СТРУКТУРНО-ВЕЩЕСТВЕННЫЕ ПРИЗНАКИ ПРИНАДЛЕЖНОСТИ ТРОИЦКОГО МАССИВА К ЕЛАНСКОМУ КОМПЛЕКСУ В СВЯЗИ С ОЦЕНКОЙ ЕГО НИКЕЛЕНОСНОСТИ (ХОПЕРСКИЙ БЛОК ВКМ)

П. С. Бойко

Воронежский государственный университет

Поступила в редакцию 17 октября 2008 г.

Аннотация: по особенностям внутреннего строения, минералого-петрографическим и петрогеохимическим признакам Троицкий массив Хоперского мегаблока обнаруживает значительные аналогии с типовыми для еланского комплекса Еланским и Елкинским интрузивами, сопровождаемыми сульфидно-медно-никелевыми рудами. Установлено, что по составу апопироксенитовые породы, располагающиеся в северо-восточной части Троицкого массива, некомплементарны ортопироксенитам еланского типа и предположительно отнесены к образованиям более раннего мамонского ультрамафит-мафитового мамонского комплекса.

Ключевые слова: еланский комплекс, Троицкий массив, минералогия, петрография, петрогеохимические признаки, аналогии.

Abstract: troicky massif of Hopersky megablock shows considerable analogy with typical for elansky complex Elansky and Elkinsky plutons by mineralogically-petrographic and petrogeochemistrycal indications, which are accompanied with sulphide-copper-nickel ores. The fact that the apopyroxenites, located on north-east of massif are uncomplemented to elansky-type orthopyroxenites is established and they are attributed to formation of earlier mamonsky ultramafic-mafic complex.

Key words: elansky complex, Troicky massif, mineralogy, petrography, petrogeochemistrycal indications, analogy.

В последние годы в условиях резко возросшего в мире спроса и многократного увеличения цен на цветные (Ni, Cu, Co) и благородные (платиноиды, золото) металлы, в целях обеспечения устойчивого экономического развития Центрального региона России, важнейшее значение приобретают разведанные в пределах докембрийского фундамента Хоперского мегаблока месторождения и рудопроявления еланского типа сульфидных платиноидномедно-никелевых руд. К числу таких проявлений относится и Троицкое.

Троицкий массив локализован в северо-восточной части Калач-Эртильской тектонической зоны и имеет сходные с большинством интрузивов еланского комплекса морфологические особенности (рис. 1). Массив приурочен к зоне реактивизированного раннепротерозойского рифта [1, 2], залегает среди метаморфических образований воронцовской серии раннего протерозоя (как и все массивы еланского комплекса), имеет полукольцевое строение, представляя собой двухчленное трубообразное субвертикальное тело и сложен тремя ассоциациями пород: апопироксенитовыми амфиболизированными породами, локализующимися в виде отдельного штока на северном фланге массива, и характерной для всего еланского комплекса норит-диоритовой ассоциацией. При этом нориты образуют основную долю пород интрузии, а диориты слагают ее центральную часть.

Породы норит-диоритовой ассоциации Троицкого массива обладают минералого-петрографическими (см. далее табл. 1) и петрогеохимическими свойствами, характерными для аналогичных пород массивов еланского комплекса. Норитовую группу пород слагают: биотит-кварцсодержащие и кварц-биотитовые габброофитовой структуры лейко-, мезо- и меланократовые разновидности с различным количественным соотношением породообразующих минералов: ортопироксен (Орх) от 30-35-50-75 %, плагиоклаз (Pl) 12-37-55-62 % \pm оливин (Ol), биотит (Bt) 5-18 %, кварц (Q) 0,2-5 и КПШ 4–8 %; содержание акцессорных и рудных минералов в среднем до 10-20 %. К породам основной интрузивной фазы относятся также амфи-

[©] Бойко П. С., 2008

Структурно-вещественные признаки принадлежности троицкого массива к Еланскому комплексу...

