палеопротерозой: (7) гранулиты с возрастом 2.1 млрд лет; (8) вулканогенно-осадочные формации, в том числе: а) вулканогенные и осадочные породы и б) железисто-кремнистые формации; (9) метаморфизованные вулкано-плутонические комплексы; (10) метаморфизованный терригенно-осадочный комплекс; (11) поздне- и посттектонические целочные и полевошпатовые лейкократовые гранитоиды; (12) полимиктовые конгломераты, осадочно-вулканогенные и терригенные породы; (13) метагабброиды. 14 – Зоны глубинных разломов. 15 – Надвиговые зоны. 16 – Геологические границы. 17 – Местоположение скважин. 18 – Границы Курско-Бесединского блока. 19 – Район Курской магнитной аномалии

чаях и возраст метаморфических процессов. Ранее нами уже предпринимались попытки определения температуры метаморфизма по химическим составам монацит-ксенотимовых срастаний [3] и возраста метаморфизма методом СНІМЕ [4]. Несмотря на столь детальное описание вещественного состава, физико-химических параметров метаморфизма метапелитовых гранулитов КББ ВКМ, редкоземельная (REE) минерализация в них до настоящего времени не была изучена. Настоящая работа призвана устранить этот пробел.

Нами были изучены акцессорные минералы из разрезов 5 скважин метапелитовых гранулитов КББ ВКМ. Метапелиты представлены гнейсами и мигматизированными гнейсами светло-серой и серой окраски, массивными или неяснополосчатыми, среднекрупнозернистыми. Структура гранобластовая, лепидогранобластовая, порфиробластовая (за счет граната, достигающего размеров порядка 1 см) с признаками плавления. Основные минеральные ассоциации метапелитов: Qtz¹+Grt+Kfs+ +Crd+Sil+Spl+Bt+Mag (иногда с Pl,Ilm,Py) и Qtz+ Grt+Kfs+Opx+Spl+Crd+Bt+Py+Mag. Всего было исследовано 11 образцов (в среднем по 40 иногда до 120 анализов для каждого образца).

Отобранные образцы (керн скважин) исследовались в прозрачно- полированных шлифах и аншлифах на электронных микроскопах – Jeol 6380 LV, Jeol 6510 LV (ВГУ), CamScan 2300 (ИЭМ РАН). Состав акцессорных REE - содержащих минералов определялся с помощью энергодисперсионных анализаторов INCA 250, INCA 450, Bruker AXS. Условия анализа: ускоряющее напряжение 20 кВ, ток зонда 1-10 нА, диаметр зонда (локальность анализа) 1-5 мкм, время набора рентгеновских спектров – 100 сек. Точность анализов систематически контролировалась по природным и синтетическим эталонам. В ряде случаев использовались низкие (10 кВ) ускоряющие напряжения с фокусировкой электронного пучка в области порядка 50 нм.

При детальном изучении пород в них были установлены следующие REE-содержащие минеральные фазы: 1) монацит; 2) ксенотим; 3) циркон; 4) REE апатит; 5) хаттонит; 6) чералит.

Монацит являются наиболее распространенным акцессорным минералом в метапелитовых гранулитах Курско-Бесединского блока ВКМ. Монациты представлены зернами округлой овальный и вытянутой формы размером от 10–20 до 200 мкм (рис. 2а). Они встречаются преимущественно как включения в различных метаморфических минералах – чаще всего в гранате, плагиоклазе, шинели. В некоторых случаях наблюдаются монациты мозаично-блокового строения, обусловленного вариациями концентраций урана, тория и свинца в пределах зерен (рис. 2б).

Ксенотимы представлены мелкими (до 50 мкм) кристаллами округлой формы, локализующимися в породообразующих силикатах (в основном в гранате) и часто образующими срастания с монацитами (рис. 2в).

Цирконы встречаются, как в виде отдельных зерен в матриксе, так и принимают участие в реакционных структурах вместе с монацитом, ксенотимом и рутилом. В ходе исследования были обнаружены неоднородные многофазные зерна цирконов, замещенные в краевых частях циртолитом, а также зерна циркона содержащие мельчайшие включения уранинита (рис. 2г). Содержания REE в цирконах низкие (на уровне 100 ppm) и фиксируются только методами волнового рентгеноспектрального анализа.

REE апатит был обнаружен только в одном из образцов метапелитов в ассоциации с монацитом. По составу апатит фторхлористый с микро-концентрациями (ppm) редких земель.

