РЕДКОЗЕМЕЛЬНАЯ МИНЕРАЛИЗАЦИЯ В УГЛЕРОДИСТЫХ СЛАНЦАХ РОГОВСКОЙ СВИТЫ ТИМ-ЯСТРЕБОВСКОЙ СТРУКТУРЫ, ВОРОНЕЖСКИЙ КРИСТАЛЛИЧЕСКИЙ МАССИВ

Е. Х. Кориш

Воронежский государственный университет

Поступила в редакцию 15 марта 2010 г.

Аннотация. В углеродистых сланцах роговской свиты Тим-Ястребовской структуры установлена редкоземельная минерализация, которая представлена бастнезитом $[(Ce,La,Nd)(CO_3)F]$, синхизитом $[Ca(Ce,La,Nd)(CO_3)2F]$, монацитом $[(Ce,La,Nd,Th)PO_4]$, алланитом $[CaREEAl_2Fe^{2+}Si_3O_{11}O(OH)]$ и REE-содержащим апатитом. Были детально изучены парагенезисы и особенности химического состава редкоземельных минералов.

Ключевые слова: *REE-минерализация, алланит, бастнезит, синхизит, монацит, REE-содержащий апатит.*

Abstract. In carbonaceous shales Rogue Formation Tim-Yastrebovskoy structure rare-earth mineralization is installed, which is presented allanite [CaREEAl $_2$ Fe 2 +Si $_3$ O $_{11}$ O(OH)], bastnaesite [(Ce,La)(CO $_3$)F], synchysite [Ca(Ce,La,Nd)(CO $_3$) $_2$ F] and monazite [(Ce,La,Nd,Th)PO $_4$ and REE-containing apatite. Parageneses were explored in detail and features of the chemical composition of rare earth minerals.

Key words: REE-mineralization, allanite, bastnäsite, synchysite, monazite, REE-bearing apatite

Введение

Углеродистые сланцы, благодаря своей уникальной металлоносности, уже на протяжении нескольких десятилетий привлекают к себе пристальное внимание геологов. В связи с тем что породы, обогащенные углеродом, характеризуются повышенными концентрациями многих металлов, редких и рассеянных элементов, их изучение представляет большой практический интерес.

На территории Воронежского кристаллического массива углеродистые породы достигают максимального развития в оскольской серии нижнего протерозоя и сконцентрированы в основном в пределах Тим-Ястребовской рифтогенной структуры [1]. Наиболее изученной является верхняя свита оскольской серии – тимская. В углеродисто-терегенной породной ассоциации тимской свиты была установлена золото- и платиновая минерализация [2–4], повышенная марганцовистость [1, 5], изучен ряд редкоземельных минералов [6]. Углеродистые отложения нижней роговской свиты оскольской серии исследованы в меньшей степени но, несомненно, являются столь же интересными с точки зрения металлогенической специализации, как и тимские черные сланцы.

В результате детального изучения углеродистых сланцев роговской свиты была установлена

широко развитая редкоземельная минерализация, представленная бастнезитом, синхизитом, монацитом, алланитом и REE-апатитом.

Целью настоящей статьи является характеристика редкоземельной минерализации в углеродистых роговских сланцах Тим-Ястребовского палеорифта.

Геологическая обстановка

Тим-Ястребовская структура является одной, из наиболее крупных палеопротерозойских синформ в пределах ВКМ. Ее протяженность с северозапада на юго-восток составляет 130 км при ширине 10–30 км, глубина заложения по геофизическим данным оценивается в 5–8 км (рис. 1). В геодинамическом отношении структура представляет собой внутриконтинентальный рифт, заложившийся в палеопротерозое на неоархейской протоплатформе.

В геологическом строении Тим-Ястребовской структуры и ее обрамления принимают участие образования архея и палеопротерозоя. Архейские породы слагают обрамление Тим-Ястребовской структуры и представлены мощными толщами высокометаморфизованных осадочных и вулканогенно-осадочных образований обоянского комплекса и михайловской серии. Сама Тим-Ястребовская структура выполнена палеопротерозойскими породами курской и перекрывающей ее оскольской серии.

© Кориш Е. X., 2010

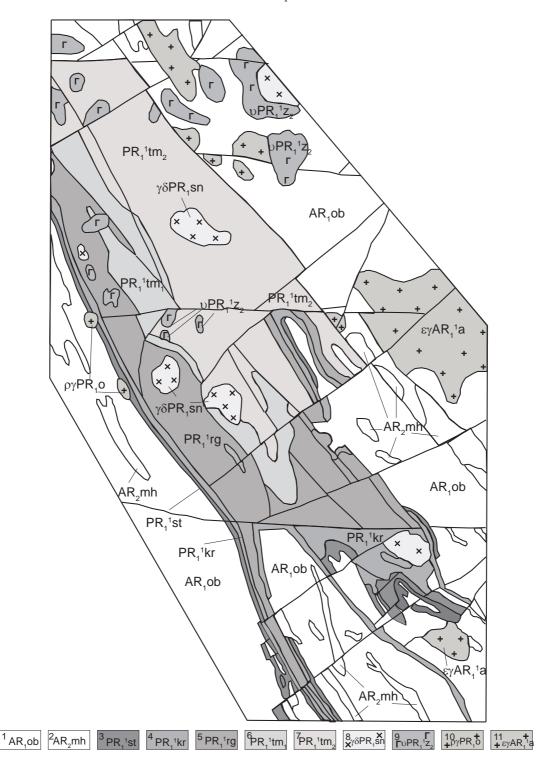


Рис. 1. Схематическая геологическая карта Тим-Ястребовсой структуры [5]: 1 — обоянский комплекс (гнейсы, гранито-гнейсы, мигматиты, гранулиты, амфиболиты); 2 — михайловская серия (сланцы двуслюдяные и хлоритовые, амфиболиты, коматииты, риолиты, дациты); 3−4 — курская серия: 3 — стойленская свита (метапесчаники, кварциты, сланцы филлитовидные и слюдяные); 4 — коробковская свита (железистые кварциты, сланцы филлитовидные и слюдяные); 5−7 — оскольская серия: 5 — роговская свита (сланцы кварц-биотитовые, кварц-серицитовые, доломиты, мрамора); 6−7 — тимская свита: 6 — нижняя подсвита (сланцы углеродистые, кварц-биотитовые, известково-силикатные породы, метаэффузивы основного и у/основного состава); 7 — верхняя подсвита (сланцы углеродистые, метаэффузивы основного и кислого состава); 8−11 — интрузивные комплексы: 8 — стойло-николаевский; 9 — золотухинский; 10 — осколецкий; 11 — атаманский

