ГИДРОГЕОЛОГИЯ, ИНЖЕНЕРНАЯ ГЕОЛОГИЯ, ГЕОЭКОЛОГИЯ

УДК 504.4.054(470.324)

СОВЕРШЕНСТВОВАНИЕ МЕТОДИКИ РАЗРАБОТКИ НОРМАТИВОВ ДОПУСТИМЫХ СБРОСОВ ВЕЩЕСТВ В ВОДНЫЕ ОБЪЕКТЫ ДЛЯ ВОДОПОЛЬЗОВАТЕЛЕЙ

Д. А. Белозеров

Воронежский государственный университет

Поступила в редакцию 2 сентября 2011 г.

Аннотация. В статье представлены новые элементы методики расчета нормативов допустимых сбросов загрязняющих элементов в водные объекты. Уточнены способы формирования базы данных по загрязняющим элементам. Предложены графические модели для расчета коэффициента турбулентной диффузии. Обозначена область определения методики в поле эколого-гидрогеохимических исследований.

Ключевые слова: поверхностные воды, подземные воды, взаимосвязь, окружающая среда, методика, НДС

Abstract. The paper presents new elements of the methods for calculating norms of permissible pollutant elements in water objects. Refined ways of developing a database on contaminants. Proposed graphical models for calculating the turbulent diffusion coefficient. Denotes the domain of the techniques in the field of hydro-ecological research.

Key words: surface water, ground water, interconnection, environment, technique, RPD

Разработка нормативов допустимых сбросов имеет огромное значение для предотвращения загрязнения и контроля состояния окружающей среды.

Расчет НДС способствует:

- 1) управлению экологической ситуацией на предприятии;
- 2) снижению загрязнения поверхностных водоемов;
- 3) четкой фиксации количества и качества сбрасываемых 3B;
- 4) обеспечению нормативных значений ЗВ в строго установленных пунктах;
- 5) снижению загрязнения подземных вод (особенно в межень).

В гидрогеологическом плане предотвращение загрязнения поверхностных вод имеет огромное значение, в связи с их взаимосвязью с подземными водами. Так, в меженные периоды поверхностные могут питать подземные воды, что особенно четко фиксируется по их составам. В случае наличия инфильтрационных водозаборов, эта связь существует постоянно и загрязнение рек, озер непременно приводит к ухудшению состояния подземных вод. Данная картина наблюдается во многих насе-

ленных пунктах России, в том числе и в Воронеже, Россоши и т.д., в результате чего, в конечном счете, страдаю люди. Таким образом, контроль состояния поверхностных вод приведет к улучшению качества подземных вод и пород зоны аэрации [1].

На примере разработки нормативов допустимых сбросов для ОАО «Минудобрения» была проанализирована и скорректирована существующая методика для равнинных рек, глубиной до 5 метров, характеризующихся незначительным коэффициентом шероховатости ложа реки равным 0,035, аналогичных р. Черная Калитва [2].

Применяемая в настоящее время методика расчета НДС содержит ряд недочетов и является относительно громоздкой. В этой связи, были проанализированы основные расчетные формулы и разработана более совершенная методика. Предлагается совершенствовать утвержденную методику расчета НДС с учетом следующих основных позиций.

1. Расчет коэффициента турбулентной диффузии. Формула для расчета данной величины имеет следующий вид (для лета):

$$\prod_{\pi \in T} = \frac{g\theta H}{37 n_{\text{m}} c^2},$$
(1)

где g — ускорение свободного падения, g = $9,81 \text{ м/c}^2$; θ — средняя скорость течения реки, м/с; H — средняя глубина реки, м; n_{III} — коэффициент

[©] Белозеров Д. А., 2011

шероховатости ложа реки, определяемый по справочным данным (по таблице М. Ф. Срибного) [2]; с – коэффициент Шези, определяемый по формуле H.H. Павловского [3] (при H <= 5 м):

$$c = \frac{R^y}{n_u},\tag{2}$$

где R – гидравлический радиус потока, м (R ~=

у – показатель степени;

$$y = 2.5\sqrt{n_m} - 0.13 - 0.75\sqrt{R}(\sqrt{n_m} - 0.1).$$
 (3)