Хаттонитовую и чералитовую минеральные фазы удалось идентифицировать только в каймах по крупным (50–100 мкм) кристаллам монацита (рис. 2д). В одном из образцов (скв. 3555 глубина 260 м.) были обнаружены необычные REE минералы представленные твердофазными растворами хаттонита и ксенотима. В кристаллах наблюдались выделения галенита (рис. 2е).

Наиболее представительные химические составы изученных REE минералов представлены в табл. 1. Как видно из таблицы, монациты в срастаниях с ксенотимами характеризуются высокими концентрациями иттрия (от 5,87 до 8,5 мас.% У₂О₂) и гадолиния (от 2,59 до 4,5 мас.% Gd₂O₂) при низких содержаниях лантана и церия (от 5,53 до 7,5 мас.% La₂O₃; от 18,25 до 20,2 мас.% Ce₂O₃) (табл. 1). Указанные значения являются аномальными для монацитов, и ранее были описаны только в высокотемпературных метаморфических породах Богемского массива [10]. Различие химических составов монацитов в сростках и в индивидуальных зернах хорошо иллюстрируется диаграммами составов в системах координат: Gd_2O_2/Y_2O_2 и La₂O₂/ Се₂О₂ (рис. 3; рис. 4). Отметим, что для сравнительного анализа нами были заимствованы составы монацитов из ряда типичных объектов докембрий-

¹ Символы минералов по [11]

ВЕСТНИК ВГУ, СЕРИЯ: ГЕОЛОГИЯ, 2013, № 1, ЯНВАРЬ–ИЮНЬ

Рис. 2. Основные типы REE-минерализации в высокотемпературных метапелитах КББ ВКМ: а – округлое зерно монацита (Mnz); б – монацит мозаично-блокового строения; в – сросток монацита и ксенотима (Xen); г – округлое зерно циркона (Zr) по краям и в центре циртолитизированное (затемненные участки) и содержащее включения уранинита (белые пятна); д – монацит с каймами хаттонита (Hutt) и чералита (Cher); е – зерно твердого раствора хаттонита и ксенотима, содержащее включения галенита (белые пятна)

Химиче	ские сосі	тавы Ri	ЕЕ-мине	ралов и: 54-127	3 BHCOKO	температу	оных метап	елитовь	ых грану	numoe k	(урско-Б	есединско	го блока	BKM
зец			35	24-16/			3554-167			355	04-143			302-206
рал			Монацил	Ĺ		Ксенотим	Монацит		Мон	ацит		Хаттонит	Чералит	Хаттонит+ Ксенотим
истика		Сростс	ж с ксен	отимом		Сросток с монацитом	Сросток с ксенотимом, рутилом и цирконом	Ин	дивидуал	пьное зер	ОНО	Кайма	Кайма	Индивидуаль- ное зерно
нализа	2	n	4	13	18	7	7	14	17	18	19	5	34	5
3	6,77	6,14	5,93	5,53	7,42	< П. ч.	6,28	14,39	16,18	16,48	16,21	8,05	4,64	< П. ч.
	20,11	18,96	17,93	18,87	19,85	< П. ч.	18,25	26,64	29,02	28,86	29,93	23,27	13,58	< П. ч.
33	1,99	2,57	2,52	2,33	2,04	< п. ч.	2,68	2,85	2,33	2,73	2,15	3,48	1,75	< П. ч.
	13,11	13,98	14,07	13,6	12,64	0,81	12,99	11,32	10,41	11,64	11,46	13,07	6,91	< П. ч.
\mathbf{D}_{3}	2,87	2,54	4,13	3,54	3,21	1,19	3,37	1,39	1,71	1,93	1,2	1,83	< п. ч.	< П. ч.
D 3	<п. ч.*	<п. ч.	< п. ч.	< п. ч.	<п. ч.	< п. ч.	< П. ч.	< п. ч.	< п. ч.	< П. ч.	< П. ч.	< П. ч.	< п. ч.	< П. ч.
D ³	3,89	4,51	4,22	4,52	3,48	3,18	3,44	1,33	1,55	1,42	1,59	0,73	< п. ч.	1,76
\mathbf{D}_3	1,56	2,34	2,24	2,47	2,25	7,18	2,66	1,29	0,7	0,96	0,97	0,47	< п. ч.	4,71
\mathbf{J}_3	< п. ч.	<п. ч.	< п. ч.	< п. ч.	<п. ч.	3,39	< П. Ч.	0,73	0,04	< п. ч.	0,99	0,42	< п. ч.	2,11
3	7,38	7,71	8,56	7,88	7,51	45,81	6,03	< П. ч.	< П. ч.	0,53	< П. ч.	0,31	0,45	17,25
$\mathbf{)}_2$	5,01	5,3	4,5	4,35	5,43	< п. ч.	5,06	5,44	4,04	4,1	2,95	18,62	25,22	42,83
-2	1,88	1,33	1,85	2,17	1,17	1,37	2,74	1,32	0,52	0,57	0,08	< П. ч.	< п. ч.	< П. ч.
	1,52	1,45	1,48	1,69	2,2	0,57	2,01	1,12	0,53	0,08	0,61	2,59	1,77	1, 1
5	31,18	29,61	30,25	30,34	29,94	34,28	27,83	29,9	29,72	28,05	29,8	21,86	18,79	5,21
2	0,4	0,46	0,41	0,38	0,4	< п. ч.	0,13	0,8	0,5	0,36	0,4	4,25	5,52	18,24
	1,79	2,01	1,72	1,75	1,4	0,2	1,86	1,15	1,04	0,8	0.93	0,55	9,55	0,75
ма	99,45	98,87	99,39	90,06	98,41	97,98	96,85	99,67	100,3	98,51	99,27	99,5	88,18	93,96
ржание	ысмента	ниже по	рога чув	ствитель	ности ана	тического	ооорудовани	R						