Отложения курской серии распространены по всему юго-западному борту структуры, а также на северо-западном и юго-восточном замыкании и представлены преимущественно метапелитами стойленской свиты и мощными железорудными толщами магнетитовых кварцитов с прослоями внутрирудных сланцев коробковской свиты, мощностью отложений серия достигает 1000 м и более. Точный возраст железорудного осадконакопления курской серии неизвестен. Нижняя возрастная граница определяется подстилающими отложения курской серии калиевыми риолитами лебединской свиты неоархея (изотопный U-Pb возраст их магматических цирконов 2590 ± 44 млн лет [7]). Верхний ее возрастной предел можно оценить по возрасту перекрывающих кислых вулканитов в Михайловской синформе около 2170 млн лет [8].

Состав и строение оскольской серии характеризуются ритмичной, неоднократно повторяющейся сменой конгломератов, гравелитов и метапесчаников, переходящих к верхам разреза в карбонатно-слюдистые сланцы с горизонтами амфиболитов, метаморфизованных доломитов и известняков, широким развитием углеродсодержащих пород и вулканитов. Мощность разрезов оскольской серии оценивается в несколько километров. Серия подразделяется на более древнюю, терригенно-карбонатную роговскую свиту и более молодую, существенно терригенно-вулканогенную тимскую свиту.

Роговская свита распространена вдоль югозападного борта Тим-Ястребовской структуры, а также в ее северо-восточном замыкании, сложена в различной степени мраморизованными известняками и доломитами, карбонатными метапесчаниками и сланцами, в отдельных прослоях обогащенными углеродистым веществом. Количество углеродсодержащих пород в разрезе составляет от 10 до 30 % общей мощности свиты [1].

Тимская свита занимает основную часть площади Тим-Ястребовской структуры. В ее составе выделяются нижняя и верхняя подсвиты. Разрез нижнетимской подсвиты характеризуется отчетливо ритмичным строением и широким распространением в его составе углеродистых сульфидизированных сланцев с подчиненными прослоями метапесчаников, кварцитов, силикатно-карбонатных пород. В отложениях верхнетимской свиты преобладают вулканогенные породы. Нижняя часть ее разреза сложена углеродистыми и безуглеродистыми слюдистыми сланцами, а в верхней части преобладают метаэффузивы с прослоями метапесча-

ников и сланцев. Прецизионные датировки возраста для пород оскольской серии отсутствуют. По данным В. М. Холина [9] структурно-вещественный комплекс рифтогенного этапа объединяет отложения оскольской серии.

Методы исследования

Все изученные образцы представляют собой керн скважин, детально описанный при проведении полевых работ. Из них были изготовлены прозрачно-полированные шлифы, изученные сначала оптически, а затем на растровом электронном микроскопе Jeol 6380 LW с энерго-дисперсионным анализатором INCA 250 (ВГУ). REE-минералы идентифицированы с помощью оптической микроскопии и в отраженных электронах. Количественные анализы выполнялись с использованием синтетических стандартов REE-элементов.

Условия локальных анализов минералов: ускоряющее напряжение $20~\mathrm{kB}$, ток поглощения электронов на $\mathrm{Cu}~1-2~\mathrm{hA}$, диаметр зонда $2~\mathrm{mkm}$, фокусное расстояние $10~\mathrm{mm}$. Кристаллохимические формулы хлоритов рассчитаны на 14, слюд на 11, полевых шпатов на $8~\mathrm{atomos}~\mathrm{kucnopoga}$. Для редкоземельных минералов кристаллохимические формулы рассчитаны на сумму катионов для монацитов, равную 2, для алланитов -8, для бастнезитов -1, для синхизитов -2.

Петрография и минералогия углеродистых сланцев

Изученные углеродистые отложения роговской свиты, представлены сланцами углерод-кварц-слюдистыми, углерод-кварц-хлорит-слюдистыми, карбонатсодержащими, с сульфидами, темно-серыми, светло-серыми, иногда с зеленоватым оттенком, мелко- и тонкозернистыми. Структура основной массы сланцев лепидогранобластовая.

Углеродистое вещество в сланцах находится в тонкодисперсном состоянии, равномерно рассеянно в породе, «запыляя» минералы, создает отдельные прослои, нитевидные прожилки, параллельные сланцеватости. Содержание $C_{\rm opr}$ находится в пределах 5–10 % [1].

Сульфидная минерализация представлена чаще всего пирротином, пиритом, халькопиритом, галенитом. Сульфиды образуют тонкие прожилки, вкрапленность, гнезда и пятна в породе. Общее количество сульфидов в сланцах не превышает 15%.

Главными породообразующими минералами углеродистых сланцев роговской свиты Тим-Ястребовской структуры являются кварц, слюды (фло-

гопит, биотит), хлорит. В меньших количествах присутствуют плагиоклаз, калиевый полевой шпат, карбонаты (кальцит, доломит). В качестве акцессорных определены апатит, сфен, ильменит, магнетит.