Подставив формулу 2 в 1 получим:

Рассмотрим размерность данной величины:

$$\left[\mathcal{A}_{\text{net}} \right] = \left[\frac{\frac{M}{C^2} \frac{M}{C} M}{M^{2y}} \right] = \left[\frac{\frac{M}{C^3}}{M^{2y}} \right] = \left[\frac{M^{3-2y}}{C^3} \right]. \tag{5}$$

Однако, согласно методике Д – коэффициент турбулентной диффузии, который измеряется в м²/с. Это говорит о некорректности данной формулы. В связи с этим предлагается ввести новую формулу для расчета коэффициента турбулентной диффузии для равнинных рек, глубиной до 5 метров, характеризующихся незначительным коэффициентом шероховатости ложа реки равным 0,035.

Заданные условия позволяют произвести расчет показателя степени у для глубин от 0 до 5 метров. Это в свою очередь позволит рассчитать коэффициент Шези.

Подставив полученные значения в формулу 4, получим:

$$K_{\text{лет}} = \frac{g}{37n_{\text{m}}c^2}.$$
 (7)

Таким образом, значения летнего гидравлического коэффициента будут меняться в зависимости от глубины в соответствии с рис. 1.

Аналогичным образом, используя формулы для расчета Дзим, получим

$$\prod_{\text{SMM}} = \frac{\theta H}{K_{\text{SMM}}},$$
(8)

где $K_{_{\text{ЗИМ}}}$ — зимний гидравлический коэффициент

$$K_{\text{лет}} = \frac{g}{37n_{\text{mr}}c_{\text{mn}}^2}.$$
 (9)

После расчетов, получим график зависимости зимнего гидравлического коэффициента от глубины (рис. 2).

Полученные формулы значительно упрощают процедуру расчета коэффициента турбулентной диффузии, и ,самое главное, позволяют сохранить единицы измерения исследуемой величины.

Проанализировав новые формулы расчета, можно сказать, что они стали значительно удобнее, но метод определения летнего и зимнего гидравлического коэффициента по графику характеризуется определенной долей погрешности и неточности. Поэтому для тех случаев, когда требуются максимально точный расчет коэффициента турбулентной диффузии были разработаны таблицы значений данных величин для летнего (табл. 1) и зимнего (табл. 2) времени в зависимости от глубины и скорости течения. Для промежуточных скоростей равнинных рек коэффициент Д получают методом интерполяции.

2. Расчет значения коэффициента а, учитывающего гидравлические условия в реке, производится по формуле

$$a = \xi \phi \sqrt{\frac{\pi}{q}}, \tag{10}$$

где 🛈 – коэффициент извилистости (отношение расстояния до контрольного створа по фарватеру к расстоянию по прямой); 🕇 – коэффициент, зависящий от места выпуска сточных вод (при выпуске у берега о = 1, при выпуске в стрежень реки о = 1,5);

q – расход сточных вод, M^3/cyt .

3. Вычисление коэффициента смешения г, показывающий часть речного расхода смешивающуюся со сточными водами в максимально загрязненной струе расчетного створа, производится по следующей формуле:

$$\gamma = \frac{1 - e^{-a^3\sqrt{L}}}{1 + \frac{Q}{q}e^{-a^3\sqrt{L}}},\tag{11}$$

где L – расстояние от выпуска до расчетного створа по фарватеру, м;

e — основание натурального логарифма, равно 2,72;

Q – расход речных вод, M^3/cyt .

4. Расчет кратности основного разбавления п, определяется по методу В. А. Фролова – И. Д. Родзиллера [3]:

$$n_0 = \frac{q + \gamma Q}{q},\tag{12}$$

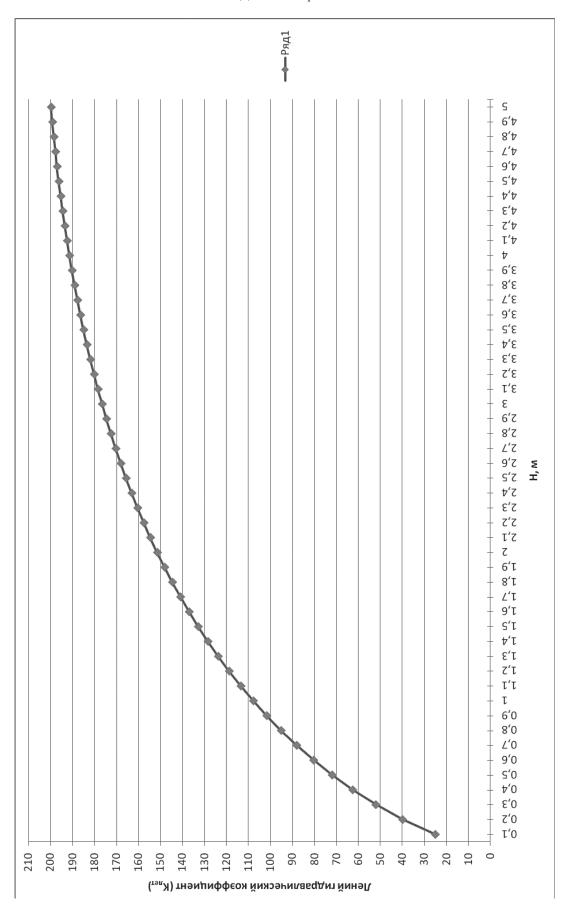


Рис. 1. График зависимости летнего гидравлического коэффициента от глубины

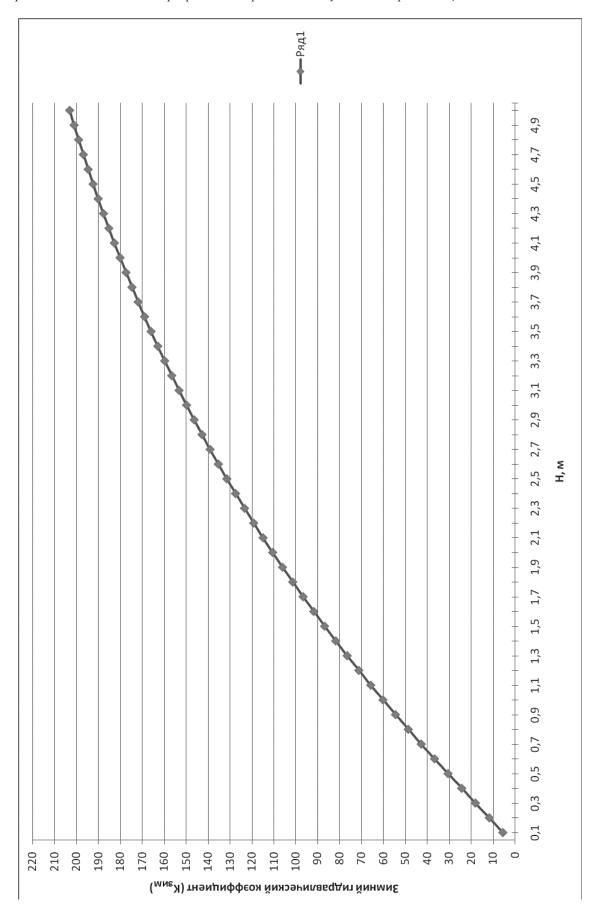


Рис. 2. График зависимости зимнего гидравлического коэффициента от глубины

Таблица 1 Значения коэффициента турбулентной диффузии для летнего времени в зависимости от глубины и скорости течения реки