 $\mathrm{Er}_{2}\mathrm{O}_{3}$ Y_2O_3 ThO,

ŐŊ

P₂0,

PbO

Сумма

SiO, CaO * - содержание элемента ниже порога чувствительности аналитического оборудования

 La_2O_3

Номер анализа

Минерал Образец

Характеристика

Nd_,O_, Sm,O

 \Pr_{2O_3}

Ce,O₂

Eu,O₃

Gd,O, Dy₂O₃

Иттриевые монациты Курско-Бесединского гранулитового блока Воронежского кристаллического массива ...

ского гранулитового метаморфизма: Брянского блока ВКМ, метаморфических комплексов Исуа (Гренландия) [18] и Левизиан (Шотландия) [18], а также высокотемпературного комплекса Напиер (Антарктика) [8] (табл. 2).

Очевидно, что составы монацитов в срастаниях заметно обособляются от составов индивидуальных зерен: в системе координат Gd_2O_3 - Y_2O_3 фиксируется две области высоко иттриевых составов (рис. 3). Еще более четкое разделение на области существования составов наблюдаются в системе координат La_2O_3 - Ce_2O_3 . Причем, область составов высоко иттриевых монацитов имеет существенное смещение по отношения к «нормальному» распределению La/Ce в монацитах (рис. 4). Такого рода смещения в распределении редкоземельных элементов могут быть следствием тетрад эффекта.

Тетрад эффект фракционирования REE – это нарушение формы спектра нормированных по хондриту содержаний редкоземельных элементов. Он выражается в разделении спектра на 4 группы (тетрады) с образованием зигзагообразной кривой: La-Ce-Pr-Nd, Pm-Sm-Eu-Gd, Gd-Tb-Dy-Ho и Er-Tm-Yb-Lu. Для каждой тетрады в спектре редких земель образуются небольшие изгибы, границы которых проходят между Nd и Sm, по Gd и между Ho и Er. Вторую тетраду (Pm–Gd) не учитывают в связи с минимумом европия и отсутствием прометия в земных условиях.

Рис. 3. Диаграмма составов монацитов из различных регионов проявления докембрийского гранулитового метаморфизма в координатах Gd₂O₃-Y₂O₃. Условные обозначения: KBB2, KBB4 – монацитовые срастания с ксенотимами (Курско-Бесединский блок); KBB – индивидуальные зерна монацитов (Курско-Бесединский блок); BB – монациты из Брянского гранулитового блока; Lewisian – монациты Левизианского гранулитового пояса (Шотландия); Isua – монациты из метаморфических комплексов Исуа (Гренландия); Riiser-Larsen – монациты из высокометаморфизованных пород комплекса Напиер (Восточная Антарктика). Овалами выделены области иттриевых монацитов

2
а
Ξ
II
õ
g
Г

11					
иттиевые монаш	иты күпско-Бе	геоинского гранулитово:	го олока Коронежсі	кого кписталл	ического массива
1 minip neoone monary	antoi repetto Dec	counciloco cpunymino ool	o onona Doponicoleei	noco npuentaan	a reenoco macchoa