Хлорит широко распространен в изученных углеродистых сланцах и образует крупные лейсты (200 мкм), мелкие (10–50 мкм) чешуйки зеленовато-бурого цвета. Хлориты характеризуются высоким коэффициентом железистости $X_{\rm Fe} = 0.64-0.72~\%$ (табл. 1).

Таблица 1 Составы и кристаллохимические коэффициенты хлорита (рассчитаны на 14 атомов кислорода) из углеродистых сланцев роговской свиты Тим-Ястребовской структуры

		3088/5	64*	
Компоненты	Chl 1**	Chl 2	Chl 3	Chl 4
	1***	1	1	1
SiO ₂	28,78	35,68	31,74	39,28
Al ₂ O ₃	19,11	12,75	20,35	19,37
FeO	33,87	23,10	33,63	24,13
MnO	0,83	1,32	0,56	0,60
MgO	7,35	6,74	7,46	7,16
CaO	0,48	0,67	0,39	0,99
Na ₂ O	0,29	0,22	ı	0,24
K,O	0,23	0,15	0,20	2,87
Сумма	90,94	80,63	94,33	94,64
Si	3,05	3,98	3,18	3,73
Al	2,38	1,68	2,40	2,17
Fe^{2+}	3,00	2,16	2,82	1,92
Mn	0,07	0,12	0,05	0,05
Mg	1,16	1,12	1,11	1,01
Ca	0,05	0,08	0,04	0,10
Na	0,06	0,05	_	0,04
K	0,03	0,02	0,03	0,35
$Fe^{2+}/(Fe^{2+}+Mg)$	0,72	0,64	0,71	0,65

^{*} Номер образца.

Слюды, как правило, представлены мелкими чешуйками, размером сотые доли миллиметра, «наполненными» тонкодисперсным углистым веществом, делающим минералы практически не прозрачными. Преобладает флогопит, биотит встречается реже (табл. 2).

В углеродистых сланцах часто отмечается плагиоклаз (альбит, анортит – редко) и калиевый полевой шпат, присутствующие в виде мелких зерен (не более 50 мкм) неправильной формы (табл. 3).

В составе углеродистых роговских сланцев Тим-Ястребовской структуры установлена редкоземельная минерализация, представленная бастне-

зитом, синхизитом, алланитом, монацитом, REE-апатитом.

Редкоземельная минерализация углеродистых сланцев

Принятые сокращения: Aln - алланит, Ap - anamum, Bst - бастнезит, Chl - хлорит, Qtz - кварц, Mnz - монацит, Phl - флогопит, Syn - синхизит, Bt - биотит, Pl - плагиоклаз, Kfs - калиевый полевой шпат, Spn - сфен

Бастнезит – фтор-карбонат редких земель группы паризита с эмпирической формулой [(Ce,La)(CO₂)F] является преобладающим REEминералом в углеродистых сланцах роговской свиты Тим-Ястребовской структуры. Бастнезит образует неправильной формы удлиненные зерна размером 10-50 мкм, расположенные непосредственно в матриксе, каймы, игольчатые выделения по хлориту (рис. 2) и псевдоморфозы по калиевому полевому шпату (рис. 3). Тесно ассоциирует с апатитом, монацитом, аланитом, синхизитом, биотитом, флогопитом, плагиоклазом (рис. 2, 3, 6). В химическом составе бастнезита преобладает церий $(25,3-36,5 \% \text{ Ce}_{2}\text{O}_{3})$, содержание которого в два раза выше лантана (13,2-19,02 % La₂O₃), над другими элементами REE-группы (табл. 4). Кроме того, в заметных количествах присутствует неодим (7,67–12,32 % Nd₂O₃) и празеодим (1,8–4,08 % $Pr_{2}O_{3}$). Содержание тория в бастнезитах не превышает 3,4 % ТhO₂, а в некоторых зернах он не установлен. Количество кальция колеблется в широких пределах от 2,9 до 13 % СаО. Высокое содержание кальция, вероятно, связано с повышенными концентрациями кальция в самой породе. Характерной особенностью роговских бастнезитов, отличающей их от тимских, является отсутствие в химическом составе иттрия.

Совместно с бастнезитом встречается синхизит $[Ca(Ce,La,Nd)(CO_3)_2F]$ – крайний член ряда бастнезит – синхизит. Отмечен в виде мелких, не более 15 мкм, зерен неправильной формы. Главным отличием от бастнезита является повышенное содержание кальция – более 18 % и, как следствие, низкое содержание REE (табл. 4).

Алланит CaREEAl $_2$ Fe 2 +Si $_3$ O $_{11}$ O(OH) — силикат редких земель, минерал группы эпидота. Встречается в роговских углеродистых сланцах редко в виде мелких 10–20 мкм зерен неправильной или округлой формы в ассоциации с апатитом, бастнезитом, хлоритом и кальцитом (рис. 4). Химический состав роговских алланитов резко отличен от составов алланитов тимской свиты [6] (рис. 5): они содержат больше кальция (12–20 % CaO), железа

^{**} Номер зерна.

^{***} Номер анализа.