\ v										
Н	0,1	0,5	0,9	1,3	1,7	2,1	2,5	2,9	3,3	3,7
0,1	0,00040	0,00200	0,00360	0,00520	0,00679	0,00839	0,00999	0,01159	0,01319	0,01479
0,2	0,00050	0,00250	0,00451	0,00651	0,00852	0,01052	0,01252	0,01453	0,01653	0,01854
0,3	0,00058	0,00288	0,00518	0,00749	0,00979	0,01210	0,01440	0,01670	0,01901	0,02131
0,4	0,00064	0,00319	0,00575	0,00831	0,01086	0,01342	0,01597	0,01853	0,02109	0,02364
0,5	0,00070	0,00348	0,00626	0,00904	0,01182	0,01460	0,01738	0,02016	0,02294	0,02572
0,6	0,00075	0,00373	0,00672	0,00971	0,01269	0,01568	0,01866	0,02165	0,02464	0,02762
0,7	0,00079	0,00397	0,00715	0,01033	0,01351	0,01669	0,01987	0,02305	0,02623	0,02941
0,8	0,00084	0,00420	0,00757	0,01093	0,01430	0,01766	0,02102	0,02439	0,02775	0,03111
0,9	0,00089	0,00443	0,00797	0,01151	0,01505	0,01859	0,02213	0,02567	0,02921	0,03275
1	0,00093	0,00464	0,00835	0,01206	0,01578	0,01949	0,02320	0,02691	0,03062	0,03434
1,1	0,00097	0,00485	0,00873	0,01261	0,01649	0,02036	0,02424	0,02812	0,03200	0,03588
1,2	0,00101	0,00505	0,00910	0,01314	0,01718	0,02122	0,02526	0,02931	0,03335	0,03739
1,3	0,00105	0,00525	0,00946	0,01366	0,01786	0,02207	0,02627	0,03047	0,03467	0,03888
1,4	0,00109	0,00545	0,00981	0,01417	0,01854	0,02290	0,02726	0,03162	0,03598	0,04034
1,5	0,00113	0,00565	0,01016	0,01468	0,01920	0,02372	0,02824	0,03275	0,03727	0,04179
1,6	0,00117	0,00584	0,01051	0,01519	0,01986	0,02453	0,02920	0,03388	0,03855	0,04322
1,7	0,00121	0,00603	0,01086	0,01569	0,02051	0,02534	0,03017	0,03499	0,03982	0,04465
1,8	0,00124	0,00622	0,01120	0,01618	0,02116	0,02614	0,03112	0,03610	0,04108	0,04606
1,9	0,00128	0,00641	0,01155	0,01668	0,02181	0,02694	0,03207	0,03721	0,04234	0,04747
2	0,00132	0,00660	0,01189	0,01717	0,02245	0,02774	0,03302	0,03830	0,04359	0,04887
2,1	0,00136	0,00679	0,01223	0,01766	0,02310	0,02853	0,03397	0,03940	0,04484	0,05027
2,2	0,00140	0,00698	0,01257	0,01815	0,02374	0,02933	0,03491	0,04050	0,04608	0,05167
2,3	0,00143	0,00717	0,01291	0,01864	0,02438	0,03012	0,03585	0,04159	0,04733	0,05306
2,4	0,00147	0,00736	0,01325	0,01914	0,02502	0,03091	0,03680	0,04269	0,04857	0,05446
2,5	0,00151	0,00755	0,01359	0,01963	0,02566	0,03170	0,03774	0,04378	0,04982	0,05586
2,6	0,00155	0,00774	0,01393	0,02012	0,02631	0,03250	0,03869	0,04488	0,05107	0,05726
2,7	0,00159	0,00793	0,01427	0,02061	0,02695	0,03329	0,03963	0,04598	0,05232	0,05866
2,8	0,00162	0,00812	0,01461	0,02110	0,02760	0,03409	0,04058	0,04708	0,05357	0,06006
2,9	0,00166	0,00831	0,01495	0,02160	0,02824	0,03489	0,04154	0,04818	0,05483	0,06147
3	0,00170	0,00850	0,01530	0,02209	0,02889	0,03569	0,04249	0,04929	0,05609	0,06289
3,1	0,00174	0,00869	0,01564	0,02259	0,02954	0,03650	0,04345	0,05040	0,05735	0,06430
3,2	0,00178	0,00888	0,01599	0,02309	0,03020	0,03730	0,04441	0,05152	0,05862	0,06573
3,3	0,00181	0,00907	0,01633	0,02359	0,03085	0,03811	0,04537	0,05263	0,05989	0,06715
3,4	0,00185	0,00927	0,01668	0,02410	0,03151	0,03893	0,04634	0,05376	0,06117	0,06859
3,5	0,00189	0,00946	0,01703	0,02461	0,03218	0,03975	0,04732	0,05489	0,06246	0,07003
3,6	0,00193	0,00966	0,01739	0,02511	0,03284	0,04057	0,04830	0,05602	0,06375	0,07148
3,7	0,00197	0,00986	0,01774	0,02563	0,03351	0,04140	0,04928	0,05717	0,06505	0,07293
3,8	0,00201	0,01005	0,01810	0,02614	0,03418	0,04223	0,05027	0,05831	0,06635	0,07440
3,9	0,00205	0,01025	0,01845	0,02666	0,03486	0,04306	0,05126	0,05946	0,06767	0,07587
4	0,00209	0,01045	0,01881	0,02718	0,03554	0,04390	0,05226	0,06062	0,06899	0,07735
4,1	0,00213	0,01065	0,01918	0,02770	0,03622	0,04474	0,05327	0,06179	0,07031	0,07883
4,2	0,00217	0,01086	0,01954	0,02822	0,03691	0,04559	0,05428	0,06296	0,07165	0,08033
4,3	0,00221	0,01106	0,01991	0,02875	0,03760	0,04645	0,05529	0,06414	0,07299	0,08183
4,4	0,00225	0,01126	0,02027	0,02928	0,03830	0,04731	0,05632	0,06533	0,07434	0,08335
4,5	0,00229	0,01147	0,02064	0,02982	0,03900	0,04817	0,05735	0,06652	0,07570	0,08487
4,6	0,00234	0,01168	0,02102	0,03036	0,03970	0,04904	0,05838	0,06772	0,07706	0,08640
4,7	0,00238	0,01188	0,02139	0,03090	0,04041	0,04992	0,05942	0,06893	0,07844	0,08795
4,8	0,00242	0,01209	0,02177	0,03145	0,04112	0,05080	0,06047	0,07015	0,07982	0,08950
4,9	0,00246	0,01231	0,02215	0,03199	0,04184	0,05168	0,06153	0,07137	0,08122	0,09106
5	0,00250	0,01252	0,02253	0,03255	0,04256	0,05258	0,06259	0,07261	0,08262	0,09263

