ЭКСПЕРИМЕНТАЛЬНОЕ ПЛАВЛЕНИЕ ИЗВЕСТКОВО-СИЛИКАТНЫХ МЕТАОСАДОЧНЫХ ПОРОД ВОРОНЦОВСКОЙ СЕРИИ

К. А. Савко, М. А. Голунова*, Е. Н. Козлова, Н. С. Базиков

Воронежский государственный университет

*Институт экспериментальной минералогии РАН, г. Черноголовка

Поступила в редакцию 19 февраля 2013 г.

Аннотация. С целью изучения процессов плавления известково-силкатных пород в верхнекоровых условиях был проведен эксперимент. В результате нагревания и плавления обогащенного кальцитом сланца при 800–850 °C установлено, что продуктами анатектического сухого плавления известково-силикатных пород в верхней коре являются граниты, а рестит представлен гранулитами, содержащими волластонит, скаполит и клинопироксен.

Ключевые слова: известково-силикатные породы, экспериментальное плавление, рестит, гранит.

Abstract. The experiment had been set up to study the melting of calc-silica rocks in the upper crustal levels. As a result of heating and melting of calcite-rich shale at 800–850 °C it was investigated, that the products of calc-silica rocks anatectic dry melting in the upper crust are granites, while restite consists of wollastonite, scapolite and clynopyroxene-bearing granulites.

Key words: calc-silica rocks, experimental melting, restite, granite

Введение

Экспериментальное плавление обогащенных кальцием осадочных пород проводилось только при очень высоких давлениях и температурах для понимания процессов зарождения карбонатитовых магм и рециклинга CO_2 при плавлении субдуцированных плит [1, 2, 3 и др.]. Недавно были найдены ксенолиты известково-силикатных гранулитов в диатремах на Памире [4]. В результате их изучения было установлено, что из расплавных включений они образовались как реститы при плавлении карбонатсодержащих биотит-кварц-плагиоклазовых пород в нижней коре при ~1000 °C и ~15 кбар.

В то же время экспериментов по плавлению известково-силикатных метаосадочных пород при невысоких давлениях, характерных для гранитообразования в верхней коре, не проводилось. Такие породы часто присутствуют в осадочных бассейнах в значительных объемах и могут быть источником анатектических расплавов. В литературе есть единичные работы об ассимиляции таких пород магмами различного состава [5], а также предположения, что при плавлении известково-силикатных пород могут возникать расплавы, сходные по составу с TTG [6]. В то же время достоверные данные о температурах и продуктах их плавления при повышенном тепловом потоке, вследствие как регионального, так и контактового метаморфизма, отсутствуют.

Цель настоящей статьи – получить первые данные о процессах плавления известково-силикатных пород в верхнекоровых условиях, используя экспериментальное нагревание и плавление обогащенного кальцитом сланца при 800-850 °C и 3 кбар в сухих условиях и в присутствии водного флюида.

Методика и процедура проведения эксперимента

Для экспериментального плавления был отобран образец из керна скважины 8277, глубина 382 м (8277/382), вскрывшей метаосадочные породы воронцовской серии на востоке Воронежского кристаллического массива. Образец представляет собой известково-силикатную породу – сланец мелкозернистый с лепидобластовой структурой, обогащенный кальцитом (рис. 1). Минеральный состав (мод. %): кварц – 35, плагиоклаз ($X_{ca} = 0.16-0.19$) – 30, биотит ($X_{Fe} = 0.33-0.39$) – 15, кальцит (почти без примесей MgO, FeO и MnO) – 15, хлорит – 5, мусковит – ед. зерна. Акцессорные минералы представлены цирконом, апатитом, алланитом и пиритом.

По химическому составу порода отличается от обычных метапелитов повышенным содержанием кальция (12.1 мас. %) и преобладанием натрия над калием (табл. 1).