	ланичец	ские сост	авы монаі	d en 90unh	различных	регионов	проявлени	ия докембр	рийского гр	анулитово	го метамо	рфизма	
F	Брянск бл	ий гранул ток ВКМ*	ИТОВЫЙ **	Левизиа	н (Шотлан	***(RИДН	Ис (Гренлан	:уа ндия)***	K	омплекс На	апиер (Ант	арктика)***	*
		Монацит			Монацит		Мон	ацит			Монацит		
	Индив	идуальны	е зерна	Индиві	идуальны	е зерна	Индивил зер	цуальные она		Индил	видуальны	е зерна	
	2 B -7	3B-6	4B-2	M1-17	M5-D	M4-I	M1	M2	m1-17	m2-22	m3-27	m4-28	m5-32
	12,55	16,04	13,78	15,29	14,81	13,56	15,3	15,33	14,36	14,93	13,59	14,23	15,17
	28,08	31,78	30,45	31,21	33,46	29,89	29,05	29,16	32,37	31,96	32,33	32,37	32,2
	2,62	2,96	2,66	3,57	3,8	3,42	3,39	3,48	2,98	2,97	3,17	3,14	2,99
	12,48	11,72	12,63	13,84	15	11,9	15,07	14,68	10,78	11,52	11,3	11,23	11,64
	2,48	0,54	2,03	2,02	1,45	0,86	2,63	2,57	26'0	1,69	0,85	1,09	1,71
	1,38	< П. ч.	< П. ч.	< П. ч.	< П. ч.	< П. ч.	0,31	0,28	< П. ч.	< П. ч.	< П. Ч.	< П. ч.	< П. Ч
	3,89	1,03	2,17	1,35	0,19	0,21	1,16	1,02	0,25	0,65	0,2	0,31	0,69
	0,82	< п. ч.	0,7	< П. ч.	< П. ч.	< П. ч.	< П. ч.	< П. ч.	0,74	0,13	0,13	0,15	0,13
	< п. ч.*	< П. ч.	< П. ч.	< П. ч.	< П. ч.	< П. ч.	< П. ч.	< П. ч.	< П. ч.	< П. ч.	< П. Ч.	< П. ч.	< П. ч
	2,83	< П. ч.	0,35	0,35	< П. ч.	< П. ч.	< П. ч.	< П. ч.	< П. ч.	< П. ч.	0,05	0,06	0,05
	2,25	1,93	2,61	1,65	< П. ч.	9,02	1,66	1,87	7,31	5,85	7,92	7,06	5,96
	0,26	0,58	0,28	0,36	0,23	0,23	0,17	0,24	0,61	0,39	0,34	0,68	0,53
	0,25	0,38	0,33	0,36	0,12	1,15	0,3	0,42	$0,\!41$	0,54	0,9	0,59	0,24
	28,75	29,59	30,77	30,69	29,22	27,09	27,43	27,15	30,07	29,85	29,25	30,1	30,48
	0,29	0,44	0,54	0,1	0,27	0,71	0,22	0,35	1,19	0,78	1,19	0,92	0,62
	0,73	0,56	0,69	0,57	0,2	1,47	0,41	0,58	1,3	1,07	1,3	1,32	1,16
	102,82	98,46	100,57	101,27	98,75	99,88	97,1	97,11	103,05	102,35	102,53	103,23	103,4

- содержание элемента ниже порога чувствительности аналитического оборудования;

*** – химические составы заимствованы у [18]; ****- химические составы заимствованы у [8].

** – авторские данные;

ВЕСТНИК ВГУ, СЕРИЯ: ГЕОЛОГИЯ, 2013, № 1, ЯНВАРЬ–ИЮНЬ

Рис. 4. Диаграмма составов монацитов из различных регионов проявления докембрийского гранулитового метаморфизма в координатах La₂O₃-Ce₂O₃. Условные обозначения те же, что и на рис. 3. Стрелкой показан «нормальный» тренд распределения La/Ce. Овалом выделена область иттриевых монацитов

А. Масуда с соавторами [13] выявил 2 типа тетрадного эффекта: W (вогнутая кривая распределения) и M (выпуклая кривая распределения REE). В морской воде, грунтовых водах, известняках, других осадочных породах обнаруживается W-тип тетрадного эффекта. Тетрад-эффект M-типа обнаруживается чаще всего в высоко эволюционированных гранитоидных системах на поздних стадиях дифференциации магм.