Таблица 2 Составы и кристаллохимические коэффициенты слюд (рассчитаны на 11 атомов кислорода) из углеродистых сланцев роговской свиты Тим-Ястребовской структуры

, ,		, 1				1	100	L
	5	64/3088*	:	637,5	5/3088	479/3088	675/	3088
Компоненты	Flg 1**	Flg 2	Flg 3	Flg 1	Flg 2	Bt 1	Flg 1	Flg 2
	3***	6	5	1	5	2	11	12
SiO ₂	42,32	36,96	41,49	39,61	40,15	37,78	42,43	42,17
Al_2O_3	18,74	18,62	19,12	15,28	15,94	15,93	17,87	18,03
FeO	6,86	9,24	6,82	10,86	11,25	19,38	5,04	5,69
TiO	1,42	1,14	1,69	1,9	1,9	2,88	1,34	1,36
MnO	0,22	0,52	0,54	0,3	0,17	0,48	0,73	0,26
MgO	19,05	20,14	20,83	17,80	18,13	11,28	21,89	22,58
CaO	_	0,37	0,13	_	_	0,13	_	_
Na ₂ O	_	_	0,27	_	_	0,10	_	_
K ₂ O	10,28	6,96	9,10	9,59	9,68	9,75	10,02	9,46
Сумма	98,89	93,95	99,99	95,34	97,92	97,71	99,32	99,82
Si	2,99	2,76	2,89	2,96	2,94	2,88	2,96	2,92
Al	1,56	1,64	1,57	1,34	1,37	1,43	1,47	1,49
Fe ²⁺	0,41	0,57	0,39	0,68	0,69	1,24	0,29	0,33
Ti	0,07	0,06	0,09	0,11	0,105	0,165	0,07	0,07
Mn	0,013	0,03	0,032	0,02	0,01	0,031	0,04	0,015
Mg	2,01	2,24	2,164	1,98	1,98	1,28	2,27	2,33
Ca	_	0,03	0,01			0,01		
Na	_	_	0,036	_	_	0,015	-	_
K	0,93	0,66	0,81	0,92	0,90	0,948	0,89	0,84
X(Fe)	0,17	0,20	0,15	0,25	0,26	0,48	0,11	0,12
X(Mg)	0,83	0,78	0,83	0,74	0,74	0,50	0,87	0,87

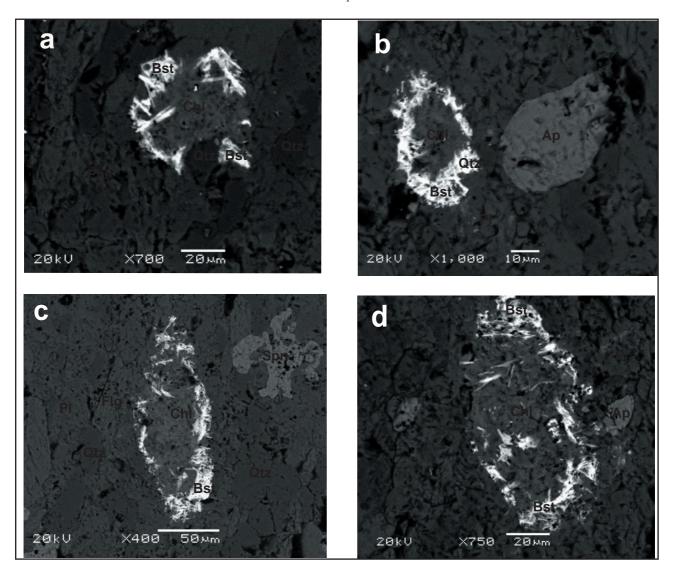
^{*} Номер образца.

(4,3-8,7% FeO), марганец отмечен в незначительных количествах (до 0,4% MnO), либо не установлен вовсе. Избыток кальция относительно идеальной формулы указывает на изоморфное замещение части REE^{3+} на Ca^{2+} .

Из редкоземельных элементов присутствует только группа легких — церий, лантан, празеодим и неодим. Преобладает церий (5,32–12,17 % ${\rm Ce_2O_3}$), почти в два раза превышающий содержания лантана (2,7–5,5 % ${\rm La_2O_3}$) (табл. 5). Кроме них в заметных количествах присутствует неодим (0,7–4,3 % ${\rm Nd_2O_3}$).

В алланитах была отмечена зональность по содержанию кальция и редких земель (рис. 4, табл. 5). На рис. 4 в зерне алланита отчетливо наблюдаются две зоны: первая — темная, характеризуется повышенным содержанием кальция, а вторая — светлая — более высокими концентрациями редких земель.

В составе **апатита** из углеродистых роговских сланцев были установлены значимые количества REE, уверенно определяемые микрозондовым


анализом (табл. 6). Отмечен церий, лантан, неодим, празеодим и диспрозий. Содержание $\mathrm{Ce_2O_3}$ достигает 1,18 %. Апатиты представлены выделениями неправильной формы, округлыми зернами размером от 5 до 100 мкм, встречаются вместе с хлоритом, монацитом, аланитом, бастнезитом, кальцитом (рис. 2, b, d; 3, a; 6).

Монацит (Ce,La,Nd,Th)PO $_4$ образует выделения неправильной, облаковидной формы по апатиту, размером не более 20 мкм (рис. 6). Монацит тесно ассоциирует с бастнезитом, апатитом, кальцитом. Является существенно цериевым, содержит примеси кремнезема и кальция. Наиболее высокие концентрации, кроме церия (30,9–34,2 мас. % Ce_2O_3), установлены для лантана (15,3–17,1 мас. % La_2O_3), неодима (11,4–13,5 мас. % Nd_2O_3), празеодима, самария и гадолиния (табл. 7). Монациты содержат торий (до 2 % ThO_2), причем содержания урана не были отмечены.

Микроструктурные отношения и наличие ассоциации – кальцит, монацит, апатит (рис. 6), указывают на то, что образование монацита происхо-

^{**} Номер зерна.

^{***} Номер анализа.

Рис. 2. Бастнезит в углеродистых сланцах роговской свиты Тим-Ястребовской структуры. Образует каймы и игольчатые выделения по хлориту: b, d – бастнезит в ассоциации с REE-апатитом; a, b, c – образец 564/3088; d – образец 595/3088

дило в результате разложения REE-содержащего апатита, являвшимся источником LREE:

REEAp + $\text{H}_2\text{CO}_3 \rightarrow \text{Mnz} + \text{Cal} + \phi$ люид (HF, H_2O).