[©] Савко К. А., Голунова М. А., Козлова Е. Н., Базиков Н. С., 2013

Таблица 1

				-	-	-		-					
Образец	T° C	Р. кбар	H ₂ O (%)	SiO ₂	TiO ₂	Al ₂ O ₃	FeO	MnO	MgO	CaO	Na ₂ O	K ₂ O	Сумма
				Исход	ный сл	анец, о	богащен	ный Са)				
8277/382*				64.79	0.43	12.04	3.57	0.10	1.89	12.10	3.02	1.60	99.66
		1		Ми	нераль	и из исх	одного	сланца					
Pl-5				64.14	_	22.12	_	_	_	3.64	10.79	-	100.69
P18				63.05	_	22.77	_	_	_	4.22	9.72	0.31	100.07
Pl-13				61.47	_	22.62	_	_	_	4.00	11.36	-	99.45
Bt-3				37.54	1.62	18.76	14.71	0.06	13.47	0.31	0.47	8.40	95.34
Chl–25				26.93	-	22.13	19.29	0.27	17.95	0.04	0.28	0.13	87.01
Минералы из экспериментальных препаратов													
Pl-4-2	800	3	3.1	61.01	-	19.61	-	-	_	5.08	8.16	0.67	98.79
Pl-2-1	800	3	3.1	62.91		23.84	_	_	_	5.20	8.08	0.47	100.57
Kfs–6–1	800	3	3.1	65.31	_	19.13	_	_	_	0.78	1.93	12.79	99.95
Wol-9-1	800	3	3.1	50.08	_	0.26	1.05	_	0.44	42.69	0.06	0.14	94.72
Bt-7-1	800	3	3.1	35.53	1.07	18.45	19.27	_	11.77	0.25	0.83	8.59	95.76
Pl-4	850	3	-	63.23	0.15	23.08	_	0.03	_	5.03	7.56	0.95	100.06
P1-5	850	3	-	62.95	_	23.23	0.12	0.06	0.11	5.47	7.30	1.08	100.33
Cpx–7	850	3	-	52.55	0.10	1.41	13.94	0.42	9.00	22.37	0.28	0.15	100.21
Cpx-11	850	3	-	53.47	0.23	1.96	14.20	0.27	8.71	22.09	0.28	0.21	101.42
Wol–2	850	3	-	53.93	_	0.90	1.89	0.37	0.32	42.46	0.35	0.30	100.52
Wol–16	850	3	-	53.90	_	0.54	1.71	0.07	0.31	44.66	0.16	0.01	101.36
Scp–6	850	3	_	47.50	0.20	33.34	0.19	_	_	16.50	2.19	0.11	99.77
Scp-17	850	3	-	49.79	0.12	32.12	0.39	_	0.07	14.90	2.70	0.16	100.25
Bt-13	850	3	-	37.13	3.26	16.17	14.83	0.21	13.61	0.31	0.64	9.63	95.80
P1-2	850	3	4.4	56.99	0.03	26.53	_	_	0.04	8.88	5.33	0.40	98.20
Pl-3	850	3	4.4	55.17	0.14	27.72	0.28	0.12	_	10.42	5.44	0.39	99.68
Cpx–5	850	3	4.4	52.30	0.30	3.86	8.14	0.09	11.40	23.16	0.23	-	99.49
Cpx–6	850	3	4.4	54.27	0.34	2.51	8.30	0.32	12.37	21.92	0.53	0.16	100.72
Scp-4	850	3	4.4	43.48	-	31.14	2.31	0.06	3.08	16.36	0.53	0.26	97.21
		1			Зак	алочны	е стекла	l					
L-14	850	3	_	74.71	0.09	13.15	1.03	0.05	0.17	2.26	2.89	3.61	97.95
L–18	850	3	_	75.55	0.14	12.02	0.74	0.01	0.16	1.70	2.75	4.20	97.27
L8	850	3	4.4	71.54	0.27	13.30	0.17	0.26	0.24	4.17	3.88	2.24	96.08
L-9	850	3	4.4	71.03	_	13.30	0.47	_	0.12	4.23	3.39	2.30	94.82
L-10	850	3	4.4	71.01	0.40	13.55	0.66	0.02	0.25	4.50	3.56	2.36	96.31
L-11	850	3	4.4	70.78	0.24	13.66	0.60	0.04	0.01	4.34	3.67	2.44	95.78
L-12	850	3	4.4	68.74	0.28	12.51	0.89	_	0.25	4.26	3.42	2.33	92.67
L–13	850	3	4.4	68.33	0.36	13.07	0.73	0.01	0.12	4.87	3.68	2.09	93.25

Составы исходного образца минералов и экспериментальных стекол

Данные рентгено-флюоресцентного анализа (ИГЕМ РАН, аналитик А.И. Якушев)