Таблица 2 Значения коэффициента турбулентной диффузии для зимнего времени в зависимости от глубины и скорости течения реки

		I	I		Tochia mesi				I	
H	0,1	0,5	0,9	1,3	1,7	2,1	2,5	2,9	3,3	3,7
0,1	0,00177	0,00883	0,01589	0,02295	0,03001	0,03707	0,04413	0,05119	0,05825	0,06531
0,2	0,00169	0,00843	0,01517	0,02192	0,02866	0,03540	0,04215	0,04889	0,05563	0,06237
0,3	0,00165	0,00826	0,01487	0,02148	0,02809	0,03469	0,04130	0,04791	0,05452	0,06113
0,4	0,00164	0,00818	0,01473	0,02127	0,02782	0,03436	0,04091	0,04745	0,05400	0,06054
0,5	0,00163	0,00815	0,01467	0,02119	0,02771	0,03423	0,04075	0,04727	0,05379	0,06031
0,6	0,00163	0,00815	0,01467	0,02119	0,02771	0,03422	0,04074	0,04726	0,05378	0,06030
0,7	0,00163	0,00817	0,01470	0,02123	0,02777	0,03430	0,04083	0,04737	0,05390	0,06043
0,8	0,00164	0,00820	0,01476	0,02132	0,02788	0,03443	0,04099	0,04755	0,05411	0,06067
0,9	0,00165	0,00824	0,01483	0,02143	0,02802	0,03461	0,04121	0,04780	0,05439	0,06099
1	0,00166	0,00829	0,01493	0,02156	0,02819	0,03483	0,04146	0,04810	0,05473	0,06136
1,1	0,00167	0,00835	0,01503	0,02171	0,02839	0,03507	0,04175	0,04843	0,05511	0,06179
1,2	0,00168	0,00841	0,01514	0,02187	0,02860	0,03534	0,04207	0,04880	0,05553	0,06226
1,3	0,00170	0,00848	0,01527	0,02205	0,02884	0,03562	0,04240	0,04919	0,05597	0,06276
1,4	0,00171	0,00855	0,01539	0,02224	0,02908	0,03592	0,04276	0,04961	0,05645	0,06329
1,5	0,00173	0,00863	0,01553	0,02243	0,02933	0,03624	0,04314	0,05004	0,05694	0,06385
1,6	0,00174	0,00871	0,01567	0,02264	0,02960	0,03656	0,04353	0,05049	0,05746	0,06442
1,7	0,00176	0,00879	0,01582	0,02285	0,02988	0,03690	0,04393	0,05096	0,05799	0,06502
1,8	0,00177	0,00887	0,01597	0,02306	0,03016	0,03725	0,04435	0,05145	0,05854	0,06564
1,9	0,00179	0,00896	0,01612	0,02328	0,03045	0,03761	0,04478	0,05194	0,05911	0,06627
2	0,00181	0,00904	0,01628	0,02351	0,03075	0,03798	0,04522	0,05245	0,05969	0,06692
2,1	0,00183	0,00913	0,01644	0,02375	0,03105	0,03836	0,04566	0,05297	0,06028	0,06758
2,2	0,00184	0,00922	0,01660	0,02398	0,03136	0,03874	0,04612	0,05350	0,06088	0,06826
2,3	0,00186	0,00932	0,01677	0,02422	0,03168	0,03913	0,04658	0,05404	0,06149	0,06895
2,4	0,00188	0,00941	0,01694	0,02447	0,03200	0,03953	0,04706	0,05459	0,06212	0,06965
