ОСОБЕННОСТИ РАСПРЕДЕЛЕНИЯ ЭЛЕМЕНТОВ ПРИМЕСЕЙ В СУЛЬФИДИЗИРОВАННЫХ ЖЕЛЕЗИСТЫХ КВАРЦИТАХ И СЛАНЦАХ СТОЙЛЕНСКОГО МЕСТОРОЖДЕНИЯ КМА

О. Г. Резникова, В. С. Кузнецов, В. В. Абрамов

Воронежский государственный университет

Поступила в редакцию 17 сентября 2010 г.

Аннотация. В статье показаны основные особенности распределения редкоземельных и других элементов-примесей в различных типах железистых кварцитов и сланцах Стойленского месторождения КМА. Установлены взаимосвязи между концентрациями редкоземельных элементов и содержанием серы в породах в зависимости от палеофациальных условий седиментации исходных осадков, а также роли наложенных эпигенетических процессов.

Ключевые слова: геохимия, элементы-примеси, редкоземельные элементы, железистые кварциты.

Abstract. In article the basic features of distribution of rare-earth and other elements-impurity in various types of ferruterous quartzites and shales Stojlensky deposits KMA are shown. Interrelations between concentration of rare-earth elements and the sulfur in breeds depending on paleofacies conditions sedimentation initial deposits, and also a role imposed genesis processes are established. **Key words:** geochemistry, elements-impurity, rare-earth elements, ferruterous quartzites

Введение

Изучение геохимии железистых кварцитов Стойленского железорудного месторождения проводилось с целью выявления значимых отличий в элементном составе кварцитов с повышенными содержаниями серы и сульфидных минералов и их бессульфидных аналогов с фоновыми значениями общей серы.

Для выполнения поставленной цели были изучены результаты анализов ICP-AES (атомноэмиссионный с индуктивно-связанной плазмой) сланцев и кварцитов при определении содержаний халькофильных (Ag, Cu, Pb, Sc, Zn) (табл. 1), литофильных (Li, Be), сидерофильных (Ni, Co) элементов (табл. 2). Определение концентраций редкоземельных элементов в метаосадочных породах Стойленского месторождения проводилось методом масс-спектрометрии с индуктивно связанной плазмой (Inductive Coupled Plasma Mass Spectrometry, сокращенно – ICP-MS) в аттестованной лаборатории ФГУП «ВСЕГЕИ» (г. Санкт-Петербург). Всего было изучено 11 ICP-MS-анализов межрудных сланцев и 20 ICP-MS-анализов железистых кварцитов. Химические анализы пород с определением содержаний серы были выполнены в аттестованной лаборатории ОАО «Стойленский ГОК».

1. Геохимические особенности железных руд Стойленского месторождения

Геохимическая характеристика железистых кварцитов Стойленского месторождения проводилась в несколько последовательных и взаимосвязанных этапов:

 разделение железистых кварцитов по минеральному составу и содержанию общей серы для формирования выборок с целью дальнейших расчетов по выявлению отличий в геохимии кварцитов с различной степенью сульфидизации;

2) корреляционный и факторный анализы распределения редкоземельных, литофильных, сидерофильных и халькофильных элементов, позволившие определить группу химических элементов, имеющих значимые положительные и отрицательные коэффициенты парной корреляции с серой, и тем самым более детально изучить факторы, с которыми, вероятно, связаны накопление и миграция серы в породах железисто-кремнистосланцевой формации;

3) количественная оценка содержаний литофильных, сидерофильных и халькофильных элементов в сульфидизированных железистых кварцитах;

4) всестороннее изучение особенностей распределения редкоземельных элементов в железистых кварцитах с различными содержаниями серы (уточнение условий осадкообразования, глубины