ВЕСТНИК ВГУ, СЕРИЯ: ГЕОЛОГИЯ, 2013, № 1, ЯНВАРЬ–ИЮНЬ

Рис. 1. Известково-силикатная метаосадочная порода (сланец с кальцитом), подвергшаяся экспериментальному плавлению. Николи скрещены, увеличение x24, обр. 8277/382

Образец был раздроблен и истерт в агатовой ступке с добавлением спирта до размера частиц 20 мкм. По 100–150 мг вещества было загружено в золотые ампулы длиной 15 мм, диаметром 4 мм и толщиной стенок 0.1 мм. Для опыта «сухого» плавления не запаянная капсула в течение 1 часа была нагрета до 120 °С для удаления адсорбированной воды. Для «мокрого» плавления в ампулу было добавлено от 3.2 до 4.6 % дистиллированной воды. После этих операций ампулы были запаяны и взвешены.

Эксперименты проводились на установке высокого газового давления в Институте экспериментальной минералогии РАН (ИЭМ РАН) в «сухих условиях» и с добавлением воды. Условия проведения экспериментов суммированы в табл. 2. Эти условия поддерживались в течение 14 суток. После этого закалочные стекла охлаждались со скоростью около 30 °C за 30 секунд. Полученные закалочные стекла изучались на растровых электронных микроскопах TESCAN VEGA II XMU с энергодисперсионным анализатором INCA X-SIGHT (ИЭМ РАН) и Jeol 6380 LV с энергодисперсионным анализатором INCA 250 (ВГУ).

Π	
Параметры	экспериментов

Таблица 2

	1	2	3	4
T, °C	850	850	800	800
Р, кбар	3	3	3	3
Вес ампулы,	498.9	441.1	380.8	390.5
Навеска, мг	150.6	151.3	97.5	100.2
Количество воды, мг	_	7	3.6	3.2
Вес ампулы после зажатия, мг	649.5	599.7	481.9	493.9
Вес заваренной ампулы, мг	649.3	599.7	481.5	493.9
Вес ампулы после опыта, мг	649.2	599.2	481.4	493.7

Продолжительность опыта 14 суток, длина ампул 15 мм; диаметр 4 мм; толщина стенок 0.1 мм.

Сумма анализов стекол относительно низкая: 97.2–98.0 при сухом плавлении, и 94.8–96.3 при плавлении с водой (табл. 1). Таким образом, разница в суммах при экспериментах в «сухих» и «мокрых» условиях составляет приблизительно 2–5 %. Вычитая значения сумм для сухого эксперимента, получим значение 2.4–1.7 %, которое можно интерпретировать как содержание воды в стеклах. Разница для мокрых экспериментов достигает 3.7– 5.2 %. Эти значения близки к 4-8 % H_2O в водонасыщенных глиноземистых гранитных расплавах при давлениях от 1 до 35 кбар [7]. Разница в 3–5 % между суммами сухих и мокрых экспериментов, по-видимому, отражает различие между минимальным и максимальным содержанием H_2O в гранитном расплаве при 3 кбар и 800 °C [7].

Результаты экспериментов

Фазовые равновесия в рестите

При плавлении карбонат содержащего сланца без воды при 850 °C и 3 кбар, помимо небольшого

SEM MV: 20.00 kV Vac: HVac VEGAU TESCA SEM MAG: 640 x Det: BSE Detector 100 µm Dete(midy): 02/09/12 Virus A.A. RSMA Group IEM RAS

количества расплава (5%), образуются высокотемпературные минеральные фазы: волластонит, клинопироксен ряда диопсид-геденбергит ($X_{Fe} = 0.47$) и скаполит ($X_{Me} = 75-81$), которые отсутствовали в исходной породе, сохраняются биотит, кальцит, кварц и плагиоклаз (рис. 2 а, б; табл. 1.). Эта минеральная ассоциация Wol+Cpx+Scp характерна для известково-силикатных гранулитов [8, 9, 10 и др.] с характерными параметрами метаморфизма 800–900 °С и 6–9 кбар. По сравнению с исходной породой меняется состав фаз – плагиоклаз становится более основным (An₂₀₋₃₀), биотит – более титанистым и железистым.