Рис 1. Положение Троицкого и Елкинского массивов в структуре ВКМ: а – схема структурно-формационного районирования ВКМ [2]:1 - мегаблок КМА, 2 - Лосевская шовная зона, 3 - Хоперский мегаблок, 4 - Волынско-Двинский плутонический пояс, 5 – Ольховско-Шукавская грабенсинклиналь; б – схема размещения интрузий еланского комплекса в Центральной части Тамбовско-Волгоградской зоны Хоперского мегаблока ВКМ [2]: 1 – кольцевые интрузии и «рои» даек сиенитов и сиенит-порфиров артюшкинского комплекса. 2 – нормальные и субшелочные гранитоиды бобровского комплекса, 3 – норит-диоритовые субвулканические тела еланского комплекса, 4 - мафит-ультрамафитовые интрузии мамонского комплекса, 5 - песчаниково-сланцевые отложения воронцовской серии, 6 – западная и восточная границы Тамбовско-Волгоградской зоны в пределах Елань-Эртильского рудного района, 7 – Новохоперская зона глубинных разломов, контролирующая проявления девонского траппового магматизма, 8 – разновозрастные разрывные нарушения более высоких порядков, 9 – сульфидные медно-никелевые месторождения (1 – Еланское, 2 – Елкинское) и рудопроявления (3 – Троицкое) еланского типа; в – схематическая геологическая карта Троицкого массива [3]: 1 – апопироксенитовые породы, 2 – нориты, амфиболизированные нориты, роговообманковые габбро, 3 – диориты, 4 – тектонические нарушения; в – геологическая карта Елкинского месторождения (по [4]): 1 – нориты мелкозернистые мелано-мезократовые, 2 – нориты среднезернистые лейкократовые и полевошпатизированные, 3 – нориты амфиболизированные с сульфидной вкрапленностью, 4 – диориты, 5 – дайки норит-порфиритов, 6 – дайки диоритов и диоритовых порфиритов, 7 – рудные тела, 8 - тектонические нарушения, сульфидная вкрапленность, 9 - скважины, 10 - линия геологического разреза

болизированные нориты. Их количественно-минеральный состав: Pl (Ап 35-40) 35–55 %, Орх 15–35 %, замещенный тальк-тремолитовым мелкочешуйчатым агрегатом 5–40 %, Bt 8–12 % и Q от 3–5 до 8–10 % ± тальк (Tlc) до 3 %. Дайковые породы представлены биотитсодержащими и биотитовыми норит-порфиритами, роговообманковым габбро, а также пироксеновыми диоритовыми порфиритами (гиперстеновыми порфиритами) [4]; диориты слагают центральную часть массива (до 40 % площади) и представлены роговообманково-биотитовыми, кварц-калишпатсодержащими разновидностями с призматически-зернистой и гипидиоморфной структурами. Их количественный минеральный состав: Pl 45–75 %, роговая обманка (Rog) 12–25 %, Вt 8–20 %, Q 5–20 %, КПШ от 3 до 15 %, рудных и акцессорных – до 7 %.

В петрохимическом отношении (см. далее табл. 2) породы характеризуются высоким содержанием SiO₂ (52.22–58.28 %) и MgO (9.49–18.5 %), CaO (2.58–5.5 %), K₂O и Na₂O (1.1–2.35 %), повышенными количествами Cr₂O₃ (0.14–0.25 %), что характерно для еланского типа. Близость химического состава неизмененных и амфиболизированных норитов свидетельствует об их происхождении из единого магматического очага и что вторичные изменения носят изохимический характер.

По химическому составу породы Троицкого массива характеризуются принадлежностью к нормальному ряду (см. далее рис. 2).