[©] Резникова О. Г., Кузнецов В. С., Абрамов В. В., 2010

Таблица 1

			_			
Название породы (кол-во проб)	S	Ag	Cu	Pb	Sc	Zn
Сланцы (11)	0,425–5,410 1,746	<u>0,05–0,95</u> 0,20	<u>30,60–220,00</u> 72,29	<u>18,60–34,10</u> 25,08	<u>6,14–17,70</u> 13,34	78,00–177,00 130,91
Кварциты (20)*	<u>0,011–3,500</u> 0,391	<u>0,05–2,61</u> 0,61	<u>8,58–173,00</u> 32,57	<u>9,22–38,30</u> 22,71	<u>0,10–7,60</u> 1,34	<u>29,90–165,00</u> 85,25
Силикатно- магнетитовые кварциты (4)	<u>0,024–1,261</u> 0,375	<u>0,05–0,69</u> 0,36	<u>10,30–137,00</u> 49,75	<u>17,80–25,80</u> 21,43	<u>0,10–7,60</u> 3,39	<u>79,70–115,00</u> 90,13
Магнетитовые кварциты (13)*	<u>0,017–3,50</u> 0,456	<u>0,05–2,61</u> 0,70	<u>8,58–173,00</u> 38,99	<u>15,70–38,30</u> 24,49	<u>0,10–4,87</u> 1,16	<u>59,90–228,00</u> 98,26
Сульфидизированные кварциты (5)	<u>0,024–3,500</u> 1,208	0,05	<u>22,30–173,00</u> 99,46	<u>17,90–38,30</u> 28,88	<u>1,88–7,60</u> 4,69	76,70–228,00 122,28
Кварциты с единичными зернами сульфидов (9)	<u>0,011–0,468</u> 0,168	<u>0,05–0,84</u> 0,37	<u>10,30–29,40</u> 16,52	<u>9,22–33,60</u> 22,28	<u>0,10–1,72</u> 0,67	<u>29,90–84,30</u> 70,54
Кварциты без видимых сульфидов (3)*	<u>0,017–0,475</u> 0,178	<u>0,66–0,92</u> 0,78	<u>8,58–11,10</u> 9,84	<u>16,50–19,20</u> 18,23	0,10	<u>66,00–77,80</u> 71,47
Кварциты без видимых сульфидов (3)**	<u>0,081–0,249</u> 0,183	<u>0,75–2,61</u> 1,91	$\frac{14,00-48,70}{27,77}$	<u>17,50–27,30</u> 22,30	<u>0,10–0,34</u> 0,18	<u>103,0–165,0</u> 129,00
Малорудный кварцит (1)	0,367	0,30	17,40	9,22	0,10	29,90
Силикатно- магнетитовые кварциты сульфидизированные (2)	<u>0,024–1,261</u> 0,643	0,05	<u>22,30–137,00</u> 79,65	<u>17,90–25,80</u> 21,85	<u>5,51–7,60</u> 6,56	<u>79,70–115,00</u> 97,35
Силикатно- магнетитовые кварциты несульфидизированные (2)	0,035–0,180 0,108	<u>0,66–0,69</u> 0,68	<u>10,30–29,40</u> 19,85	<u>17,80–24,20</u> 21,00	<u>0,10–0,35</u> 0,23	<u>81,50–84,30</u> 82,90
Магнетитовые кварциты с сульфидами (3)	<u>0,046–3,500</u> 1,773	0,05	25,00–173,00 112,67	<u>27,30–38,30</u> 33,57	<u>1,88–4,87</u> 3,45	<u>76,70–228,00</u> 138,90
Магнетитовые кварциты несульфидизированные (5)	0,017–0,475 0,185	<u>0,05–0,92</u> 0,62	8,58–24,30 13,44	<u>15,70–25,00</u> 20,12	<u>0,10–0,87</u> 0,25	<u>59,90–81,00</u> 70,08
Магнетитовые кварциты с гематитом (1)*	<u>0,011–0,081</u> 0,046	<u>0,05–0,75</u> 0,40	<u>14,90–20,60</u> 17,75	<u>25,90–27,30</u> 26,60	<u>0,10–1,47</u> 0,79	76,90–103,00 89,95

Содержания халькофильных микроэлементов в железистых кварцитах и сланцах Стойленского месторождения

Примечание: в числителе – пределы колебаний, в знаменателе – средние значения элемента; * исключены пробы с резко повышенными содержаниями MREE, Co, Ag.

Таблица 2

Содержания литофильных и сидерофильных микроэлементов в железистых кварцитах и сланцах Стойленского месторождения (в г/т)

	Силерос	вильные	Литофильные		
Название породы (кол-во проб)	Со	Ni	Li	Be	
Сланцы (11)	7,28-36,50	14,20-137,00	30,00-69,10	<u>1,05–3,08</u>	
	25,51	61,49	49,99	1,87	
Кварциты (20)*	1,89-16,00	0,50-26,80	2,15-38,60	0,25-2,44	
	8,88	9,21	8,95	1,13	
Силикатно-магнетитовые кварциты (4)	6,08 - 16,00	4,67 - 22,00	3,71 - 38,60	0,88-2,44	
	10,68	12,99	21,48	1,79	
Магнетитовые кварциты (13)*	1,94-15,50	0,50-40,90	2,15 - 24,00	0,25-2,53	
	9,26	10,20	7,43	1,07	
Сульфидизированные кварциты (5)	3,45-14,00	5,22-40,90	5,56-38,60	1,30-2,53	
	9,27	22,62	18,95	1,80	
Кварциты с единичными зернами	1,89-16,00	1,25-9,45	2,15-28,00	0,52-2,44	
сульфидов (9)	7,73	4,49	6,63	1,22	
Кварциты без видимых	11,10-15,50	0,50	3,53-6,60	0,55-0,80	
сульфидов (3)*	13,37		4,75	0,69	
Кварциты без видимых	979-1920	18,30-21,90	2,99-13,20	0,25-1,11	
сульфидов (3)*	1546,33	20,30	8,42	0,67	

Примечание: в числителе – пределы колебаний, в знаменателе – средние значения элемента; * исключены пробы с резко повышенными содержаниями MREE, Co, Ag.

бассейна седиментации, палеоклимата, влияния гидротермальных процессов и др.).

На первом этапе по результатам изучения особенностей вещественного состава сланцев и железистых кварцитов были сформированы выборки с учетом содержаний магнитного и общего железа, присутствия или отсутствия сульфидных минералов, количества силикатных и окисно-рудных минералов. При анализе результатов силикатного анализа отдельно рассматривались сильно сульфидизированные кварциты (так называемые CT-14, CT-105; $S_{общ}$ 3,50–5,77 %), железистые кварциты с видимой сульфидизацией и единичными зернами сульфидов, выявленных при минераграфических исследованиях.

Результаты корреляционного и факторного анализов приведены в табл. 3–5. Их анализ позволяет сделать следующие выводы:

1) сера характеризуется положительными значимыми коэффициентами парной корреляции с медью, никелем и некоторыми редкоземельными элементами: легкими – Се, Рг; средними – Еu, Gd. Такая закономерность может быть объяснена:

а) вхождением Cu, Ni в состав сульфидных минералов – пирита, пирротина, халькопирита;

б) повышенным содержанием легких редких земель в наиболее мелководных образованиях железисто-кремнисто-сланцевой формации, которые, в свою очередь, характеризуются повышенными средними фоновыми значениями серы относительно более глубоководных аналогов;

в) Еи является редкоземельным элементом, поступление которого может быть связано с деятельностью гидротермальных процессов, играющих важную роль в процессах миграции и концентрации серы; 2) факторный анализ показывает наличие нескольких групп элементов, содержания которых в разной степени коррелируют между собой на статистически значимом уровне;

a) Cu, Sc, Li, Y, La, Ce, Pr, Nd, Eu, Gd, Tb, Dy, Er, Tm, Yb, Lu – это элементы первого фактора, доля общей дисперсии которого составляет 51,7 %;