SEM MAG. S33 x Det: BSE Detector 100 µm Date(m/dy): 02/09/12 Virus A.A. RSMA Group IEM RAS

Рис. 2. Изображения в отраженных электронах продуктов экспериментов: а) и б) высокотемпературное (850 °C) "сухое плавление" – образуются высокотемпературные минеральные фазы волластонит, диопсид и скаполит, которые отсутствовали в исходной породе, сохраняются биотит, кальцит, кварц и плагиоклаз. Плавление породы начинается на контакте кварца и плагиоклаза. Объем расплава очень незначительный (5 %); в) при плавлении с водным флюидом (4,4 %) объем расплава резко возрастает до 55 %. Появляются высокотемпературные фазы – диопсид и скаполит, кварц отсутствует, но сохраняются плагиоклаз и кальцит

ВЕСТНИК ВГУ, СЕРИЯ: ГЕОЛОГИЯ, 2013, № 1, ЯНВАРЬ–ИЮНЬ

Ранее в известково-силикатных метаосадках воронцовской серии была закартирована метаморфическая зональность на основе прогрессивных реакций декарбонатизации и дегидратации [11]. Установлены роговообманково-клиноцоизитовая и диопсидовая изограды, разделяющие роговообманково-кальцит-хлоритовую, роговообманково-клиноцоизитовую и диопсидовую зоны в интервале температур 460–600 °С при P = 3.2-3.6 кбар. Скаполит и волластонит в этих породах не встречены, так как для их образования необходимы более высокие температуры.

Образование волластонита при 3 кбар происходит в результате реакции $Cal + Qtz = Wol + CO_{2}$ при температуре около 700-800 °С по экспериментальным данным [12] в зависимости от X_{CO_7} во флюиде. С увеличением давления возрастает и температура этой реакции. Появление скаполита происходит вследствие реакции Pl + Cal = Scp. По экспериментальным данным она почти не зависит от давления и происходит при приблизительно 800 °C для $X_{Me} = 75-85$ в скаполите [13, 14]. В изученном рестите отсутствует гроссуляровый гранат, широко распространенный в известковосиликатных гранулитах в результате реакции Scp + 6Wo = 3Grs + 3Qtz + Cc. Однако, андрадитгроссуляровый гранат в таких породах образуется в интервале 780-850 °С при давлениях выше 6.5 кбар [9].

Диопсид в регионально метаморфизованных известково-силикатных породах появляется при 520–540 °C и 3 кбар в результате реакции: Bt + Cal + + Qtz \rightarrow Cpx + Kfs + H_2O + CO₂ и его стабильность расширяется в высокотемпературную область [11].

При эксперименте (850 °С, 3 кбар) с неболышим количеством водного флюида (4,4 %) объем расплава резко возрастает до 55 % (рис. 2 в). Появляются высокотемпературные фазы – клинопироксен и скаполит, но волластонит отсутствует (табл. 1, рис. 2 в). Кварц и биотит полностью исчезают, что предполагает реакцию их разложения с участием расплава: Bt + Cal + Qtz \rightarrow Cpx + Wol + L. Плагиоклаз и кальцит сохраняются в рестите.

При нагревании без флюида до 800 °C при 3 кбар значительных различий, по сравнению с исходным препаратом, по минералогии и составу минералов не установлено. В эксперименте с флюидом (800 °C, 3 кбар) появляются единичные зерна высокотемпературных фаз, которых не было в исходной породе – калиевого полевого шпата и волластонита (табл. 1). Они образуются за счет частичного разложения биотита с кварцем и кальцита с кварцем соответственно. При высокой активности H_2O во флюиде, линия реакции появления волластонита за счет кальцита и кварца смещается в низкотемпературную область. Кроме того, возрастает кальциевость плагиоклаза до 21–30 % анортитового компонента по сравнению с исходной породой (An = 16–19 %).

Составы полученных расплавов

При нагревании экспериментального препарата до 800 °С при 3 кбар с водным флюидом и без него расплав не образуется. Плавление породы начинается на контакте кварца и плагиоклаза в эксперименте без флюида при 850 °С и 3 кбар (рис. 2, а, б). Объем расплава очень незначительный – около 5 %. При добавлении флюида (4.4 % H₂O) объем раслава при этих P-T параметрах резко увеличивается до 55 %.

Состав расплава полученного при сухом плавлении известково-силикатной породы (850 °C, 3 кбар) отвечает нормальному граниту (табл. 1), насыщенному глиноземом (ASI = 0.94-1.03) с отношением K₂O/Na₂O = 1.25-1.5. С увеличением степени плавления в эксперименте с водным флюидом состав расплава смещается в сторону гранодиорита-тоналита, что обусловлено увеличением содержаний кальция в два раза до 4 мас. % СаО и натрия до 3.4-3.9 мас. % Na₂O (K₂O/Na₂O = 0.57-0.68) и снижением содержаний SiO₂.

