МЕТАСОМАТИТЫ В АПАТИТ-МАГНЕТИТОВЫХ КАРБОНАТИТАХ КМА

В. Л. Бочаров

Воронежский государственный университет

Поступила в редакцию 22 февраля 2012 г.

Аннотация. Щелочно-карбонатитовые интрузивные тела, включающие апатит-магнетитовые руды, сформировались в результате последовательного внедрения трех интрузивных фаз: ранней щелочно-ультрамафитовой, собственно карбонатитовой и завершающей щелочно-сиенитовой. Каждая интрузивная фаза оказала интенсивное метасоматическое воздействие как на вмещающие гранито-гнейсы, так и на ранее сформировавшиеся породы щелочно-карбонатитового комплекса, что в конечном итоге привело к перераспределению рудного вещества. В результате рудоносными оказались не только породы собственно карбонатитовой фазы, но и метасоматические образования щелочно-амфиболового, амфибол-биотитого, рихтерит-карбонатного составов.

Ключевые слова: карбонатиты, метасоматиты, апатит-магнетитовые руды, щелочные пироксениты, щелочные сиениты, фениты.

Abstract. Alkali-carbonatites intrusive bodies, switch on apatite-magnetites ores were formed in result consecutive introduction three intrusions phase: early alkali-ultramafite, actually carbonatite and finishing alkali-sienite. Each intrusive phase had intensive metasomatic influence, both on containing granitogneisses, and on early the generated breed alkali-karbonatites a complex that finally has led to redistribution of ore substance. As a result ore-bearing have appeared not only breeds actually carbonatites phases, but also metasomatic formations alkali-amfiboloves, amfibol-biotites, rixterit-carbonatites structures.

Key words: *carbonatites, metasomatites, apatite-magnetite ores, alkaline pyroxenites, alkaline syenites, fenites*

Апатит-магнетитовые карбонатиты в настоящее время играют значительную роль в общем балансе агрохимического и железорудного сырья. Следует отметить, что рудный комплекс карбонатитовых месторождений включает кроме апатита и магнетита, сфен (титанит), слюды, редкие металлы, редкоземельные элементы.

В этой связи особый интерес приобретают апатит-магнетитовые руды с редкими землями раннепротерозойских линейно-трещинных массивов ультраосновных пород и карбонатитов в Европейской части России. Одним из наиболее перспективных среди них является Дубравинский, расположенный среди метаморфических образований Воронежского кристаллического массива в юго-западной части КМА [1]. Массив представляет собой вытянутое дугообразное крутопадающее (75–80°) тело с общим юго-восточным склонением протяженностью 7 км при максимальной ширине (в плане) 600 м (рис. 1).

Внутренняя структура Дубравинского массива определяется наличием трех интрузивных фаз:

1) ранняя щелочно-ультрамафитовая, представленная преимущественно щелочными пироксенитами (эгирин-авгитовыми) и редко субкальциевыми диопсидитами, иногда с оливином; 2) последующая собственно карбонатитовая, сформировавшая кальцитовые и реже доломит - кальцитовые карбонатиты, силикокарбонатиты, магнетитовые и апатитовые руды; 3) завершающая граносиенитовая малых интрузивных тел, даек и жил щелочных гранитов и сиенитов [2]. Вскрытая мощность сопряженных тел щелочных пироксенитов, карбонатитов и апатит-магнетитовых руд составляет 450-500 м при общем падении под углом 65-75° к горизонту. Разрез в целом отражает полосчатое чередование щелочных силикатных пород и карбонатитов, залегающих между сиенитами в нижнем (лежачем) и фенитами в верхнем (висячем) боках интрузивного тела. Верхний эндоконтакт щелочных пироксенитов на границе с фенитами сопровождается маломощной зоной существенно щелочно-амфиболовых пород со скоплениями апатита, биотита, магнетита и сфена.

Карбонатиты и силикокарбонатиты (силикатнокарбонатные породы) являются генетически едиными образованиями карбонатитового расплава, внедряющегося по каналам предшествующих ин-

[©] Бочаров В. Л., 2012

Метасоматиты в апатит-магнетитовых карбонатитах КМА

Рис. 1. А. Схема структурно-формационного районирования Воронежского кристаллического массива: ВУ – Волго-Уральский сегмент, ПЧ – Пачелмский авлакоген, ПК – Прикайспийская впадина, ДД – Днепровско-Донецкицкий авлакоген, УЩ – Украинский щит, ОВ – Оршанская впадина; 1 – мегаблок КМА (макроблоки: І-1 – Красногорско-Рославльский, І-2 – Брянский), І-3 – Ливенско-Ефремовский, І-4 – Курско-Белгородский); 2 – Хоперский мегаблок (макроблоки: II-1 – Калач-Эртильский, II-2 – Камышинский, II-3 – Варваринский); 3 – Лосевская шовная зона; 4 – Волынско-Двинский вулканно-плутонический пояс; 5 – Ольховско-Шукавская грабенсинклинальная структура.