Реакционные структуры с участием апатита, кальцита и бастнезита (рис. 6) позволяют предполагать, что редкоземельный апатит мог служить источником LREE для формирования бастнезита и синхизита:

REEAp +
$$H_2CO_3 \rightarrow Bst + Ap$$
,
или REEAp + Cal $\rightarrow Syn + Ap$.

Выводы

Широкое развитие редкоземельных минералов в составе роговской свиты, вероятно, обусловлено их обогащением в результате сорбции REE-элемен-

тов при диагенезе в восстановительных условиях на органическом и фосфатном веществе. Возможно существование единого источника LREE-элементов для образования бастнезита, алланита и монацита [10–13]. Это подтверждается моделями распределения REE-элементов в монаците, алланите и бастнезите, которые почти не отличаются друг от друга и характеризуются резким преобладанием легких REE-элементов.

Целью более глубокого изучения и интерпретации реакционных структур и парагенезисов с участием редкоземельных минералов является реконструкция последовательности реакций образования, роста и разложения минеральных фаз при низкотемпературном зональном метаморфизме.

Таблица 3 Составы и кристаллохимические коэффициенты полевых шпатов (рассчитаны на 8 атомов кислорода) из углеродистых сланцев роговской

						ны Тим-Я	свиты Тим-Ястребовской структуры. 	гкой стру	уктуры.						
				675/3088*	*880					564/	564/3088		479/3088	637,5/3088	,3088
Компоненты	Pl 1**	Kfs 1	Pl 1	Kfs 2	Pl 2	Kfs 3	Kfs	s 4		Kfs 1		Pl 1	Pl 1	Pl 1	Kfs 1
	1 ***	2	3	10	13	16	17	18	1	2	5	3	1	2	9
SiO_2	60,78	63,95	59,48	64,60	58,93	64,03	59,49	50,65	65,16	64,28	65,53	60,33	59,10	68,21	64,68
Al_2O_3	25,58	17,35	26,04	17,47	25,31	17,92	20,62	32,57	17,38	17,65	18,09	24,06	21,02	22,00	17,46
FeO	0,10	I	0,00	0,23	0,08	I	0,33	0,52	0,21	1,15	0,71	I	0,36	0,39	0,95
MnO	0,13	I	0,12	0,06	I	I	0,01	0,39	I	0,04	-	ı	I	I	I
MgO	0,09	I	ı	I	I	0,10	0,32	2,48	I	0,07	0,04	ı	I	I	0,33
CaO	7,65	0,10	8,90	0,12	7,92	ı	0,18	I	0,18	0,26	0,07	6,88	4,89	3,08	0,31
BaO	I	I	I	2,05	ı	2,34	4,46	0,64	-	1	_	ı	I	-	I
Na_2O	8,34	0,54	7,35	0,61	7,45	0,93	0,41	0,08	0,27	0,29	0,74	ı	8,40	10,42	0,34
K,0	0,02	15,37	0,07	14,78	I	14,21	13,49	11,56	16,65	14,94	13,84	I	0,19	I	15,86
Сумма	102,69	97,31	102,02	99,92	69,66	99,53	99,31	99,41	99,85	98,68	99,02	91,27	93,96	104,1	99,75
Si	2,63	3,04	2,60	3,06	2,63	3,02	2,85	2,32	3,02	3,03	3,07	3,14	2,79	2,89	3,01
Al	1,30	0,97	1,34	0,96	1,33	0,99	1,16	1,76	0,95	0,98	0,99	1,47	1,169	1,09	0,96
Fe^{2+}	0,004	ı	0,002	0,009	0,003	ı	0,013	0,02	0,008	0,045	0,03	ı	0,014	0,014	0,037
Mn	0,005	ı	0,004	0,002	I	ı	ı	0,015	-	0,002	1	ı	ı	ı	ı
Mg	0,006	ı	I	I	I	0,007	0,023	0,169	I	0,005	0,003	I	ı	I	0,023
Ca	0,354	0,005	0,417	0,006	0,38	I	0,009	I	0,009	0,013	0,004	0,384	0,247	0,14	0,015
Ba	ı	ı	I	0,038	I	0,043	0,084	0,011	I	I	I	I	ı	ı	I
Na	0,699	0,05	0,624	0,056	0,646	0,085	0,038	0,007	0,024	0,026	0,067	I	0,768	0,856	0,031
К	0,001	0,932	0,004	0,886	I	0,854	0,823	0,676	0,985	0,89	0,827	I	0,011	I	0,93
Alb	66,285	5,04	59,68	5,86	62,98	9,04	4,37	1,04	2,38	2,82	7,48	I	74,81	85,95	3,14
An	33,61	0,52	39,94	0,64	37,02	I	1,06	I	0,87	1,4	0,39	100	24,07	14,04	1,58
Kfs	0,105	94,44	0,374	93,49	I	96,06	94,57	98,96	96,74	95,77	92,12	I	1,11	ı	95,28
30 40.11 *	0.00														

* Номер образца.