В целом гранитоидные магмы относительно высокотемпературные и явно недосыщенные H_2O [15, 16]. Они образуются в результате безводных реакций частичного плавления в земной коре [17, 18 и др.]. Поэтому можно полагать, что при частичном плавлении известково-силикатных пород на верхнекоровых уровнях будут кристаллизоваться анатектические гранитные расплавы. Температура сухого плавления таких пород при 3 кбар составляет около 850 °C, что сопоставимо с температурами плавления биотитовых гнейсов [19], но выше, чем для метапелитов [20].

Выводы

До 800 °С при 3 кбар плавления известковосиликатных метаосадочных пород не происходит. В эксперименте с водным флюидом появляются высокотемпературные минералы волластонит и калиевый полевой шпат. Плавление начинается при 850 °С (3 кбар) в сухих условиях (5 % расплава), где наряду с гранитным расплавом в рестите присутствуют высокотемпературные фазы – волластонит, скаполит и диопсид. При участии водного флюида (4.4 %) количество расплава резко увеличивается (55 %) и его состав становится более натрово-кальциевым. В рестите присутствуют клинопироксен и скаполит.

Таким образом, продуктами сухого анатектического плавления известково-силикатных пород в верхней коре будут граниты, а рестит представлен гранулитами, содержащими волластонит, скаполит и клинопироксен.

Работа выполнена при финансовой поддержке грантов ФЦП «Научные и научно-педагогические кадры инновационной России» (Проект № 14. В37.21.0609), Президента РФ (Проект № МК-722.2013.5).

ЛИТЕРАТУРА

1. *Thomsen T. B.* Melting of carbonated pelites at 2.5– 5.0 GPa, silicate-carbonatite liquid immiscibility, and potassium-carbon metasomatism of the mantle / T. B. Thomsen, M.W. Schmidt // Earth Planet. Sci. Lett. – 2008. – V. 267. – P. 17–31.

2. *Poli S.* The transport of carbon and hydrogen in subducted oceanic crust: an experimental study to 5 GPa / S. Poli [et al.] // Earth Planet. Sci. Lett. – 2009. – V. 278. – P. 350–360.

3. *Grassi D*. The melting of carbonated pelites from 70 to 700 km depth / D. Grassi, M. W. Schmidt // J. Petrol. - 2011. - V. 52. - N 4. - P. 765–789.

4. Мадюков И. А. Генезис скаполита из гранулитов (нижнекоровые ксенолиты из диатрем Памира): результаты изучения расплавных включений / И. А. Мадюков, В. П. Чупин, Д. В. Кузьмин // Геол. и геофиз. – 2011. – № 11. – С. 1119–1133.

5. *Barnes C. G.* Growth and zoning of the Hortavær intrusive complex, a layered alkaline pluton in the Norwe-gian Caledonides / C. G. Barnes [et al.] // Geosphere. – 2009. – V. 5. – P. 286–301.

6. Saha L. Formation of Archaean TTGs during lower crustal melting of mafic rocks: constraints from P-T pseudosection analyses / L. Saha, A. Hofmann // European Mineralogical Conference. – 2012. – Vol. 1. – EMC – P. 335.

7. Johannes W. Petrogenesis and experimental petrology of granitic rocks / W. Johannes, F. Holtz // Springer-Verlag, Berlin, 1996. – 348 p.

8. *Warren R. G.* Wollastonite and scapolite in Precambrian calc-silicate granulites from Australia and Antarctica /

R. G. Warren, B. J. Hensen, R. J. Ryburn // J. Metam. Geol. – 1987. – V. 5. – P. 213–233.

9. *Harley S. L.* Reactions and textures in wollastonite–scapolite granulites and their significance for pressure–temperature-fluid histories of high-grade terranes / S. L. Harley, I. C. W. Fitzsimons, I. S. Buick // Precambrian Res. – 1994. – V. 66 – P. 309–323.

10. *Bhowmik S. K.* Extremely high-temperature calcareous granulites from the Eastern Ghats, India: evidence for isobaric cooling, fluid buffering and terminal channelized fluid flow / S. K. Bhowmik [et al.] // Eur. J. Miner. – 1995. – V. 7. – P. 689–703.