Б. Схематическая геологическая карта Дубравинского массива (восточное продолжение субширотной ветви не показано): 1 – щелочные пироксениты, 2 – карбонатиты, 3 – сиениты, 4 – щелочные граниты, 5 – фениты, 6 – вмещающие гнейсы, мигматиты, амфиболиты, 7 – профили скважин, 8 – положение краевых скважин в профилях трузий щелочных пироксенитов и оказавшего на последние интенсивное влияние, о чем свидетельствует большой объем кальцитизированных пироксенитов и наличие контактово-реакционных метасоматитов [3].

Придерживаясь установленной временной последовательности проявления главных интрузивных фаз – от ранней щелочноультрамафитовой к карбонатитовой и завершающей граносиенитовой, ниже рассматривается метасоматические образования различного состава.

Каждая интрузивная фаза оказывала свое воздействие на все окружающие породы. Начальное проявление магматизма, связанное с внедрением щелочноультрамафитного расплава, способствовало наиболее интенсивному метасоматическому преобразованию вмещающих пород гранитоидного состава. Этот процесс фенитизации сопровождался частичной (для больших масс) и полной (для мелких ксенолитов и отторженцев) перекристаллизацией пород. Вместе с тем и сами щелочные пироксениты претерпевали изменения с образованием эндоконтактовых метасоматитов, минералогический состав которых обязан своим происхождением скоплению летучих компонентов на границе с экранизирующими вмещающими породами. Преимущественное развитие здесь получает щелочной амфибол, заменяющий частично или полностью пироксенитовый субстрат; происходит рост сфеновых кристаллов и выделение других минералов, в частности, ксеноморфного апатита и сульфидов. На некотором удалении от контакта фенитизированных гранито-гнейсов в щелочных пироксенитах отчетливо видно развитие щелочного амфибола по эгиринавгиту (табл.).

Последующее интрузивное внедрение карбонатитовой магмы и сопутствующих флюидных потоков вносит свои преобразования в уже закристаллизовавшиеся пироксениты и породы, их вмещающие. Прямые петрографические признаки такого влияния проявлены повсеместно и выражены в карбонатизации пироксенитов с развитием в них новообразованной метасоматической минерализации.

Таблица

Компоненты	1	2	3	4	5	6	7	8	9
SiO ₂	51,66	52,27	53,83	56,23	56,35	39,54	39,41	40,83	Не обн.
TiO ₂	0,52	0,37	1,08	0,33	0,27	1,51	1,91	0,20	>>
Al ₂ O ₃	0,41	0,37	1,11	0,36	0,32	11,72	11,50	2,86	0,06
Cr ₂ O ₃	_	_	_	0,03	0,03	0,03	_	0,01	0,04
Fe ₂ O ₃ FeO	11,14	9,77	20,23	10,31	9,93	14,20	14,66	16,95	0,34
MnO	0,31	0,23	0,21	0,33	0,32	0,13	0,20	0,12	0,30
MgO	12,98	13,90	4,34	17,60	17,86	18,60	16,85	22,96	0,60
CaO	22,30	22,13	8,62	3,90	3,71	0,03	_	-	49,67
Na ₂ O	1,30	1,63	8,69	6,45	6,28	0,01	0,02	0,14	0,04
K ₂ O	0,01	0,01	_	2,70	2,52	10,5	10,24	10,76	Не обн.
H ₂ O	_	_	_	2,12	2,12	3,20	3,55	3,33	-
CO ₂	_	_	_	_	_	_	_	-	43,35
Сумма	100,63	100,68	98,31	100,36	99,71	99,52	99,14	98,16	94,39

Химический состав минералов метасоматитов

Примечание: 1 – эгирин-авгит из щелочно-амфиболового метасоматита (скв. 6200, глуб. 321,3 м); 2 – то же, со сфен-апатитовой минерализацией (скв. 620, глуб. 360,1 м); 3 – эгирин-авгит из амфибол-биотитового метасоматита с апатит-магнетитовой минерализацией (скв. 5400, глуб. 1056,3 м); 4 – щелочной амфибол (рихтерит) из щелочно-карбонатного метасоматита (скв. 6200, глуб. 283,6 м); 5 – то же, с магнетитовой минерализацией (скв. 6200, глуб. 297,5 м); 6 – титанистый биотит из фенита (скв. 5402, глуб. 689,0 м); 7 – то же (скв. 5402, глуб. 645,0 м); 8 – тетраферрибиотит из биотит-щелочноамфиболового метасоматита (скв. 5436, глуб. 468,7 м); 9 – кальцит из апопероксенитового метасоматита (скв. 5402, глуб. 241,3). Наиболее выраженные метасоматические породы с реликтами субстрата представляют собой разнообразные парагенетические ассоциации и сообщества минералов, отражающие сложный стадийный процесс их образования. Некоторые примеры иллюстрируют сфен-апатитовую, апатитсфеновую и другие полиминеральные образования в щелочных пироксенитах.