** Hoмер зерна.

*** Номер анализа.

Таблица 4 Химический состав и кристаллохимические формулы бастнезитов и синхизитов из углеродистых сланцев роговской свиты Тим-Ястребовской

структуры. Кристаллохимические формулы оастн	крист	аллохи	мическі	ле форл	лулы оп	chinesa.	esamos puectamans na cymral namaonos, puentro 1, canaasamos – na cymrat namaonos, puentro	22:12:00	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	yourself the		o, Puorry							
	637,5/	637,5/3088*	,4	479,6/3088	<u>&</u>							675/3088	880						
Компоненты	Bst	Bst 1**		Bst 1		Bst 1	t 1	Syn 1	Bst 2	Bst 3	Bst 4	4:		Bst 5		Bst 6	Bst 7	Bst 8	Bst 9
	***L	8	4	2	9	1	2	3	7	16	11	12	4	5	9	1	3	4	6
F	5,13	5,35	7,19	7,88	7,19	8,24	8,97	5,83	6,50	6,49	98,9	6,33	6,02	5,59	8,08	5,51	6,76	98,9	6,57
CaO	11,98	12,75	3,83	3,88	3,51	2,91	5,76	18,04	7,33	7,52	7,93	8,48	4,59	9,32	6,62	10,71	9,61	66,6	9,02
ThO_2	1,84	1,62	1,12	0,78	I	0,72	1,64	2,63	ı	2,45	2,25	2,89	1,17	1,65	2,08	2,13	1,86	2,05	2,24
UO_3	_	_	_	6,53	Ι	_	_	Ι	0,62	-	_	I	I	Ι	-	_	_	I	I
Y_2O_3	Ι	_	_	_	Ι	Ι	Ι	I	I	Ι	I	I	I	I	Ι	_	_	Ι	I
$\mathrm{La_2O_3}$	13,25	13,62	18,90	16,94	18,83	24,43	16	11,93	18,70	15	16,83	14,64	18,66	19,05	15,23	16,97	16,15	18,35	15,50
Ce_2O_3	28,20	28,12	36,55	34,90	36,18	36,76	29,75	27,64	34,53	27,06	29,15	25,30	33,97	28,31	27,83	32,19	30,04	29,70	30,08
Pr_2O_3	2,94	1,88	2,24	4,08	3,10	3,11	3,34	2,41	3,18	2,45	2,50	1,81	3,85	3,16	2,69	2,11	1,91	2,28	2,95
Nd ₂ O ₃	9;26	9,43	8,83	8,70	7,67	12,32	10,50	8,82	11,21	11,17	10,19	9,95	11,17	11,16	10,25	9,82	10,35	10,27	9,95
Сумма	72,9	72,77	78,66	69,77	76,48	88,49	75,96	77,3	82,07	72,14	75,71	69,4	79,43	78,24	72,78	79,44	76,68	79,5	76,31
Ħ	0,66	0,67	0,88	0,94	0,90	0,91	1,00	0,97	0,77	0,83	0,83	0,82	0,78	0,70	0,95	0,67	0,80	0,79	0,79
Ca	0,39	0,41	0,14	0,15	0,14	0,10	0,22	1,00	0,24	0,28	0,28	0,32	0,16	0,30	0,25	0,33	0,32	0,32	0,31
Th	0,01	0,01	0,01	0,01	-	0,01	0,01	0,03	ı	0,02	0,02	0,02	0,01	0,01	0,02	0,01	0,01	0,01	0,02
U	-	_	_	Ι	_	Ι	ı	I	I	I	Ι	I	-	ı	Ι	I	I	-	I
Y	I	_	Ι	_	I	I	I	I	ı	I	I	I	I	I	1	I	I	I	1
La	0,15	0,15	0,24	0,22	0,25	0,29	0,21	0,23	0,21	0,19	0,20	0,19	0,23	0,21	0,20	0,18	0,19	0,20	0,18
Ce	0,31	0,31	0,47	0,46	0,48	0,43	0,38	0,53	0,39	0,34	0,35	0,32	0,42	0,32	0,36	0,34	0,34	0,33	0,35
Pr	0,03	0,02	0,03	0,05	0,04	0,04	0,04	0,05	0,04	0,03	0,03	0,02	0,05	0,04	0,03	0,02	0,02	0,02	0,03
Nd	0,10	0,10	0,11	0,11	0,10	0,14	0,13	0,16	0,12	0,14	0,12	0,12	0,13	0,12	0,13	0,10	0,12	0,11	0,11

Продолжение табл. 4

			F < 1/200	10			505.2/2000
			564/308				595,3/3088
Компоненты	Bst 1	Bst	t 2	Bs	t 4	Bst 1	Bst 2
	2	3	4	2	3	5	8
F	4,54	8,42	6,03	6,83	4,73	4,92	7,25
CaO	7,07	5,23	5,66	3,92	9,1	5,99	7,69
ThO_2	3,40	1,08	3,23	_	_	1,24	_
UO ₃	0,8	_	_	_	_	_	_
Y_2O_3	_	_	_	_	_	1,27	1,68
La ₂ O ₃	14,99	14,52	16,03	15,36	10,76	12,16	13,47
Ce ₂ O ₃	29,92	27,90	31,29	36,36	24,55	31,67	28,02
Pr ₂ O ₃	1,59	2,53	2,32	3,76	2,25	2,36	2,27
Nd ₂ O ₃	11,13	11,99	10,52	13,48	8,67	10,67	10,20
Сумма	73,44	71,67	75,08	79,71	60,06	70,28	70,58
F	0,65	1,00	0,80	0,85	0,72	0,71	0,89
Ca	0,26	0,21	0,21	0,14	0,37	0,23	0,29
Th	0,03	0,01	0,03	_	_	0,01	_
U	0,01	_	_	_	_	_	_
Y	_	_	_	_	_	0,02	0,03
La	0,19	0,20	0,21	0,19	0,15	0,16	0,17
Ce	0,37	0,38	0,40	0,45	0,34	0,41	0,36
Pr	0,02	0,03	0,03	0,05	0,03	0,03	0,03
Nd	0,13	0,16	0,13	0,16	0,12	0,14	0,13

^{*} Номер образца, ** номер зерна, *** номер анализа.

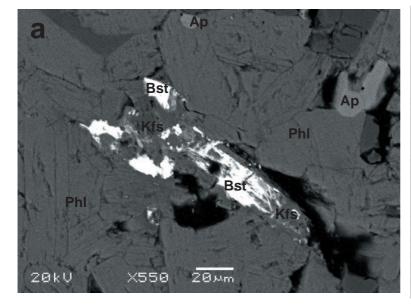
Таблица 5 Химический состав и кристаллохимические коэффициенты алланитов (рассчитаны на сумму катионов, равную 8) из углеродистых сланцев роговской свиты Тим-Ястребовской структуры.