б) Ag, Co, Sm, Ho – элементы, образующие группу во втором факторе с общей дисперсией 18,12 %. Это объясняется наличием трех проб железистых кварцитов (СТ-60/9, СТ-32, СТ-49/1) с аномально высокими содержаниями указанных элементов (в г/т): Ag – 2,37–2,61, Co – 979–1920, Sm – 540–1070, Ho – 0,90–0,95. При дальнейших расчетах коэффициентов, в которых присутствуют данные элементы, эти пробы исключались из выборок. В то же время нельзя не отметить, что обнаружение повышенных концентраций Ag, Co, Sm, Ho, которые характеризуются отрицательными корреляционными связями с S, позволяет ставить вопрос о возможном существовании минералов этих элементов и дальнейшем их изучении;

в) доля серы в каждом из пяти факторов не достигает значимой величины, с максимальным значением в четвертом факторе, где она образует группу со свинцом. Но доля общей дисперсии для четвертого фактора составляет всего 6 %.

2. Распределение редкоземельных элементов в железистых кварцитах и сланцах Стойленского месторождения

В настоящее время редкоземельные элементы широко применяются для реконструкций обстановок осадкообразования различных пород, в том числе и железистых кварцитов. В основе этой методики лежат несколько положений [1; 2]. Изучение

Таблица 3

$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	
S 1,00 -0,18 -0,11 0,90 0,56 0,42 0,44 0,30 0,14 0 Ag 1,00 0,68 -0,18 0,25 -0,35 -0,45 0,58 -0,03 Co 1,00 -0,08 0,52 -0,01 -0,25 0,56 -0,07 Cu 1,00 0,70 0,38 0,67 0,47 0,47 0	Be
Ag 1,00 0,68 -0,18 0,25 -0,35 -0,45 0,58 -0,03 - Co 1,00 -0,08 0,52 -0,01 -0,25 0,56 -0,07 - Cu 1,00 0,70 0,38 0,67 0,47 0,47 0),15
Co 1,00 -0,08 0,52 -0,01 -0,25 0,56 -0,07 Cu 1,00 0,70 0,38 0,67 0,47 0,47 0	0,49
Cu 1,00 0,70 0,38 0,67 0,47 0,47 0	0,41
),38
Ni 1,00 0,26 0,51 0,70 0,40 0),17
Pb 1,00 0,29 0,30 -0,02 0),36
Sc 1,00 0,23 0,67 0	0,62
Zn 1,00 0,39 0),10
Li 1,00 0),74
Be 1	1,00

Коэффициенты парной корреляции серы с некоторыми литофильными, сидерофильными и халькофильными химическими элементами в железистых кварцитах (19 проб)

Примечание: жирным шрифтом выделены значимые коэффициенты корреляции.

О. Г. Резникова, В. С. Кузнецов, В. В. Абрамов

Таблица 4

Коэффициенты парной корреляции	и серы с редкоземельными :	элементами в железистых	к кварцитах
	(19 проб)		

	S	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu	Y
S	1,00	0,43	0,46	0,46	0,42	-0,11	0,50	0,54	0,42	0,40	0,10	0,36	0,30	0,44	0,40	0,40
La		1,00	0,99	0,99	0,93	-0,21	0,78	0,87	0,69	0,57	0,06	0,40	0,36	0,46	0,40	0,42
Ce			1,00	1,00	0,96	-0,13	0,77	0,89	0,73	0,60	0,14	0,42	0,40	0,48	0,42	0,42
Pr				1,00	0,97	-0,11	0,78	0,90	0,75	0,61	0,17	0,44	0,42	0,49	0,43	0,43
Nd					1,00	0,14	0,71	0,87	0,76	0,59	0,38	0,41	0,44	0,44	0,38	0,37
Sm						1,00	-0,20	-0,09	0,04	-0,08	0,84	-0,09	0,09	-0,20	-0,25	-0,22
Eu							1,00	0,87	0,77	0,71	0,17	0,64	0,58	0,68	0,65	0,71
Gd								1,00	0,92	0,84	0,32	0,68	0,65	0,69	0,64	0,70
Tb									1,00	0,96	0,53	0,86	0,86	0,83	0,80	0,83
Dy										1,00	0,45	0,95	0,93	0,92	0,89	0,93
Ho											1,00	0,46	0,60	0,33	0,29	0,32
Er												1,00	0,98	0,97	0,94	0,97
Tm													1,00	0,94	0,91	0,91
Yb														1,00	0,98	0,94
Lu															1,00	0,93
Y																1,00

Примечание: жирным шрифтом выделены значимые коэффициенты корреляции.

Таблица 5

Факторные нагрузки содержаний различных элементов в железистых кварцитах Стойленского месторождения