М-тип тетрадного эффекта по литературным данным выявлен в герцинских изменённых гранитах Кенигшайн (Германия) [7], в литий-фтористых гранитах и флюоритах Восточной Германии и Казахстана [9], в мезозойских литий-фтористых гранитах Южного, Юго-Восточного и Северо-Восточного Китая [13], в пегматитах и турмалиновых гранитах Южной Дакоты [17], в гранитоидах вблизи уранового месторождения Тоно (Япония) [15]. Несмотря на богатую историю изучения метаморфических комплексов тетрад эффект в них ранее не был описан. С целью проверки предположения о наличие тетрад эффекта в высокометаморфизованных метапелитах КББ ВКМ, нами были нормированы по хондриту содержания REE элементов в изученных монацитах. На рис. 5 в области легких редких земель для иттриевых монацитов находящихся в срастаниях с ксенотимами фиксируется положительная цериевая аномалия или, возможно, первая тетрада М-типа. Третью и четвертую тетрады выделить не представляется возможным из-за низких содержаний тяжелых редких земель в монацитах. Для индивидуальных зерен монацитов никаких признаков изменения формы спектра не обнаружено.

В ксенотимах из срастаний фиксируется повышенное содержание диспрозия (до 7 мас.% Dy_2O_3) и эрбия (до 4 мас.% Er_2O_3) (табл. 1), что по аналогии с более ранними работами [12] может указывать на существование третьей и четвертой тетрад Мтипа.

Иттриевые монациты Курско-Бесединского гранулитового блока Воронежского кристаллического массива ...

Puc. 5. Распределение редкоземельных элементов в монацитах из различных регионов докембрийского гранулитового метаморфизма, нормированное к хондриту. Для срастаний монацитов с ксенотимами (KBB2, KBB4) фиксируется положительная цериевая аномалия (выделенная овалом область)

Sm

Eu

Nd

Однако эти предположения пока носят гипотетический характер и их более надежное обоснование нуждается в дополнительных и детальных исследованиях комплексными, в том числе и геохимическими, методами.

Ce

Pr

La

Наличие цериевой аномалии в монацитах из сростков с ксенотимами может объясняться особыми условиями флюидного режима при ретроградном метаморфизме метапелитов. Установлено [14], что с падением температуры в монацитах снижается содержание иттрия за счет образования ксенотима, а также частично за счет высвобождения его в породообразующие силикаты (гранат). Этот процесс сопровождается интенсивной флюидной переработкой пород и дискретен по времени. Обнаруженные нами ранее реликтовые структуры распада полевых шпатов (антипертиты, мезопертиты, пертиты) свидетельствуют о наличие высокотемпературного этапа метаморфизма метапелитов. Последующие ретроградные преобразования привели к образованию новых минеральных ассоциаций, реакционных кайм и структур (например, REE – апатита, кварц-кордиеритовых кайм).

Gd

Dy

Таким образом, срастания монацита с ксенотимом могут рассматриваться как реликты высокотемпературного метаморфизма метапелитов КББ, а индивидуальные зерна, образовались, по-видимому, при падении температуры на ретроградных этапах метаморфизма. Этим, вероятно и объясняются различия в химическом составе монацитов, а также наличие цериевой аномалии в монацит-ксенотимовых сростках.

Работа выполнена при финансовой поддержке грантов ФЦП «Научные и научно-педагогические кадры инновационной России» (Проект № 14. В37.21.0609); Президента РФ (Проект МК-722.2013.5).

ЛИТЕРАТУРА

1. Артеменко Г. В. Палеоархейский возраст ультраметаморфических плагиогранитоидов Курско-Бесединского блока (Воронежский кристаллический массив) / Г. В. Артеменко, И. А. Швайка, Е. А. Татаринова // Геологический журнал. – 2006. – № 1. – С. 145–178.

2. Пилюгин С. М. Ультравысокие (≥1000 °С) температуры пикового метаморфизма метапелитов Воронежского кристаллического массива (Курско-Бесединский гранулитовый блок) по данным полевошпатовой термометрии / С. М. Пилюгин, В. И. Фонарев, К. А. Савко // ДАН. – 2009. – № 5. – С. 660–663.

З. Пилюгин С. М. Монацит-ксенотимовая термометрия гранулитовых комплексов докембрия / С. М. Пилюгин, К. А. Савко, А. Н. Конилов // Материалы конференции, посвященной 110-летию со дня рождения академика Д. С. Коржинского. Физико-химические факторы петро- и рудогенеза: новые рубежи. – М., 2009. – С. 316– 317.