Таблица1 *вим*

Сравнительная характеристика породообразующих минералов пород Еланского, Ёлкинского и Троицкого массивов ВКМ	Содержание и свойства	Троицкий	Пойкилитовые включения Ol и Opx в Rog в апопироксенитах; включения в Opx, фенокристаллы, единичные округлые зерна в норитах	Гиперстен в виде пойкилитовых включений и таблитчатых кристаллов; замещены Tlc-Trem агрегатом.	Не встречен	Позднемагматическая слабо коричневая Rog в норитах; призма- тические зерна темно-зеленой Rog в амфиболизированных норитах. Призматические и таблитчатые кристаллы Trem, мелкочешуйчатые Tlc-Trem- Bt агрегаты по Opx, Rog.	Умеренно магнезиально-железистый Bt в интеркумулусной ассоциации в норитах и диоритах; в ассоциации дайковых пород в виде тонкочешуйчатого зеленовато-бурого агрегата в ассоциации с флогопитом, Tlc и Act-Trem замещает Opx, а так же входит в состав основной Bt-Q-ПШ массы.	Удлиненно-призматический андезин в измененных норитах; таблитчатые, призматические и ксеноморфные кристаллы в роговообманковых габбро.	Ортоклаз в дайковых норит-порфиритах и диоритах.	Ксеноморфный, развит спорадически, но присутствует повсеместно; оплавлен, с бухточками разъедания в дайках.
		Еланский, Ёлкинский	Повышенной железистости (Fa ₁₅₋₂₅), редкие фенокристалы и пойкилитовые выделения в Орх	Маложелезистый гиперстен, зерна и призматические фенокристаллы в интрузивных норитах и диоритах; бронзит – среди дайковых разновидностей пород	Редко встречается в виде единичных зерен диопсида иногда в срастании с Орх	Зеленая и зеленовато-бурая Rog в роговообманковых габбро; бесцветная разновидность – в амфиболизированных норитах; маложелезистая Rog – основной фемический минерал диоритов. Ограниченное развитие Act+Trem в виде волокнистых агрегатов (образуют псевдоморфозы по Rog и Oprx) в амфиболизированных разностях норитов.	Высоко магнезиальный Bt (иногда низкоглиноземистый флогопит), красновато-коричневый, пластинчатые зерна длиной до 3мм, в виде листовтого агрегата вокруг Орх, в норитах; чешуйчатый коричневаго-бурый в диоритах; фенокристаллы и часть общей мелкокристаллической массы среди дайковых пород.	Таблитчатые зерна зонального андезина, более поздние генерации имеют удлиненно-прзматическое строение в норитах и диоритах; фенокристаллы андезин-лабрадора (An ₃₂₆₃), входит в состав тонкозернистого агрегата основной массы среди дайковых образований	Ортоклаз и ортоклаз-микропертит в ассоциации со слюдами и Q, встречается в дайковых разностях пород.	Голубовато-белые, матово-белые, иногда гелеподобные разности в зонах трещиноватости.
		минералы	0	Opx	Cpx	Amf	Bt	Id	KITILI	Ø

Структурно-вещественные признаки принадлежности троицкого массива к Еланскому комплексу...

2	Типы пород										
Элементы	1 (42)*	2 (112)	3 (87)	4 (16)	5 (6)	6 (12)	7 (4)	8 (6)	9 (3)		
SiO ₂	52,890	55,860	58,680	63,490	57,247	55,800	56,880	52,000	48,920		
TiO ₂	0,680	0,670	0,760	0,650	0,420	0,370	0,500	0,450	0,800		
Al ₂ O ₃	9,900	11,810	13,730	15,520	13,760	11,750	13,170	11,880	5,500		
Cr ₂ O ₃	0,270	0,210	0,170	0,010	0,152	0,160	-	0,090	0,300		
Fe ₂ O ₃	3,580	2,650	2,130	1,530	5,970	6,560	5,840	7,710	9,010		
FeO	6,750	6,030	5,030	3,420	1,680	2,050	2,330	1,410	5,300		
MnO	0,070	0,060	0,060	0,060	0,177	0,170	0,050	0,160	0,050		
MgO	17,380	12,940	8,450	4,690	9,807	11,520	7,580	12,900	18,200		
CaO	5,550	5,820	5,800	4,320	4,873	4,900	4,720	6,390	8,600		
Na ₂ O	1,590	2,210	2,790	3,530	1,730	2,100	2,210	2,080	1,000		
K ₂ O	0,960	1,500	2,140	2,560	1,403	1,330	2,460	1,070	0,800		
P ₂ O ₅	0,220	0,230	0,260	0,220	0,185	0,250	0,130	0,250	0,450		
Ni	0,180	0,041	0,031	0,020	0,023	0,040	-	0,008	0,129		
Со	0,006	0,006	0,003	0,002	0,006	0,010	-	0,002	0,016		
Cu	0,030	0,021	0,021	0,033	0,005	0,007	-	0,001	0,040		
Петрохимические коэффициенты											
al'	0,357	0,546	0,880	1,610	0,788	0,584	0,836	0,540	0,169		
Na ₂ O/K ₂ O	1,656	1,473	1,304	1,379	1,233	1,579	0,898	1,944	1,250		
K _{fe}	37,279	40,148	45,868	51,349	43,823	42,772	51,873	41,417	44,017		