	месторожосний								
	Фактор 1	Фактор 2	Фактор 3	Фактор 4	Фактор 5				
S	-0,559	-0,061	-0,265	0,678	0,278				
Ag, ppm	0,115	0,842	0,205	-0,117	0,305				
Co, ppm	0,080	0,954	-0,161	-0,031	-0,138				
Cu, ppm	-0,764	-0,020	-0,294	0,414	0,132				
Ni, ppm	-0,616	0,534	-0,407	0,159	-0,075				
Pb, ppm	-0,347	-0,084	-0,220	0,606	-0,502				
Sc, ppm	-0,748	-0,290	-0,397	-0,138	-0,159				
Zn, ppm	-0,516	0,680	-0,134	0,109	-0,069				
Li, ppm	-0,812	0,009	0,201	-0,413	-0,173				
Be, ppm	-0,650	-0,400	0,207	-0,101	-0,551				
Y, ppm	-0,806	-0,066	0,534	0,061	0,188				
La, ppm	-0,795	-0,226	-0,469	-0,208	0,083				
Ce, ppm	-0,828	-0,150	-0,481	-0,190	0,034				
Pr, ppm	-0,840	-0,120	-0,473	-0,180	0,033				
Nd, ppm	-0,811	0,116	-0,505	-0,188	-0,020				
Sm, ppm	0,079	0,954	-0,159	-0,033	-0,134				
Eu, ppm	-0,817	-0,138	-0,078	-0,011	0,376				
Gd, ppm	-0,948	-0,038	-0,180	-0,123	0,146				
Tb, ppm	-0,964	0,138	0,116	-0,124	0,020				
Dy, ppm	-0,927	0,037	0,341	-0,074	0,011				
Ho, ppm	-0,398	0,886	0,121	-0,024	-0,097				
Er, ppm	-0,833	0,062	0,538	0,048	0,020				
Tm, ppm	-0,817	0,224	0,508	0,034	-0,077				
Yb, ppm	-0,854	-0,071	0,464	0,150	-0,030				
Lu, ppm	-0,809	-0,082	0,509	0,162	0,010				
Общая дисперсия	12,918	4,531	3,141	1,491	1,072				
Доля общей дисперсии	0,517	0,181	0,126	0,060	0,043				

Примечание: жирным шрифтом выделены главные элементы для каждого из факторов.

геохимии редкоземельных элементов в породах железисто-кремнисто-сланцевой формации Стойленского железорудного месторождения обусловлено возможностью сравнения железистых кварцитов и сланцев с разными содержаниями сульфидных минералов и серы по достаточно широкому и информативному спектру критериев.

Первая группа критериев позволяет восстановить фациальные обстановки седиментации. Результаты расчетов приведены в табл. 6.

Критерий \sum (**REE** + **Y**) рассматривается совместно с иттрием. Фракционирование лантаноидов, особенно в шельфовой зоне, за счет различных форм переноса может приводить к уменьшению \sum (**REE** + **Y**) с удалением от береговой линии и углублением обстановок седиментации в одинаковых литологических типах пород. \sum (**REE** + **Y**) также зависит от содержания редких земель в породах области сноса, особенно сильно зависимость проявляется в обломочных породах при ближнем переносе.

Отношения La/Sm, Ce/Sm, Yb/Sm, Y/Sm – индикаторы фациальных обстановок седиментации (глубоководность, удаленность от береговой линии), ранее применялись для характеристики состава вод Мирового океана [1]. Для прибрежных отложений возрастают значения La/Sm, Ce/ Sm, убывают Yb/Sm, Y/Sm; для более удаленных, глубоководных наблюдается обратная тенденция.

Отношение **La/Yb** характеризует общий наклон спектра лантаноидов, может выступать как мера относительного обогащения легкими редкими землями относительно тяжелых, косвенным образом свидетельствует о глубинности образования осадка [2]. Уменьшение La/Yb в осадке (особенно близкого вещественного состава) предполагает более мористые условия седиментации.

Анализ табл. 6 показывает следующее:

1) закономерное снижение коэффициентов \sum (REE+Y), La/Sm, Ce/Sm (исключение La/Yb) и одновременное возрастание отношений Yb/Sm, Y/Sm в ряду сланец \rightarrow силикатно-магнетитовый кварцит \rightarrow магнетитовый кварцит, что хорошо согласуется с данными Н. А. Плаксенко о положении указанных пород на фациальном профиле железисто-кремнисто-сланцевой формации и по-казывает более глубоководные условия образования магнетитовых кварцитов относительно сили-катно-магнетитовых кварцитов и сланцев;

2) снижение коэффициентов \sum (**REE** + **Y**), **La**/ **Sm**, **Ce/Sm**, **La/Yb** и одновременное возрастание отношений **Y/Sm**, **Yb/Sm** в ряду сланцы \rightarrow сульфидизированные кварциты \rightarrow кварциты с единичными зернами сульфидов \rightarrow кварциты без видимых сульфидов могут быть связаны с влиянием наложенных процессов на тощи кварцитов и сланцев при образовании постдиагенетических сульфидных и силикатных парагенезисов.

Вторая группа критериев позволяет оценить климатические условия, влияние гидротермальных процессов и определить обстановки седиментации формирования первичных осадков. Результаты расчетов приведены в табл. 7.

Отношение $\sum Ce/\sum Y$ – индикатор климата, отражает интенсивность процессов выветривания. Значение $\sum Ce/\sum Y = 3$ рассматривается как граничное между отложениями гумидных и аридных обстановок. В аридном климате отношение уменьшается [1; 2]. В некоторых случаях предполагается выделение переходных семигумидных-семиаридных климатических условий осадкообразования, характеризующихся значениями $\sum Ce/\sum Y = 2,5-4,0$ [2]. Кроме того, установлено, что в более мористых отложениях даже одного вещественного состава происходит уменьшение отношения $\sum Ce/\sum Y$.

Отношение **Eu/Eu***, где **Eu/Eu*** = **Eu**_N/(**Sm**_N + + **Gd**_N)/2 (нормировано к хондриту) – индикатор поступления глубинного вещества в осадки (гидротермы, восходящие флюидные потоки, вулканиты, обломки базитов и гипербазитов).

Среднее Eu/Eu* в осадочных породах фанерозоя – 0,61–0,72, в хондритах – 1,0 [1; 2].

Отношение **Ce/La** применяется в основном для современных отложений как индикатор влияния гидрогенного и гидротермального процессов на формирование осадков Мирового океана. Однозначной трактовки этого коэффициента в настоящее время не разработано. По одной из версий для гидрогенных Fe-Mn конкреций Ce/La > 2, для гидротермальных – Ce/La < 2. Несколько другой подход к оценке коэффициента Ce/La: высокотемпературные гидротермы = 3, осадки = 1,8, океанская вода = = 0,04–0,94. Этот подход предполагает обратное соотношение влияния гидротермального и гидрогенного процессов на осадкообразование.