4. Савко К. А. Новые данные о возрасте гранулитового метаморфизма Курско-Бесединского блока Воронежского кристаллического массива / К. А. Савко [и др.] // Вестник Воронеж. гос. ун-та. Серия: Геология. – 2009. – № 1. – С. 84–93.

5. *Fonarev V. I.* Exsolution Textures of ortho- and clinopyroxene in high-grade BIF of the Voronezh Crystalline Massif: Evidence of ultrahigh-temperature metamorphism // J. metamorphic Geol. – 2006. – V. 24. – P. 135–151.

6. *Gorbatschev R*. Frontiers in the Baltic Shield / R. Gorbatschev, S. Bogdanova// Precambrian Res. – 1993. – V. 64. – P. 3–22.

7. *Hetcht L.* Mineralogical and geochemical characteristics of hydrothermal alteration and epysyenitization in the Kunigshain granites, northern Bohemian Massif, Germany / L. Hetcht [et al.] // Int. J. Earth Sci. – 1999. – V. 88. – P. 236– 252.

8. *Hokada T*. Electron microprobe technique for U-Th-Pb and REE chemistry of monazite, and its implications for pre-, peak- and postmetamorphic events of the Lutzow-Holm Complex and the Napier Complex, East Antarctica / T. Ho-kada, Y. Motoyoshi // Polar Geosci. – 2006. – V. 19. – P. 118–151.

Воронежский государственный университет С. М. Пилюгин, старший преподаватель кафедры полезных ископаемых и недропользования Тел. 8 (473) 220-86-26 geoscience@yandex.ru

Институт экспериментальной минералогии РАН А. Н. Конилов, научный сотрудник Тел. 8 (495) 951-04-43 konilov@iem.ac.ru 9. *Jahn B.* Highly evolved juvenile granites with tetrad REE patterns: the Wodue and Baerzhe granites from the Great Xing'an Mountains in NE China / B. Jahn [et al.] // Lithos. – 2001. – V. 59. – P. 171–198.

10. Krenn E. Unusually Y-rich monazite-(Ce) with 6–14 wt.% Y_2O_3 in a granulite from the Bohemian Massif: implications for high temperature monazite growth from the monazite-xenotime miscibility gap thermometry / E. Krenn, F. Finger // Mineralogical Magazine. – 2010. – V. 74 (2). – P. 217–225.

11. *Kretz R*. Symbols for rock-forming minerals / R. Kretz // Amer. Miner. – 1983. – V. 68. – P. 277–279.

12. *Masau M*. Dysprosian xenotime-(Y) from the Annie Claim granitic pegmatite, southeastern Manitoba, Canada: Evidence of the tetrad effect? / M. Masau, P. Cerny, R. Chapman // Can. Mineral. $-2000, -38, -N_{2}4, -P, 899-905$.

13. *Masuda* A. Lanthanide tetrad effects in nature: two mutually opposite types W and M / A. Masuda // Geochem. J. -1987. - V. 21. - P. 110-124.

14. *Mahan K*. Dating metamorphic reactions and fluid flow: application to exhumation of high- P granulites in a crustal-scale shear zone, western Canadian Shield / K. Mahan // Journal of Metamorphic Geology. – Volume 24, issue 3 (April 2006). – P. 193–217.

15. Parnell J. Geofluids: Geolog. Society / J. Parnell. – 1994. – N_{2} 78. – 291 p.

16. *Shchipansky A. A.* The Sarmatian crustal segment: Precambrian correlation between the Voronezh Massif and the Ukrainian Shield across the Dniepr-Donets Aulacogen / A. A. Shchipansky, S. V. Bogdanova // Tectonophysic. – 1996. – V. 268. – P. 109–125.

17. *Wu Fu-Y*. A-type granites in Northeastern China: age and geochemical constraints on their petrogenesis / Fu-Y. Wu [et al.] // Chem. Geol. -2002. - V. 187. - P. 143-173.

18. *Zhu X. K.* Monazite chemical composition: some implications for monazite geochronology / X. K. Zhu, R. K. O'Nions // Contrib. Mineral. Petrol. – 1999. – V. 137. – P. 351–363.

Voronezh State University

S. M. Pilugin, senior teacher department mineral resource Tel. 8 (473) 220-86-26

geoscience@yandex.ru

Institute of Experimental Mineralogy RAS A. N. Konilov, research worker Tel. 8 (495) 951-04-43 konilov@iem.ac.ru