2,5	0,00190	0,00951	0,01711	0,02472	0,03233	0,03993	0,04754	0,05514	0,06275	0,07036
2,6	0,00192	0,00961	0,01729	0,02497	0,03266	0,04034	0,04803	0,05571	0,06339	0,07108
2,7	0,00194	0,00970	0,01747	0,02523	0,03299	0,04076	0,04852	0,05628	0,06405	0,07181
2,8	0,00196	0,00980	0,01765	0,02549	0,03333	0,04118	0,04902	0,05687	0,06471	0,07255
2,9	0,00198	0,00991	0,01783	0,02576	0,03368	0,04160	0,04953	0,05745	0,06538	0,07330
3	0,00200	0,01001	0,01802	0,02602	0,03403	0,04204	0,05004	0,05805	0,06606	0,07406
3,1	0,00202	0,01011	0,01820	0,02629	0,03438	0,04247	0,05056	0,05865	0,06675	0,07484
3,2	0,00204	0,01022	0,01839	0,02657	0,03474	0,04292	0,05109	0,05927	0,06744	0,07561
3,3	0,00206	0,01032	0,01858	0,02684	0,03510	0,04336	0,05162	0,05988	0,06814	0,07640
3,4	0,00209	0,01043	0,01878	0,02712	0,03547	0,04382	0,05216	0,06051	0,06885	0,07720
3,5	0,00211	0,01054	0,01897	0,02741	0,03584	0,04427	0,05271	0,06114	0,06957	0,07801
3,6	0,00213	0,01065	0,01917	0,02769	0,03621	0,04474	0,05326	0,06178	0,07030	0,07882
3,7	0,00215	0,01076	0,01937	0,02798	0,03659	0,04520	0,05381	0,06242	0,07103	0,07964
3,8	0,00217	0,01087	0,01957	0,02827	0,03697	0,04567	0,05437	0,06307	0,07177	0,08047
3,9	0,00220	0,01099	0,01978	0,02857	0,03736	0,04615	0,05494	0,06373	0,07252	0,08131
4	0,00222	0,01110	0,01998	0,02887	0,03775	0,04663	0,05551	0,06440	0,07328	0,08216
4,1	0,00224	0,01122	0,02019	0,02917	0,03814	0,04712	0,05609	0,06507	0,07404	0,08302
4,2	0,00227	0,01134	0,02040	0,02947	0,03854	0,04761	0,05668	0,06574	0,07481	0,08388
4,3	0,00229	0,01145	0,02062	0,02978	0,03894	0,04810	0,05726	0,06643	0,07559	0,08475
4,4	0,00231	0,01157	0,02083	0,03009	0,03934	0,04860	0,05786	0,06712	0,07637	0,08563
4,5	0,00234	0,01169	0,02105	0,03040	0,03975	0,04911	0,05846	0,06781	0,07717	0,08652
4,6	0,00236	0,01181	0,02126	0,03071	0,04016	0,04961	0,05906	0,06851	0,07796	0,08741
4,7	0,00239	0,01193	0,02148	0,03103	0,04058	0,05013	0,05967	0,06922	0,07877	0,08832
4,8	0,00241	0,01206	0,02170	0,03135	0,04100	0,05064	0,06029	0,06994	0,07958	0,08923
4,9	0,00244	0,01218	0,02193	0,03167	0,04142	0,05117	0,06091	0,07066	0,08040	0,09015
5	0,00246	0,01231	0,02215	0,03200	0,04185	0,05169	0,06154	0,07138	0,08123	0,09108