Появление скоплений мелкочешуйчатого биотита в ассоциации с мелкокристаллическим микроклином в многообразных морфологических формах среди пироксенитов и нередко совместно с предшествующей метасоматической минерализацией связано с воздействием граносиенитовой интрузивной фазы. Типичное взаимоотношение сиенитов с щелочными пироксенитами выражено в образовании биметасоматической зональности: в эндоконтакте жильных и дайковых тел сиенитов образуется биотитовая оторочка, а в экзоконтакте, то есть по пироксенитам - биотит-щелочноамфиболовый метасоматит различной мощности в зависимости от положения контакта (пологий или крутой) и других факторов. Контактово-реакционный метасоматит по пироксениту обычно мелкозернистый с гранонематобластвой структурой, обусловленной развитием агрегата субориентированных и взаимно сросшихся кристаллов щелочного амфибола в сочетании с агрегатом полигональнозернистого решетчатого микроклина и подчиненным количеством альбита и кварца. По всей массе метасоматита рассеяны мельчайшие зерна апатита, сфена, магнетита и реликты субстрата в виде корродированного эгиринавгита.

По разнонаправленной системе мелких разрывных нарушений в щелочных пироксенитах многочисленны минеральные обособления различной формы, обязанные своим происхождением, судя по их составу, граносиенитовой стадии магматизма. Выделяются грубополосчатые существенно биотитовые, биотит-микроклиновые, альбит-микроклин-биотитовые обособления с остатками пироксенитов и реликтовых минералов (сфен, магнетит, апатит), с типичной гранолепидобластовой мелкозернистой структурой, ориентированной и полосчато-ориентированной текстурой. К этой же стадии минералообразования относятся многочисленные пятнистые или гнездообразные скопления биотита и микроклина совместно с другими метасоматическими сообществами минералов.

В непосредственном контакте сиенитового тела с карбонатитами развиты типичные реакционные образования, представленные биотит-щелочноам-

фиболовыми породами, иногда с обильными выделениями метасоматического апатита и сульфидов. Метасоматит напоминает по облику карбонатит, в котором вместо кальцита находится светлокоричневый (маложелезистые) биотит, сопоставимый по оптическим признакам с биотитом в сиенитах, но резко отличающийся от ярко-оранжевой (высокожелезистой) разновидности биотита в карбонатитах. Также как и в щелочных пироксенитах, в карбонатовых телах развиты линейно-полосчатые биотит-микроклиновые обособления с контактовыми биотитовыми отрочками, то есть метасоматические ассоциации, обязанные своим происхождением сиенитовой фазе магматимза. Частота их встречаемости увеличивается с приближением к контактовым зонам.

В заключение отметим основные выводы, вытекающие из геолого-петрографических признаков (положение пород в разрезах, контактовые и реакционные взаимоотношения, текстурно-структурные особенности, распространенность, состав и приуроченность рудной минерализации).

1. Установлено генетическое родство щелочных пироксенитов, карбонатитов и сиенитов и правомерность объединения их в единый комплекс, представляющий собою формацию щелочных ультраосновных пород и карбонатитов.

2. Подтверждена временная последовательность проявления главных трех интрузивных фаз – от щелочнопироксенитовой к карбонатитовой и граносиенитовой.

3. Формирование промышленных концентраций апатита, магнетита и связанных с ними редкоземельных элементов сопровождает весь многоэтапный процесс развития карбонатитообразующий системы. При этом максимум насыщения железным фосфором достигается на собственно магматическом карбонатитовом этапе.

 Метасоматические процессы способствовали перераспределению рудного вещества, в результате чего рудоносными оказались и щелочноамфиболовые, амфибол-биотитовые, биотит-карбонатные породы.

ЛИТЕРАТУРА

1. Чернышов Н. М. Структурно-тектоническое районирование ВКМ (по геологическим, геофизическим данным) / Н. М. Чернышов [и др.] // Современные проблемы геологии. – Воронеж : Воронеж. гос. ун-т, 1998. – С. 5–7.

2. Бочаров В. Л. Апатитоносные карбонатиты КМА / В. Л. Бочаров, С. М. Фролов. – Воронеж : Петровский сквер, 1993. – 123 с.

В. Л. Бочаров

3. Бочаров В. Л. Новая фосфатно-рудно-редкоземельное месторождение в Центральной России / В. Л. Бочаров // Регион: системы, экономика, управление. – 2011. – № 2 (13). – С. 190–197.

Воронежский государственный университет В. Л. Бочаров, доктор геолого-минералогических наук, профессор, заведующий кафедрой гидрогеологии, инженерной геологии и геоэкологии Тел. 8 (473) 220-89-80 gidrogeol@mail.ru 4. *Chernyshov N. M.* New Sources of Phosphorus in Central Russia / N. M. Chernyshov, V. L. Bocharov // Doklady Earth Sciences. Pleiades Publishing, Ltd. – 2011. – Vol. 441, Part 1. – P. 1519–1522.

Voronezh State University

V. L. Bocharov, Doctor of Geology-Mineralogical Sciencer, Professor, Head of Chair of Hydrogeology, Engineering Geology and Geoecology Tel. 8 (473) 220-89-80 gidrogeol@mail.ru