КРАТКИЕ СООБЩЕНИЯ

УДК 561.35:551.734(470.325)

МИОСПОРОВЫЕ КОМПЛЕКСЫ ЖИВЕТСКОГО ЯРУСА (СРЕДНИЙ ДЕВОН) БЕЛГОРОДСКОЙ ОБЛАСТИ

М. Г. Раскатова

Воронежский государственный университет

Поступила в редакцию 15 сентября 2010 г.

Аннотация. В живетских отложениях Белгородской области выделено три миоспоровых комплекса для воробьевского, ардатовского и муллинского горизонтов в объеме биостратиграфической зоны Geminospora extensa и трех подзон.

Ключевые слова: миоспоры, комплексы, миоспоровая зона, средний девон, Белгородская область. **Abstract.** By our results of palynological researches of Ggivetian deposits of the Belgorod area it is allocated three miospore assemblages which comprise a stratigraphic interval from Vorobiev to Mullin horizons in structure of the palynological zone Geminospora extensa and three subzones.

Key words: miospores, assemblages, miospore zonation, Middle Devonian, Belgorod region

Введение

Проблема биостратиграфического расчленения живетского яруса является весьма актуальной в стратиграфии девона. Присутствие миоспор в массовом количестве и хорошая сохранность экзины миоспор в керне скважин на закрытых территориях позволяет проводить расчленение и корреляцию изучаемых отложений при детальных геолого-разведочных работах. В Белгородской области отложения живетского яруса изучались из разрезов скважин, т. к. выходы отложений среднего девона на дневную поверхность практически отсутствуют.

Методика

Дисперсные миоспоры извлекались из материнских пород с применением современных физико-химических методов обработки [1]. Навеска породы в 20 г (предварительно раздробленная) просеивалась через сито (0,1 мм), затем проверялась на карбонатность (использовалась 10 % HCl); после отстаивания смеси и удаления соляной кислоты к осадку добавлялась 10 % щелочь, и смесь кипятилась 5–10 мин, после чего осадок остужался и переносился в центрифужную пробирку, в которой центрифугировался; затем щелочь сливалась и к осадку в трехкратном объеме добавлялась тяжелая жидкость (уд. вес 2,1–2,2), осадок перемешивался и вновь центрифугировался, при

этом споры оставались в жидкости во взвешенном состоянии, а минеральная часть оседала на дно; жидкость со взвешенными в ней микрофоссилиями сливалась в чистый стакан, и к осадку добавлялась новая порция тяжелой жидкости (равная по объему первой), после чего производилось перемешивание и центрифугирование; тяжелая жидкость сливалась, а в стакан добавлялась дистиллированная вода в двукратном объеме, тяжелая жидкость меняла свой удельный вес, и миоспоры оседали на дно.

Учитывая присутствие в породе мегаспор, механическое измельчение образца было нежелательно, т. к. последние могли быть разрушены в процессе дробления. Поэтому часть проб обрабатывалась, минуя процесс предварительного дробления [2]. Куски породы величиной до 1 см подвергались обработке концентрированной плавиковой кислотой в течение 3-5 ч с целью разрушения основной массы породы и получения однородного мацерата. Отмывание проб от плавиковой кислоты производилось водой в течение 3-4 дней путем слива воды сифоном каждые 3 ч. После отмывки и подсушивания мацерат в стеклянной посуде кипятили в концентрированной азотной кислоте для осветления мегаспор и затем отмывали до нейтральной среды в течение 2 дней. Далее производилось выщелачивание мацерата 10 % NaOH для отделения мегаспор от основной массы породы. В ходе этого процесса производилось отделение мегаспор от микроспор с помощью специального сита. К мацерату доливалось несколько капель

© Раскатова М. Г., 2010

раствора гидроокиси натрия, проба взбалтывалась и несколько раз при добавлении воды сливалась через сито. Мегаспоры, осевшие на сите, затем сливались в стакан, а микроспоры оставались в мацерате. Выделенные мегаспоры помещались в пробирки с глицерином или в препараты на предметные стекла для изучения в проходящем свете.