11. *Савко К. А.* Зональность известково-силикатных метаморфических пород воронцовской серии востока Воронежского кристаллического массива / К. А. Савко // Изв. РАН. Серия: Геология. – 1992. – № 2. – С. 27–38.

12. Jacobs G. K. Devolatilization equilibria in H_2O-CO_2 and H_2O-CO_2 -NaCL fluids: an experimental and thermodynamic evaluation at elevated pressures and temperatures / G. K. Jacobs, D. M. Kerrick // Amer. Mineral. – 1981. – V. 66 – P. 1135–1153.

13. Goldsmith J. R. Scapolite–plagioclase stability relations at high pressures and temperatures in the system $NaAlSi_3O_8$ –CaA1₂Si₂O₈–CaCO₃–CaSO⁴/ J.R. Goldsmith, R.C Newton // Amer. Mineral. –1977. – V. 62. – P. 1063–1081.

14. *Moecher D. P.* Phase equilibria for calcic scapolite, and implications of variable Al–Si disorder for P–T, T – XCO_2 and a–X relations / D. P. Moecher, E.J. Essene // J. Petrol. – 1990. – V. 31. – P. 997–1024.

15. *Clemens J. D.* Water contents of intermediate to silicic magmas / J. D. Clemens // Lithos. – 1984. – V. 17. – P. 273–287.

16. *Scaillet B.* Phase equilibrium constraints on the viscosity of silicic magmas – 1. Volcanic–plutonic association / B. Scaillet, F. Holtz, M. Pichavant // J. Geoph. Res. – 1998. – V. 103. – P. 27257–27266.

17. *Clemens J. D.* The fluid regime of high-temperature metamorphism during granitoid magma genesis / J. D. Clemens, J. M. Watkins // Contrib. Miner. Petrol. – 2001. – V. 140. – P. 600–606.

18. *Stevens G.* Fluid absent melting and the roles of fluids in the lithosphere: a slanted summary / G. Stevens, J. D. Clemens // Chemical Geology. – 1993. – V. 108. – P. 1–17.

19. *Patico-Douce A. E.* Dehydration melting of biotite gneiss and quartz amphibolite from 3 to 15 kbar / A. E. Patico-Douce, J. Beard // J. Petrol. -1995. - V. 36, No 3. - P. 707-738.

20. *Grant J. A.* Liquid compositions from low-pressure experimental melting of pelitic rock from Morton Pass, Wyoming, USA / J. A. Grant // J. Metam. Geol. – 2004. – V. 22. – P. 65–78.

К. А. Савко, М. А. Голунова, Е. Н. Козлова, Н. С. Базиков

Воронежский государственный университет	Voronezh State University
К. А. Савко, заведующий кафедрой полезных иско-	K. A. Savko, the head of the chair of Mineral Resource,
паемых и недропользования, доктор геолого-мине-	Doctor of the Geologicial and Mineralogical Sciences,
ралогических наук, профессор	Professor
Тел. 8-915-544-21-64	Tel. 8-915-544-21-64
ksavko@geol.vsu.ru	ksavko@geol.vsu.ru
Институт экспериментальной минералогии РАН,	Institure of Experimental Mineralogy,
г. Черноголовка	Chernogolovka
М. А. Голунова, научный сотрудник, кандидат	M. A. Golunova, scientific worker, Candidate of the
геолого-минералогических наук	Geological and Mineralogical Sciences
Тел. 8-915-491-00-68	Tel. 8-915-491-00-68
nov@iem.ac.ru	nov@iem.ac.ru
Воронежский государственный университет	Voronezh State University
Е. Н. Козлова, аспирант кафедры полезных иско-	E. N. Kozlova, post-graduate student, the chair of
паемых и недропользования	Mineral Resource
Тел. 8-920-225-71-41	Tel. 8-920-225-71-41
kozlova@geol.vsu.ru	kozlova@geol.vsu.ru
Н.С.Базиков, преподаватель кафедры полезных	N. S. Bazikov, lecturer, the chair of Mineral Resource,
ископаемых и недропользования, кандидат геолого-	Candidate of the Geological and Mineralogical
минералогических наук	Sciences
Тел. 8-903-420-08-97	Tel. 8-903-420-08-97
nickolasss@yandex.ru	nickolasss@yandex.ru