Химические составы пород еланского комплекса

Таблица2

Примечание: 1 – меланориты, 2 – мезонориты, 3 – лейконориты Еланского и Елкинского месторождений; 4 – биотит-роговообманковые диориты Еланского месторождения; 5 – нориты, 6 – амфиболизированные нориты, 7 – диориты, 8 – апопироксенитовые пород Троицкого массива; 9 – ортопироксениты Центрального рудопроявлении; * в скобках – количество анализов, использованных для расчета средних составов; петрохимические коэффициенты по [6]:

коэффициент глиноземистости:

$$al' = \frac{Al_2O_3}{FeO + Fe_2O_3 + MgO};$$

коэффициент железистости:

$$K_{fe} = \frac{Fe^{2^+} + Fe^{3^+}}{Fe^{2^+} + Fe^{3^+} + Mg}$$
ат. кол-ва.

Рис. 2. Диаграмма кремнезем-щелочность для пород Троицкого массива: 1 – тальк-амфибол апопиро-ксенитовые породы; 2 – нориты; 3 – диориты

Рис. 3. Диаграмма щелочность – глиноземистость для пород Троицкого массива с выделением полей: I – низкоглиноземистых пород калиевой серии, II – низкоглиноземистых порол калиево-натровой серии, III – низкоглиноземистых пород натровой серии, IV – умеренно-глиноземистых пород калиевой серии, V – умеренно-глиноземистых пород калиево-натровой серии, VI – умеренно-глиноземистых пород натровой серии, VII – высокоглиноземистых пород калиевой серии, VII – высокоглиноземистых пород калиево-натровой серии, IX – высокоглиноземистых пород натровой серии. Области на диаграмме: 1 – тальк-амфиболовые апопироксенитовые породы, 2 – нориты; 3 – амфиболизированные нориты; 4 – диориты; 5 – область амфиболизации

На диаграмме щелочности–глиноземистости (рис. 3) породы массива размещаются в умеренноглиноземистой зоне и принадлежат к К-Na серии. Присутствие биотита, КПШ, кварца, а также петрогеохимические особенности пород (повышенные кремнеземистость при аномально высокой магнезиальности, умеренная глиноземистость) свидетельствуют о принадлежности их к контаминированному типу интузий еланского комплекса ВКМ [1, 2].

Скважиной 8781 вскрыты апопироксенитовые породы. Руды представлены вкрапленными и гнездовыми разновидностями и развиты спорадически; интенсивно графитизированы. Сложены они, в основном, пирротином с пламеневидными вростками пентландита, отдельными зернами пентландита, магнетитом и редкими выделениями халькопирита.

Следует учитывать, что вопрос о принадлежности апопироксенитовой ассоциации к еланскому комплексу является дискуссионным. Сравнительный анализ их с ортопироксенитами Центрального рудопроявления, относимыми к наиболее магнезиальным разностям ранней фазы еланского никельплатиноносного комплекса [2, 5], выявил существенные отличия в структурах, составе и морфологии породообразующих минералов, а также в петрогеохимических особенностях. На диаграммах кремнезем – магнезиальность, кремнезем – щелочи, щелочность – глиноземистость они образуют отдельные поля (рис. 4, а, б, в), что может свидетельствовать о вероятной принадлежности апопироксенитовых пород Троицкого массива к образованной до формирования массива ранней фазе мамонского комплекса.