Материал

Материалом для проведенных палинологических исследований послужили 34 образца из 8 скважин: 5001, 5009, 5025, 6678, 6679, 6680, 6681, 6774, расположенных на территории Белгородской области (рис.).

Живетский ярус на территории Белгородской области представлен воробьевским, ардатовским и муллинским горизонтами - миоспоровая зона Geminospora extensa. В основании воробьевского горизонта залегают разнозернистые пески и песчаники светлые, каолинизированные, с желваками сидерита, которые вверх по разрезу сменяются алевритистыми глинами серовато-голубого цвета, плотными, слоистыми, с тонкими прослоями алеврита (миоспоровая подзона Cymbosporites magnificus – Hymenozonotriletes tichonovitchi). B составе миоспорового комплекса подзоны Сутbosporites magnifi aus - Hymenozonotriletes tichonovitchi ведущую роль играет вид-индекс Сутьоsporites magnificus (McGregor) McGregor et Camf. Наряду с развитием мелких миоспор родов Acanthotriletes, Retusotriletes и Camarozonotriletes, а также миоспор с шиповатой и мелко-, остробугорчатой скульптурой экзины рода Geminospora: G. tuberculata (Kedo) Allen, G. meonacantha (Naum.) Tchibr. - характерно присутствие крупных миоспор родов Cirratriradites monogrammos (Arkh.) Arkh., Membrabaculisporis comans (Phil.) Arkh. Второй вид-индекс подзоны имеет незначительное процентное содержание в разрезах трех скважин: 5001 (гл. 101,0 м), 5025 (гл. 129,0 м) и 6681 (гл. 171,0 м).

Отложения ардатовского горизонта в основании представлены зеленовато-серыми и голубовато-серыми глинистыми алевритами с тонкими прослоями песка и песчаника на известковистом цементе, а также зеленовато-серой глины. В верхней части горизонта залегают зеленовато-серые глины, переслаивающиеся с неравномерно глинистыми известняками. Иногда прослои известняков замещаются прослоями песчаников (миоспоровая подзона Vallatisporites celeber – Cristatisporites(?) violabilis). Первый вид-индекс подзоны имеет

ограниченное распространение в разрезах ардатовского горизонта области, широко развитого в одновозрастных отложениях Волго-Уральского региона. Единичные экземпляры Vallatisporites celeber были отмечены в скв. 6678 (гл. 103,0 м) и в скв. 6680 (гл. 156,0 м). Большее развитие, чем в миоспоровом комплексе воробьевского горизонта, получают миоспоры с шиповатой и мелко-, остробугорчатой скульптурой экзины рода Geminospora: G. extensa (Naum.) Gao., G. decora (Naum.) Arkh., G. compta (Naum.) Arkh., G. vulgata (Naum.) Arch. в скв. 6679 (гл. 166,0 м), скв. 6681 (гл. 168,0 м). Встречены крупные миоспоры рода Hystricosporites и Ancyrospora, а также миоспоры родов Chelinospora и Archaeozonotriletes: С. concinna Allen, C. ligurata Allen, A. ocularis Rask.

На рассматриваемой территории отложения муллинского горизонта имеют ограниченное распространение, т. к. этому времени соответствует перерыв в осадконакоплении. Они представлены не повсеместно (скв. 5009, гл. 88,9 м; скв. 6774, гл. 150,0 м) лишь самой нижней частью разреза. Это глины зеленовато-серые, крепкие аргиллитовидные с тонкой неясной косой, реже горизонтальной слоистостью (миоспоровая подзона Samarisporites triangulates – Corystisporites serratus). Миоспоровый комплекс данной подзоны характеризуется первым появлением вида-индекса подзоны Samarisporites triangulates и развитием второго вида-индекса подзоны – Corystisporites serratus. Видовой состав рода Geminospora изменяется. Появляются виды с круглобугорчатой скульптурой экзины: G. micromanifesta (Naum.) Arkh., G. rugosa (Naum.) Obukh., массовое развитие которых характерно для более молодых отложений. Единичные крупные миоспоры рода Ancyrospora: A. fidus (Naum.) Obukh., A. sp. – характеризуются плохой сохранностью и нарушением целостности экзины экземпляров.