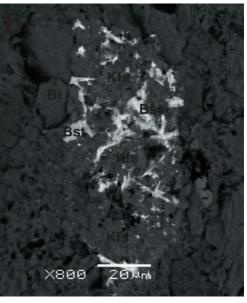
	675 /3	088*	50	05,3/3088
Компоненты	Aln 1**	Aln 2		Aln 1
	8***	14	9	10
SiO ₂	36,64	45,85	35,88	31,71
Al_2O_3	21,29	18,93	21,57	20,38
FeO	7,63	4,28	8,37	8,74
Y_2O_3	_	_	_	_
La ₂ O ₃	5,52	4,34	2,71	4,51
Ce ₂ O ₃	12,17	7,79	5,32	8,29
Pr ₂ O ₂	_	0,70	_	0,76
Nd_2O_3	4,33	3,25	0,76	1,86
MnO	_	_	0,29	0,44
MgO	1,65	2,27	_	-
Na ₂ O	_	_	-	_
CaO	13,86	12,25	20,32	18,19
TiO ₂	_	_	_	_
PbO	_	_	_	0,46
ThO ₂	_	_	_	_
UO ₃	_	_	0,64	0,04
Сумма	103,79	99,66	95,86	95,38
Si	3,14	3,9	3,75	2,86
Al	2,15	1,9	1,83	2,17
Fe Y	0,55	0,3	0,29	0,66
La	0.17	0.14	0,13	0.15
Ce	0,17	0,14	0,15	0,27 0,02 0,06 0,03
Pr	0,50	0,24 0,02 0,1	_	0,27
Nd	0,13	0.02	0,02	0,02
Mn	_	_	0,02	0,03
Mg	0,21	0,29	_	_
Ca	1,27	1.12	1.78	1,76
Na				_
Ti	-	_	_	_
Pb	_	_	_	0,01
Th	_	_	_	
Ü	_		0.01	
∑–REE	0,68	0,50	0,31	0,50
ψII (manua ********			

*Номер образца, **номер зерна, ***номер анализа.

Таблица 6 Составы апатитов из углеродистых сланцев роговской свиты Тим-Ястребовской структуры

V омпо	595,3/3088*	675/	3088	56	54/308	8
Компо-	Ap 1**	Ap 1	Ap 2	Ap	1	Ap 2
ненты	12***	5	8	4	5	4
F	4,86	4,69	4,10	4,27	4,13	4,77
P ₂ O ₅	42,67	40,75	36,87	40,21	40,9	39,88
CaO	56,60	51,28	43,66	53,69	53,03	53,55
SiO ₂	0,94	1,18	8,51	0,52	0,32	0,49
La ₂ O ₃	_	0,75	0,47	ı	_	_
Ce ₂ O ₃	0,54	0,72	1,33	0,15	0,19	_
Pr ₂ O ₃	0,19	_	_	0,18	0,21	0,32
Nd ₂ O ₃	0,33	_	0,50	0,35	_	0,79
Dy ₂ O ₃	_	_	_		0,60	_
Сумма	106,13	99,37	95,44	99,37	99,38	99,8


^{*}Номер образца.


Таблица 7 Химический состав и кристаллохимические коэффициенты монацитов (рассчитаны на сумму катионов, равную 2) из углеродистых сланцев роговской свиты Тим-Ястребовской структуры

	6	75/3088*	
Компоненты		Mnz 1**	
	2***	3	4
P_2O_5	30,42	30,88	31,76
SiO ₂	1,64	0,47	0,52
ThO2	1,07	1,25	2,00
La ₂ O ₃	15,94	15,33	17,11
Ce ₂ O ₃	34,23	33,71	30,90
Pr_2O_3	4,68	3,93	3,2
Nd ₂ O ₃	13,53	12,62	11,47
Sm_2O_3	1,67	2,89	1,52
Gd ₂ O ₃	0,91	0,96	2,26
Eu ₂ O ₃	-	-	1,86
CaO	0,58	0,71	0,6
Сумма	104,67	102,75	103,2
P	0,95	0,99	1,01
Si	0,06	0,02	0,02
Th	0,01	0,01	0,02
La	0,22	0,21	0,24
Ce	0,46	0,47	0,42
Pr	0,06	0,05	0,04
Nd	0,18	0,17	0,15
Sm	0,02	0,04	0,02
Gd	0,01	0,01	0,03
Eu	_	_	0,02
Ca	0,02	0,03	0,02
∑-REE	0,95	0,95	0,94
OLION OFFICE	*******	202110 **	******

*Номер образца, **номер зерна, ***номер анали-

за.

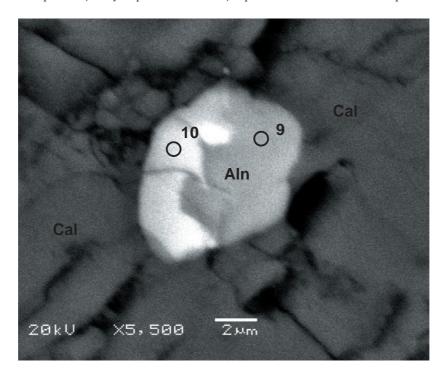


Рис. 3. Бастнезит в углеродистых сланцах роговской свиты Тим-Ястребовской структуры. Образует псевдоморфозы по калиевому полевому шпату: a – бастнезит в ассоциации с REE-апатитом; a – образец 637/3088, b – образец 564/3088

^{**} Номер зерна.

^{***}Номер анализа.