Отношение **Ce/Ce***, где **Ce/Ce*** = $Ce_N/(La_N + Pr_N)/2$, нормировано к глинам платформ по Ю. А. Балашову [1] – индикатор седиментационных обстановок:

1) Се/Се* ~ 0,25–0,3 характеризует близспрединговые обстановки, 300–400 км от срединноокеанических хребтов (СОХ);

Таблица б

Изманание кооффициентов с влубниой образования породи с							
Название поролы	ľ	<u>Тэменение</u> коэ	ффициентов с 1 шается	пубинби ббраз	Возра	и астает	
пазвание породы	Σ (REE+Y)	La/Sm	Ce/Sm	La/Yh	Yh/Sm	Y/Sm	
Сланцы (11)	<u>103,93–222,07</u> 166,83	<u>1,03–9,48</u> 7,31	<u>2,03–17,47</u> 14,21	<u>10,73–29,54</u> 23,45	<u>0,04–0,57</u> 0,33	<u>0,45–4,83</u> 3,15	
Кварциты (20)*	<u>10,18–80,43</u> 35,49	<u>1,64–7,74</u> 4,90	<u>2,78–13,40</u> 8,81	<u>2,37–28,26</u> 7,94	<u>0,27–1,44</u> 0,76	<u>3,85–17,66</u> 8,86	
Силикатно– магнетитовые кварциты (4)	<u>42,75–80,43</u> 57,80	<u>1,84–6,92</u> 4,86	<u>3,27–13,40</u> 9,03	<u>2,37–10,91</u> 7,51	<u>0,55–0,78</u> 0,68	<u>4,92–10,17</u> 7,75	
Магнетитовые кварциты (13)*	<u>10,18–77,85</u> 33,36	<u>1,64–7,74</u> 4,86	<u>2,78–12,62</u> 8,65	<u>4,03–28,26</u> 8,05	<u>0,27–1,44</u> 0,78	<u>3,85–17,66</u> 9,43	
Сульфидизированные кварциты (5)	<u>57,99–80,43</u> 67,53	<u>5,65–7,74</u> 6,48	<u>10,60–13,40</u> 11,85	<u>7,43–28,26</u> 13,37	<u>0,27–0,83</u> 0,58	<u>3,85–8,65</u> 6,16	
Кварциты с единичными зернами сульфидов (9)	<u>10,18–50,04</u> 26,56	<u>1,84–6,43</u> 4,40	<u>3,27–11,60</u> 7,95	<u>2,37–11,30</u> 5,75	<u>0,35–1,39</u> 0,86	<u>5,61–15,35</u> 9,88	
Кварциты без видимых сульфидов (б)*	<u>16,39–28,12</u> 22,19	<u>1,64–5,82</u> 3,77	<u>2,78–10,44</u> 6,32	<u>4,04–7,16</u> 5,46	<u>0,32–1,44</u> 0,76	<u>4,14–17,66</u> 10,32	
Малорудный кварцит (1)	13,75	3,96	6,95	11,30	0,35	5,61	
Силикатно- магнетитовые кварциты сульфидизированные (2)	<u>57,99–80,43</u> 69,21	<u>5,65–6,92</u> 6,28	<u>10,60–13,40</u> 12,00	<u>10,23–10,91</u> 10,57	<u>0,55–0,63</u> 0,59	<u>4,92–7,07</u> 6,00	
Силикатно– магнетитовые кварциты несульфидизированные (2)	<u>42,75–50,04</u> 46,40	<u>1,84–5,02</u> 3,43	<u>3,27–8,84</u> 6,06	<u>2,37–6,54</u> 4,45	<u>0,77–0,78</u> 0,77	<u>8,86–10,17</u> 9,51	
Магнетитовые кварциты с сульфидами (3)	<u>58,51–77,85</u> 66,40	<u>5,87–7,74</u> 6,60	<u>11,17–12,62</u> 11,75	<u>7,43–28,26</u> 15,23	<u>0,27–0,83</u> 0,57	<u>3,85–8,65</u> 6,27	
Магнетитовые кварциты несульфидизированные (5)	<u>10,18–28,12</u> 22,75	<u>3,69–5,82</u> 4,64	<u>5,74–10,44</u> 7,95	<u>4,03–7,78</u> 5,79	<u>0,54–1,44</u> 0,91	<u>8,46–17,66</u> 12,03	
Магнетитовые кварциты с гематитом (1)*	15,57	6,43	11,60	5,00	1,29	10,29	

Вариации геохимических критериев первой группы в метаосадочных породах Стойленского месторождения

Таблица 7

Вариации геохимических критериев второй группы в метаосадочных породах Стойленского месторождения

Название породы	$\sum Ce / \sum Y$	Eu/Eu*	Ce/Ce*	Ce/La
Сланцы (11)	3,81-8,59	0,16-1,00	0,973-1,026	1,84-2,16
	6,80	0,67	0,993	1,96
Кварциты (20)*	0,72-5,67	0,65-1,94	0,842-0,977	1,49-2,00
	2,03	1,18	0,922	1,79
Силикатно-магнетитовые кварциты (4)	0,72-4,06	0,65-1,20	0,891-0,977	1,76-1,94
	2,21	1,11	0,925	1,84
Магнетитовые кварциты (13)*	1,12-5,67	0,79-1,94	0,842-0,972	1,63-2,00
	1,97	1,26	0,918	1,78
Сульфидизированные кварциты (5)	2,23-5,67	0,75-1,05	0,896-0,977	1,63-1,94
	3,46	0,90	0,942	1,84
Кварциты с единичными зернами сульфидов	0,72-2,28	0,65-1,66	0,891-0,972	1,73-2,00
(9)	1,49	1,25	0,931	1,81
Кварциты без видимых сульфидов (3)*	1,12-1,41	0,84–1,94	0,956-1,011	1,49-1,79
	1,28	1,33	0,868	1,66
Кварциты без видимых сульфидов (3)**			0,971-1,011	2,09–2,38
	-	_	0,979	2,20

Примечание: * исключены пробы с резко повышенными содержаниями MREE; в числителе – пределы колебаний, в знаменателе – средние значения элемента.