5. Расчет допустимой концентрации загрязняющего вещества производится с учетом $C_{\rm HJIC}$, г/м³

При установлении НДС по БПК расчетная формула имеет вид

$$C_{H \text{ДC}} = \frac{\gamma Q}{\text{q10}^{-k't}} \Big(C_{H \text{ДC}} - C_{\Phi} 10^{-k''t} \Big) + \frac{C_{\Pi \text{ДK}}}{\text{10}^{-k't}} (13)$$

где к' и к" – константы потребления кислорода, приняты одинаковыми равными 0, 1 [2];

значение величины 10-kt находилось по таблице № 11 [2] и равно 0,944;

$$t=\frac{L}{V},$$

t – время перемещения воды от места спуска сточных вод до рассматриваемого створа, сут;

L – расстояние, м;

V – средняя скорость течения реки, м/с.

Допустимая концентрация взвешенных веществ m в спускаемых в водоем сточных водах определяется по уравнению (в соответствии с санитарными правилами): $\mathsf{C}_{\mathsf{HДC}} = p\left(\frac{\mathsf{\gamma}\mathsf{Q}}{\mathsf{q}} + 1\right) + \mathsf{b},$

$$C_{H \perp C} = p \left(\frac{\gamma Q}{q} + 1 \right) + b, \tag{14}$$

где р – допустимое по санитарным правилам увеличение содержания взвешенных веществ в водном объекте после спуска сточных вод, Γ/M^3 ;

 b – содержание взвешенных веществ в воде водного объекта до спуска сточных вод, Γ/M^3 .

Основная расчетная формула для определения \mathbf{C}_{HJC} без учета неконсервативности вещества име-

$$C_{\text{H}\text{DC}} = n \big(C_{\text{\Pi}\text{DK}} - C_{\Phi} \big) + C_{\Phi}, \tag{15}$$

где п – кратность общего разбавления сточных вод в водотоке $C_{\Pi J K}$ – предельно допустимая концентрация загрязняющего вещества в воде водотока, г/м³; С – фоновая концентрация загрязняющего вещества в водотоке (г/м³) выше выпуска сточных вод, определяемая в соответствии с действующими методическими документами по проведению расчетов фоновых концентраций химических веществ в воде водотоков.

Проанализируем формулу 15. Для этого выразим из данного уравнения n:

$$n = \frac{c_{\text{H}\text{ДC}} - c_{\Phi}}{(c_{\text{П}\text{ДK}} - c_{\Phi})}, \tag{16}$$

Определение зависимости n от $\mathbf{C}_{\scriptscriptstyle{\Phi}}$ производится в графической форме. Для этого пусть C_{Φ} изменяется от 1/16 ПДК до 10 ПДК (0,0625; 0,125; 0,25; 0,5; 1; 1,5; 2; 2,5; 3; 4; 5; 6; 7; 8; 9; 10 ПДК), для каждого C_{HJC} от 1/16 до 10 ПДК. Используя заявленные данные, получим графики зависимости, приведенные на рис. 3.

Данный рисунок позволяет легко и быстро определять значения $\boldsymbol{C}_{\boldsymbol{H}\boldsymbol{J}\boldsymbol{C}}$ по $\boldsymbol{C}_{\boldsymbol{\Phi}}$ и n, или n по $\boldsymbol{C}_{\boldsymbol{\Phi}}$ и $\mathbf{C}_{\mathrm{HJC}}$, или \mathbf{C}_{Φ} по $\mathbf{C}_{\mathrm{HJC}}$ и n.