В пределах Троицкого массива развита рудная минерализация двух типов, концентрирующихся в пределах двух, вероятно, обособленных зон [3]: а) западной (приконтактовой), сложенной мланократовыми роговообманковыми габбро с максимальной концентрацией рудных минералов 5–15 % и б) восточной с метасоматически измененными (главным образом, амфиболитизированными) норитами с содержанием рудных выделений до 4–6 %.

Для Троицкого массива, как и для Еланского месторождения, характерна пространственно-времен-

ная сопряженность и взаимопереходы типов руд, что подтверждает представление [1, 2, 3] об определяющей роли в размещении оруденения еланского типа структурно-петрологических факторов.

В пределах Троицкого интрузива развиты тонко вкрапленные (пылевидные), рассеянно вкрапленные и гнездовые руды. Они характеризуются однотипным минеральным составом: пирротин (80– 85 %), пентландит (0.5–2 %), халькопирит (2–5 %), ильменит (1.5–4.5 %), графит (от 1–2 до 25–30 %), одиночные зерна сульфоарсенидов, иногда молибденит и характеризуются повышенными значениями величин отношений Ni/Cu, Ni/Co, присущим рудам еланского типа месторождений. Для них характерен высокосернистый и высокожелезистый состав сульфидной фракции. В рудах преобладает пирротин. Отношение пирротина к пентландиту в рудах Троицкого массива составляет 4 : 1, а пентландита к халькопириту 5 : 1.

В целом руды норитов Троицкого проявления по минеральному составу, текстурно-структурным особенностям и условиям залегания близки к рудам месторождений и проявлений еланского комплекса, что позволяет отнести массив к числу перспективных.

Работа выполнена при финансовой поддержке РФФИ, (проект № = 08-05-0093-р-офи).

Рис. 4. Сравнительные диаграммы кремнезем-щелочность (а), кремнезем-магнезиальность (б) и щелочность-глиноземистость (в) для пироксенитов Центрального рудопроявления (1) и апопироксенитовых пород Троицкого массива (2)

ЛИТЕРАТУРА

1. *Чернышов Н. М.* Еланский тип сульфидных медноникелевых месторождений и геолого-генетическая модель их формирования (Центральная Россия) / Н. М. Чернышов // Геология рудных месторождений. – 1995. – Т. 37. – № 3. – С. 220–236.

2. Чернышов Н. М. Платиноносные формации Курско-Воронежского региона (Центральная Россия) / Н. М. Чернышов. – Воронеж : Изд-во Воронеж. гос. ун-та, 2004. – 448 с.

3. Чернышова М. Н. Особенности состава сульфидного медно-никелевого оруденения Центрального рудопроявления в связи с проблемой формационно-генетической принадлежности рудовмещающих пироксенитов /

Бойко Павел Сергеевич – аспирант кафедры минералогии и петрологии, Воронежский государственный университет. Тел.: (4732) 208-779, e-mail: plekhanov.lsk@mail.ru Н. М. Чернышов // Вестн. Воронеж. гос. ун-та. Сер. геол. – 1999. – № 7. – С. 120–127.

4. Чернышова М. Н. Дайки сульфидных платиноидномедно-никелевых месторождений Воронежского кристаллического массива (Центральная Россия) / Н. М. Чернышов. – Воронеж : Изд-во Воронеж. гос. ун-та, 2005. – 365 с.

5. *Кривцов И. И.* Локальный прогноз сульфидного никелевого оруденения в пределах юго-восточной части ВКМ / И. И. Кривцов, Н. М. Чернышов, С. П. Молотков, М. Н. Чернышова [и др.] // Отчет по теме Б.11.4/8(101): в 2 т. Фонды ГГП «Воронежгеология». – Воронеж, 1991. – 480 с.

6. *Ефремова С. В.* Петрохимические методы исследования горных пород / С. В. Ефремова, К. Г. Стафеев. – М. : Недра, 1985. – 510 с.

Boiko Pavel Sergeevich – Post Graduate Student, Chair of Mineralogy and Petrology, Voronezh State University. Tel.: (4732) 208-779, e-mail: plekhanov. lsk@mail.ru