Особенности распределения элементов примесей в сульфидизированных железистых кварцитах и сланцах ...

Название породы	$\sum Ce/\sum Y$	Eu/Eu*	Ce/Ce*	Ce/La
Малорудный кварцит (1)	2,28	1,23	0,924	1,75
Силикатно-магнетитовые кварциты	<u>2,45–4,06</u>	<u>0,75–0,90</u>	<u>0,955–0,977</u>	<u>1,88–1,94</u>
сульфидизированные (2)	3,26	0,83	0,966	1,91
Силикатно-магнетитовые кварциты несульфидизированные (2)	<u>0,72–1,60</u>	<u>0,65–1,20</u>	<u>0,891–0,911</u>	<u>1,76–1,78</u>
	1,16	0,93	0,901	1,77
Магнетитовые кварциты с сульфидами (3)	<u>2,23–5,67</u>	<u>0,79–1,05</u>	<u>0,896–0,941</u>	<u>1,63–1,90</u>
	3,60	0,95	0,925	1,79
Магнетитовые кварциты	<u>1,12–1,46</u>	<u>1,11–1,94</u>	<u>0,842–0,972</u>	<u>1,49–1,79</u>
несульфидизированные (5)	1, 29	1,44	0,916	1,70
Магнетитовые кварциты с гематитом (1)*	1,81	1,42	0,918	1,80

Окончание табл. 7

Примечание: в числителе – пределы колебаний, в знаменателе – средние значения элемента; *исключены пробы с резко повышенными содержаниями MREE, **три пробы с аномально высоким содержанием MREE.

2) Ce/Ce* ~ 0,55–0,6 – обстановки глубоководных котловин на удалении 2500–3000 км от COX;

3) Ce/Ce* ~ 0,9–1,3 – окраинно-континентальные обстановки.

Анализ табл. 7 показывает следующее:

1) отношение $\sum Ce/\sum Y$ уменьшается в ряду сланцы \rightarrow силикатно-магнетитовые кварциты \rightarrow магнетитовые кварциты \rightarrow магнетитовые кварциты с гематитом от 6,8 до 1,81, что может быть объяснено несколько более гумидными условиями образования сланцев и более мелководных разностей кварцитов по сравнению с глубинными рудными разностями кварцитов. В сульфидизированных кварцитах отношение $\sum Ce/\sum Y$ в 2–2,5 раза выше по сравнению с несульфидизированными;

2) отношение **Eu/Eu**^{*} увеличивается в ряду сланцы \rightarrow силикатно-магнетитовые кварциты \rightarrow магнетитовые кварциты \rightarrow магнетитовые кварциты с гематитом от 0,67 до 1,42, что может быть объяснено:

а) более интенсивным поступлением глубинного вещества в осадки при образовании более глубоководных рудных кварцитов;

б) связью высоких концентраций европия в более железистых разновидностях кварцитов с концентрацией этого элемента в железистых оксидах (магнетите и гематите) и силикатах (биотите, куммингтоните). В сульфидизированных кварцитах по сравнению с несульфидизированными наблюдаются европиевые минимумы, что требует дополнительных исследований;

3) отношение **Ce/La** уменьшается в ряду сланцы \rightarrow силикатно-магнетитовые кварциты \rightarrow магнетитовые кварциты от 1,96 до 1,80. Это может быть связано с увеличением влияния гидротермального фактора при образовании осадков от сланцев к кварцитам, что также косвенно подтверждают данные по европию. Значения Ce/La в сульфидизированных кварцитах несколько выше, чем в несульфидизированных (1,79–1,91 относительно 1,66–1,81), что является следствием более существенного влияния гидротермальных процессов как поставщиков эндогенного вещества при формировании железистых кварцитов;

4) отношение **Ce/Ce*** – индикатор седиментационных обстановок, также снижается от сланцев к магнетитовым кварцитам с гематитом и показывает, что породы железисто-кремнисто-сланцевой формации Стойленского железорудного месторождения образовались в окраинно-континентальной обстановке, а кварциты по сравнению со сланцами представляют собой более глубоководные образования. Отношение Ce/Ce* является единственным геохимическим коэффициентом, который существенно не отличается в сульфидизированных и несульфидизированных разностях кварцитов.

Графики распределения редких земель. Применение графиков обусловлено их большой информативностью для интерпретации условий осадкообразования. Для снятия влияния различной распространенности составы редких земель нормируются относительно состава лантаноидов в глинах платформ [1]. Изучение графиков позволяет установить обеднение или обогащение определенных видов пород отдельными редкоземельными элементами (группами элементов).

На рис. 1 показаны результаты нормирования состава редких земель относительно глин платформ в основных минералого-петрографических разновидностях железистых кварцитов в сравнении со сланцами. График показывает достаточно контрастное распределение редкоземельных элементов в кварцитах и сланцах.

В сланцах наблюдается обогащение легкими (LREE) и средними (MREE) редкими землями

Рис. 1. Графики распределения REE в кварцитах и сланцах Стойленского месторождения, нормированные относительно среднего состава глин платформ

относительно тяжелых (HREE), о чем свидетельствует в целом «убывающий» характер кривой распределения REE. Среди LREE и MREE отмечаются максимумы Ce, Pr, Sm. В спектре тяжелых редких земель наблюдается минимум Ho. Кривые распределения редкоземельных элементов в железистых кварцитах принципиально отличаются от сланцев. Железистые кварциты независимо от состава характеризуются следующими признаками:

а) обеднены редкими землями относительно глин платформ;

б) на фоне «пологого» характера кривых наблюдается некоторое обогащение тяжелыми REE (Ho-Lu, Y);

в) отчетливо проявлены европиевые максимумы относительно других MREE.