Однако, проанализировав построенные графики, необходимо отметить, что основная формула для расчета нормативно допустимых сбросов хорошо работает только для низких значений фоновой концентрации загрязняющего вещества, приблизительно до 2 ПДК. Далее фиксируется тенденция, согласно которой при больших значениях фона и сравнительно небольших НДС разбавление не нужно. Например, при $C_{\rm HJC} = 1,5,$ а $C_{\Phi} = 6$ коэффициент разбавления составляет 0,9, что противоречит формуле 12.

Отрицательные значения коэффициента разбавления говорят о «запасе» возможностей реки, в соответствии с которыми она может принять дополнительную долю ЗВ без превышения концентрации нормативов допустимых сбросов.

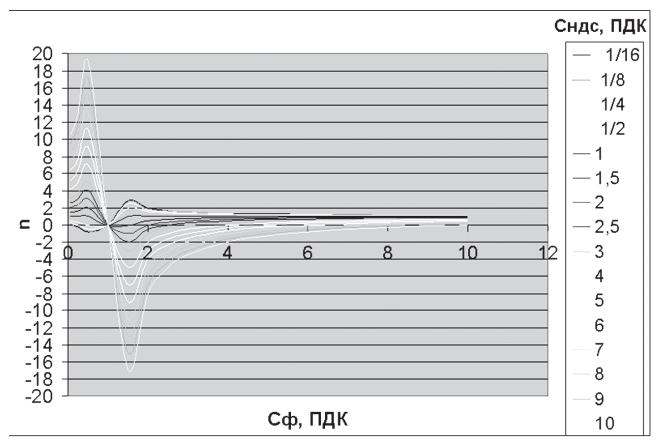
6. При расчете условий сброса сточных вод сначала определяется значение Сндс, обеспечивающее нормативное качество воды в контрольных створах с учетом требований методики, а затем определяется НДС согласно формуле

$$HДC = qC_{HЛC}$$
 (17)

где q – максимальный часовой расход сточных вод, $M^3/4$:

Сндс – допустимая концентрация загрязняющего вещества, г/м³.

Согласно методике расчета НДС, утвержденной МПР, если фоновая концентрация загрязняющего вещества в водном объекте превышает ПДК, то Сндс принимается равной ПДК.


Выявленные условия могут иметь следующие отрицательные последствия:

- запрет функционирования крупнейшего предприятия;
 - отсутствие частичного очищения реки.

В этой связи предлагается усовершенствовать методику, введя в вышеобозначенный пункт следующее дополнение: если фоновая концентрация загрязняющего вещества в водном объекте превышает ПДК, то $C_{\text{HЛС}}$ принимается равной ПДК, за исключением тех случаев, когда имеет место значительная загрязненность водного объекта (от 3 ПДК), где C_{HJC} следует принимать не более, 0,5 C_{Φ} (как один из возможных вариантов).

Данная поправка способствует:

 обеспечению функционирования крупного предприятия;

Puc. 3. Графики зависимости величины разбавления от фоновой концентрации вещества

- частичному очищению реки.

Таким образом, разработанная методика расчета НДС позволяет усовершенствовать существующую за счет следующих пунктов:

- 1) установление соответствия между единицами измерения в формулах коэффициента турбулентной диффузии;
 - 2) наглядность и гибкость методики;
- 3) сокращение числа расчетов и, как следствие, меньшая затрата времени, повышение экономичности трудозатрат.

Воронежский государственный университет Д. А. Белозеров, аспирант кафедры экологической геологии
Тел. 8-903-850-76-64
belozerovdenis@yandex.ru

ЛИТЕРАТУРА

- 1. *Ковалева Н. Г.* Биохимическая очистка сточных вод предприятий химической промышленности / Н. Г. Ковалева, В. Г. Ковалев. М.: Химия, 1987. 156 с.
- 2. Черкинский С. Н. Санитарные условия спуска сточных вод в водоемы [Текст] / С. Н. Черкинский. 4-е изд., перераб. и доп. М. : Стройиздат, 1971. 208 с. : ил.
- 3. Методика разработки нормативов допустимых сбросов веществ и микроорганизмов в водные объекты для водопользователей: утвержден приказом МПР РФ от 17 декабря 2007 г. № 333 М.: МПР, 2007.

Voronezh State University

D. A. Belozerov, post-graduate student of the Ecological Geology department
Tel. 8-903-850-76-64
belozerovdenis@yandex.ru