Редкоземельная минерализация в углеродистых сланцах роговской свиты Тим-Ястребовской структуры...

Рис. 4. Алланит в углеродистых сланцах роговской свиты Тим-Ястребовской структуры. Темная зона на фото характеризуется высоким содержанием кальция. Образец 595/3088

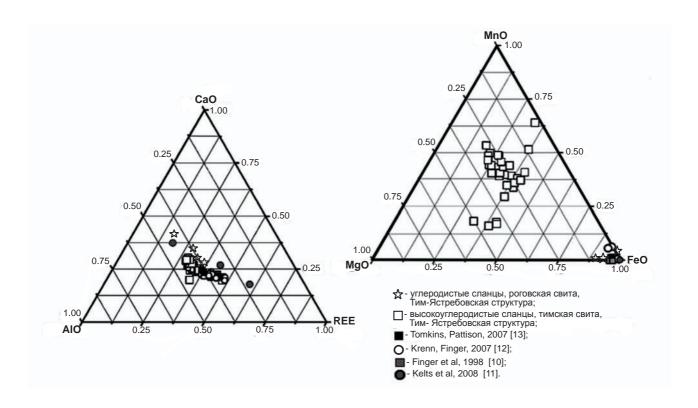
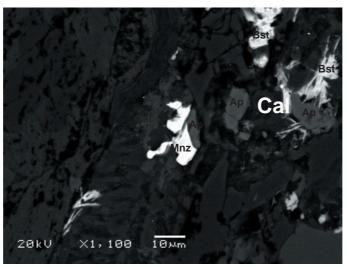



Рис. 5. Сравнительная диаграмма составов алланитов из метапелитов различных геологических структур

Рис. 6. Монацит в углеродистых сланцах роговской свиты Тим-Ястребовской структуры. Развивается по апатиту. Образец 675/3088

ЛИТЕРАТУРА

- 1. *Созинов Н. А.* Металлоносные черные сланцы Курской магнитной аномалии / Н. А. Созинов, Н. Н. Чистяков, В. А. Казанцев. М.: Недра, 1988. –149 с.
- 2. Чернышов Н. М. Новый тип золото-платинометального оруденения в стратифицированных черносланцевых комплексах ВКМ (закономерности размещения, минералого-геохимические особенности и геолого-генетическая модель формирования) / Н. М. Чернышов // Вестн. Воронеж. гос. ун-та. Сер.: Геол. 1996. № 2. С. 42—62.
- 3. *Чернышов Н. М.* Новые минералы платиноидов в черносланцевых комплексах Тимского типа (КМА) / Н. М. Чернышов, В. Г. Моисеенко, В. В. Абрамов // Вестн. Воронеж. гос. ун-та. Сер.: Геол. 2007. № 2. С. 152–158.
- 4. *Чернышов Н. М.* Золото-платинометалльное оруденение черносланцевого типа Курско-Воронежского региона / Н. М. Чернышов. Воронеж: Изд-во Воронежского гос. ун-та. 2007. 177 с.
- 5. Полякова Т. Н. Петрология метапелитов и силикатно-карбонатных пород Тим-Ястребовской структуры (Воронежский кристаллический массив) / Т. Н. Полякова, К. А. Савко, В. Ю. Скрябин // Труды НИИ Геологии ВГУ. 2006. Вып. 35. 125 с.
- 6. Савко К. А. Редкоземельная минерализация в черных сланцах Тим-Ястребовской структуры (Воронежский кристаллический массив) и датирование возраста метаморфизма по монацитам «in situ» / К. А. Савко, Е. Х. Кориш, С. М. Пилюгин // Вестн. Воронеж. гос. ун-та. Сер.: Геол. -2008. -№ 1. C. 47–65.

- 7. Щербак Н. П. Возраст кислых метавулканитов Александровского и Коробковского участков КМА / Н. П. Щербак [и др.] // Доклады АН Украины. 1992. № 6. С. 120–123.
- 8. *Артеменко Г. В.* Геохронология Среднеприднепровской, Приазовской и Курской гранит-зеленокаменных областей: автореф. дис. на соискание уч. степ. д-ра геол. наук / Г. В. Артеменко. Киев: Институт геохимии, минералогии и рудообразования НАН Украины, 1998. 31 с.
- 9. *Холин В. М.* Геология, геодинамика и металлогеническая оценка раннепротерозойских структур КМА: автореф. дис. ... канд. геол.-минерал. наук / В. М. Холин. Воронеж: $B\Gamma y$, 2001. 23 с.
- 10. Finger F. Replacement of primary monazite by apatite-allanite-epidote coronas in an amphibolite facies granite gneiss from the eastern Alps / F. Finger [et al.] // Amer. Mineral. 1998. V. 83. P. 248–258.
- 11. *Kelts A.* Monazite occurrence, chemistry, and chronology in the Lachlan Fold Belt, Australia: An electron microprobe study / A. Kelts, M. Ren, E. Anthony // Amer. Mineral. 2008. V. 93. P. 373–383.
- 12. *Krenn E.* Formation of monazite and rhabdophane at the expense of allanite during Alpine low temperature retrogression of metapelitic basement rocks from Grete, Greece: microprobe data and geochronological implications / E. Krenn, F. Finger // Lithos. 2007. V. 95. P. 130–147.
- 13. *Tomkins H. S.* Accessory phase petrogenesis in relation to major phase assemblages in pelites from the Nelson contact aureole, southern British Columbia / H. S. Tomkins, D. R. M. Pattison // J. Metam. Geol. 2007. V. 25. P. 401–421.

Рецензент В. В. Абрамов

Воронежский государственный университет E. X. Кориш, научный сотрудник Teл. 8 (4732) 208-626 korish_k@rambler.ru Voronezh State University E. H. Korish, research worker Tel. 8 (4732) 208-626 korish_k@rambler.ru