Сульфидизированные железистые кварциты отличаются от несульфидизированных только повышенным содержанием практически всех редкоземельных элементов (исключение – Но), но в целом кривые распределения REE идентичны. Появление максимумов Но обусловлено влиянием трех проб железистых кварцитов с резко повышенными содержаниями самария (Sm), которые относятся к «магнетитовому с единичными зернами сульфидов» (2 пробы) и «магнетитовому с гематитом» (1 проба) типу кварцитов (рис. 2).

Анализ распределения редкоземельных элементов в различных типах железистых кварцитов, отличающихся по содержанию магнитного и общего железа, серы, силикатов, позволяет отметить некоторые черты сходства и отличия в спектрах REE:

а) сульфидизированные силикатно-магнетитовые кварциты несколько обогащены MREE (Gd-Dy) и HREE (Ho-Lu, Y) относительно сульфидизированных магнетитовых кварцитов при практически идентичном содержании LREE (La, Ce, Pr) и MREE (Nd, Sm, Eu);

б) спектры распределения редкоземельных элементов в сульфидизированных кварцитах отличаются менее выраженным избытком тяжелых REE относительно легких – графики «более пологие»;

Рис. 2. Графики распределения REE в различных минералого-петрографических разновидностях железистых кварцитов Стойленского месторождения, нормированные относительно среднего состава глин платформ

Особенности распределения элементов примесей в сульфидизированных железистых кварцитах и сланцах...

в) среди несульфидизированных кварцитов наибольшим содержанием REE отличаются силикатно-магнетитовые, причем достаточно четко проявлено обогащение тяжелыми редкими землями (Ho-Lu, Y) относительно легких (La, Ce, Pr). Этот тип кварцитов в целом отличается максимальными содержаниями HREE относительно всех разностей кварцитов;

г) минимальные содержания редкоземельных элементов характерны для малорудных кварцитов, что можно объяснить отсутствием в их составе минералов – носителей REE – силикатов и оксидов железа.

Треугольная диаграмма LREE-МREE-(**HREE** × 10) позволяет выделить поля, отвечающие определенным обстановкам осадкообразования: при смене континентальных и прибрежноморских обстановок седиментации на более глубоководные морские в осадках возрастает содержание тяжелых земель при одновременном уменьшении легких [1; 2]. Достоинствами диаграммы являются следующие: возможность рассматривать полные составы лантаноидов, а не отдельные пары элементов; давать предельно краткую характеристику фациальных условий (в виде одной фигуративной точки); сравнивать одновременно большое количество химических анализов; выделить поля, отвечающие литолого-фациальным зонам образования осадков; проводить генетические реконструкции условий образования. Кроме того, применение данной диаграммы позволяет наглядно продемонстрировать различия в спектре редкоземельных элементов различных пород железисто-кремнисто-сланцевой формации.

Содержания сумм легких, средних и тяжелых редких земель в разнотипных породах Стойленского железорудного месторождения приведены в табл. 8.

Тройная диаграмма LREE-MREE-(HREE+Y) × × 10 (рис. 3) наиболее четко показывает, что сульфидизированные кварциты отличаются дефицитом тяжелых редкоземельных элементов относительно несульфидизированных и по этому признаку тяготеют к составу сланцев – пород, в

Рис. 3. Положение составов главных петрографических видов неокисленных пород Стойленского месторождения на диаграмме LREE-MREE-(HREE+Y × 10)

наибольшей степени обогащенных серой и сульфидными минералами.

Анализируя положение составов разнотипных железистых кварцитов на диаграмме (рис. 4), можно также отметить, что сульфидизированные кварциты обеднены тяжелыми редкими землями. Малорудный кварцит закономерно занимает промежуточное положение между сульфидизированными и несульфидизированными разностями. Положение состава магнетитового кварцита с гематитом сомнительно, поскольку наиболее глубоководные разности кварцитов должны занимать положение «правее и ниже» точки 3.

Таким образом, по результатам проведенных комплексных исследований геохимических особенностей пород Стойленского железорудного месторождения можно сделать следующие выводы:

1) сера характеризуется положительными значимыми коэффициентами парной корреляции с медью, никелем и некоторыми редкоземельными элементами: легкими – Се, Рг; средними – Еи, Gd. Концентрации Сг, MnO, MgO, ппп возрастают пропорционально содержанию серы в кварцитах, сульфидизированные кварциты обогащены в 2,5– 3 раза – Си, Sc, Ni; в 1,2–1,5 раза Pb, Zn, Be;

2) железистые кварциты независимо от состава обеднены редкими землями относительно глин платформ; отчетливо проявлены европиевые максимумы относительно других MREE. Сульфидизированные железистые кварциты отличаются от несульфидизированных повышенным