Обсуждение результатов

Три миоспоровых комплекса, выделенные из живетских отложений Белгородской области, близки миоспоровым комплексам из одновозрастных отложений Воронежской области [3]. Общими чертами для комплексов из воробьевских отложений является присутствие мелких миоспор родов Acanthotriletes, Retusotriletes и Camarozonotriletes, миоспор с шиповатой и мелко-, остробугорчатой скульптурой экзины рода Geminospora и крупных миоспор родов Cirratriradites и Membrabaculisporis. В комплексах из ардатовских отложений

Живетский								Ярусы	
Воробьевский		Ардатовский							
162,0 164,0 165,0 168,0 171,0 173,0 179,0 181,0	146,0 150,0 152,0 154,0 156,0	142,0	136,0	116,0	112,0	109,0	105,2	100,0	Глубины
Geminospora extensa								Палинозоны	
Cymbosporites magnificus Vallatisporites celeber Hymenozon. tichonovitschi Cristatisporites violabilis								Подзоны	
1 2								?	скв. 6678

Рис. Биостратиграфическое расчленение живетских отложений Белгородской области: 1 – глины; 2 – мергели запесоченные; 3 – известняки; 4 – песчаники; 5 – остракоды; 6 – конодонты; 7 – пробы на миоспоровый анализ

обеих областей ограниченное распространение имеет вид-индекс подзоны Vallatisporites celeber, широкое распространение получают разнообразные миоспоры с шиповатой, остро- и круглобугорчатой скульптурой экзины рода Geminospora и патинатные миоспоры рода Archaeozonotriletes, а также появляются миоспоры рода Chelinospora. Общими чертами для комплексов миоспор из муллинских отложений Белгородской и Воронежской областей [4] является появление миоспор родов Samarisporites и Corystisporites, а также широкое распространение миоспор с круглобугорчатой скульптурой экзины рода Geminospora.

Выводы

Проведенные биостратиграфические исследования живетских отложений, осуществленные на основании изучения богатого материала из разрезов восьми скважин, расположенных на территории Белгородской области, позволили выделить три миоспоровых подзоны в объеме единой зоны Geminospora extensa и охарактеризовать каждую из них самостоятельным комплексом миоспор. Миоспоровый комплекс из муллинских отложений в составе подзоны Samarisporites triangulates — Corystisporites serratus на территории области выделен впервые.

ЛИТЕРАТУРА

- 1. Методические рекомендации к технике обработки осадочных пород при спорово-пыльцевом анализе. Л. : ВСЕГЕИ, 1986. 77 с.
- 2. Oшуркова M. B. Мегаспоры карбона. Систематика, биостратиграфическое значение : справочник для палеонтологов и геологов / M. B. Oшуркова. $C\Pi \delta$. : $BCE\Gamma EH$, 2001. 112 c.
- Воронежский государственный университет М. Г. Раскатова, доцент кафедры исторической геологии и палеонтологии kig207@geol.vsu.ru
 Тел. 8 (473) 220-86-34
- 3. *Раскатова М. Г.* Палинокомплексы пограничных живетских и франских отложений Центрального девонского поля и Тимана: автореф. дис. ... канд. геол.-минерал. наук / М. Г. Раскатова. М., 1990. 19 с.
- 4. *Раскатова М. Г.* Об аналогах муллинских слоев на ЮВ Воронежской антеклизы / М. Г. Раскатова. Воронеж: Воронеж. гос. ун-т, 1987. С. 24–25.

Voronezh State University M. G. Raskatova, Associate professor of Historical Geology and Paleontology Chair kig207@geol.vsu.ru Tel. 8 (473) 220-86-34