1 1)	,		1	·
Название породы	LREE	MREE	HREE + Y	$\sum REE + Y$
Сланцы (11)	<u>60,12–143,91</u>	<u>25,45–78,45</u>	<u>13,88–21,27</u>	<u>103,93–222,07</u>
	107,55	40,97	18,31	166,83
Кварциты (20)*	<u>3,77–40,96</u>	<u>2,06–19,85</u>	<u>3,80–26,16</u>	<u>10,18- 80,43</u>
	16,86	8,95	11,02	35,49
Силикатно-магнетитовые кварциты (4)	<u>13,04–40,50</u>	<u>9,84–19,85</u>	<u>10,03–26,16</u>	<u>42,75–80,43</u>
	26,42	13,61	17,77	57,80
Магнетитовые кварциты (13)*	<u>3,77–40,96</u>	<u>2,06–19,42</u>	<u>4,35–17,49</u>	<u>10,18–77,85</u>
	15,91	8,29	10,44	33,36
Сульфидизированные кварциты (5)	<u>30,96–40,96</u>	<u>13,92–19,85</u>	<u>7,73–20,08</u>	<u>57,99–80,43</u>
	36,61	16,36	14,56	67,53
Кварциты с единичными	<u>3,77–18,09</u>	<u>2,06–10,80</u>	<u>3,80–26,16</u>	<u>10,18–50,04</u>
зернами сульфидов (9)	10,19	6,00	10,37	26,56
Кварциты без видимых сульфидов (3)*	<u>6,36–16,24</u>	<u>4,73–6,23</u>	<u>5,06–11,87</u>	<u>16,39–28,12</u>
	10,42	5,46	9,04	22,19
Название породы	LREE	MREE	HREE + Y	$\sum \mathbf{REE}$
Малорудный кварцит (1)	6,67	3,28	3,80	13,75
Силикатно-магнетитовые кварциты	<u>34,04–40,50</u>	<u>13,92–19,85</u>	<u>10,03–20,08</u>	<u>57,99–80,43</u>
сульфидизированные (2)	37,27	16,89	15,06	69,21
Силикатно-магнетитовые кварциты несульфидизированные (2)	<u>13,04–18,09</u>	<u>9,84–10,84</u>	<u>14,82–26,16</u>	<u>42,75–50,04</u>
	15,57	10,34	20,49	46,40
Магнетитовые кварциты с сульфидами (3)	<u>30,96–40,96</u>	<u>14,20–19,42</u>	<u>7,73–17,49</u>	<u>58,51–77,85</u>
	36,17	16,01	14,23	66,40
Магнетитовые кварциты	<u>3,77–11,42</u>	<u>2,06–6,23</u>	<u>4,35–11,22</u>	$\frac{10,18-28,12}{22,75}$
несульфидизированные (5)	8,78	4,95	9,03	
Магнетитовые кварциты	<u>6,79–11,33</u>	3,28	<u>4,67–5,06</u>	<u>14,74–16,39</u>
с гематитом (1)*	9,06		4,87	15,57

Содержания REE в кварцитах и сланцах Стойленского месторождения (в г/т)

Примечание: * исключены пробы с резко повышенными содержаниями MREE; в числителе – пределы колебаний, в знаменателе – средние значения элемента.

MREE

Рис. 4. Положение составов главных петрографических видов неокисленных пород Стойленского месторождения на диаграмме LREE-MREE-(HREE+Y) × 10. 1 – малорудный кварцит; 2 – силикатно-магнетитовый кварцит сульфидизированный; 3 – силикатно-магнетитовый кварцит несульфидизированный и с единичными зернами сульфидов; 4 – магнетитовый кварцит сульфидизированный; 5 – магнетитовый кварцит несульфидизированный; 6 – магнетитовый кварцит с гематитом

содержанием практически всех редкоземельных элементов;

3) изменения отношений Се/Се*, ∑(REE + Y), La/Sm, Ce/Sm, Yb/Sm, Y/Sm подтверждают, что породы железисто-кремнисто-сланцевой формации Стойленского железорудного месторождения образовались в окраинно-континентальной обстановке, а кварциты по сравнению со сланцами являются более глубоководными образованиями;

4) снижение коэффициентов \sum (REE + Y), La/ Sm, Ce/Sm, La/Yb и одновременное возрастание отношений Y/Sm, Yb/Sm в ряду сланцы \rightarrow сульфидизированные кварциты \rightarrow кварциты с единичными зернами сульфидов \rightarrow кварциты без видимых сульфидов могут быть связаны с влияОсобенности распределения элементов примесей в сульфидизированных железистых кварцитах и сланцах...

нием наложенных процессов на тощи кварцитов и сланцев при образовании постдиагенетических сульфидных и силикатных парагенезисов. Отношение Eu/Eu* показывает достаточно интенсивное поступление эндогенного вещества в осадки при образовании более глубоководных рудных кварцитов. Сера в более глубоководных гематитмагнетитовых кварцитах по геохимическим данным связана преимущественно с наложенными процессами.

Работы выполнены при финансовой поддержке РФФИ грант № 08-05-00158а; ФЦП «На-

Воронежский государственный университет О. Г. Резникова, ассистент кафедры минералогии и петрологии ВГУ reznikova_o@bk.ru Тел. 8 (473) 220-79-66

B. C. Кузнецов, научный сотрудник voronezhpodkl@inbox.ru Тел. 8 (473) 220-79-66

В. В. Абрамов, доцент кафедры минералогии и петрологии avova82@mail.ru Тел. 8 (473) 220-79-66 учные и научно-педагогические кадры инновационной России», ГК № 02.740.11.0021

ЛИТЕРАТУРА

1. Балашов Ю. А. Геохимия редкоземельных элементов / Ю. А. Балашов. – М. : Наука, 1976. – 265 с.

2. Шатров В. А. Лантаноиды как индикаторы обстановок осадкообразования (на основе анализа опорных разрезов протерозоя и фанерозоя Восточно-Европейской платформы) : автореф. дис. на соиск. учен. степ. д-ра геол.-минерал. наук / В. А. Шатров. – М., 2007. – 36 с.

Voronezh State University O. G. Reznikova, assistant of Chair of Mineralogy and Petrology reznikova_o@bk.ru Tel. 8 (473) 220-79-66

V. S. Kuznetsov, Researcher voronezhpodkl@inbox.ru Tel. 8 (473) 220-79-66

V. V. Abramov, Assistant professor of Chair of Mineralogy and Petrology avova82@mail.ru Tel. 8 (473) 220-79-66