ПЕТРОХИМИЧЕСКИЕ ЧЕРТЫ СХОДСТВА БОЛЬШЕМАРТЫНОВСКОГО МАССИВА И НИЖНЕМАМОНСКОГО МАСТОРОЖДЕНИЯ (ВКМ)

Л. В. Гордейченко

Воронежский государственный университет

Поступила в редакцию 15 октября 2008 г.

Аннотация: впервые приведена характеристика трех выделенных, различных по составу породных ассоциаций, слагающих Большемартыновский массив по комплексу минералого-петрографических и, прежде всего петрохимическим параметров, принадлежащих к мамонскому, ширяевскому и каменскому типу интрузий дунит-перидотит-габброноритовой формации (мамонский комплекс). Эти данные подтверждаются также комплексом специальных диаграмм в системе SiO, / MgO и др.

Ключевые слова: мамонский, ширяевский, каменский комплексы, Большемартыновский массив, породные ассоциации, ультрамафиты, мафиты, петрохимические параметры.

Abstract: at the first time the characteristic in complex of mineralogy-petrographical and firstly petrochemistrycal parameters of three different in composition rock associations making Bolshemartinovsky massif appertaining to mamonsky, shiryaevsky and kamensky intrusion types of dunit-peridotite-gabbronorite formation (mamonsky complex) is given. These data are also improved by complex of special diagrams in system SiO, / MgO etc.

Key words: mamonsky, shiryaevsky, kamensky complexes, Bolshemartinovsky massif, rock associations, ultramafity, mafity, petrochemistrycal parameters.

Все известные сульфидные платиноидно-медноникелевые месторождения и многочисленные разномасштабные рудопроявления (Воронежского кристаллического массива) пространственно и генетически связаны с двумя никель-платиноидными комплексами: мамонским дунит-перидотит-габброноритовым зон рассеянного спрединга (2100–2080 ± 10 млн лет) и еланским ортопироксенит-норит-диоритовым реактивизированных позднеархейских структур (2065–2050 ± 14 млн лет)[1]. Пространственно они целиком располагаются в пределах Хоперской структурно-формационной зоны. Характерной особенностью этой структуры является исключительно широкое (более 300 тел) развитие ультрамафит-мафитовых и существенно мафитовых интрузивов, среди которых выделяются четыре структурно-вещественных типа, различных по составу, масштабам, степени продуктивности и дифференцированности на цветные и благородные металлы [1, 2, 3, 4]:

 ранние существенно ультрамафитовые в различной мере дифференцированные, промышленно рудоносные (мамонский тип, расположенный в западной части СФК); ультрамафит-мафитовые умеренно-магнезиальные с титанистой роговой обманкой (ширяевский тип, слагающий центральную часть структуры);

3) ультрамафит-мафитовые камерно-дифференцированные (елань-вязовский тип, образующий самостоятельную восточную зону СФК);

 слабодифференцированные, безрудные габброноритовые, габбровые интрузивы завершающей фазы становления мамонского комплекса (каменский тип, развитый во всех перечисленных выше зонах Хоперского мегаблока).

В общей структурно-вещественной систематике ультрамафит-мафитовых интрузивов мамонского комплекса особое место занимает Большемартыновский массив. Этот плутон, общей площадью 40,5 км², расположен в западной части Хоперского мегаблока, вблизи Лосевской шовной зоны, где, помимо мамонского, широко проявлены другие интрузивы (рис. 1). Как показали исследования, такое структурное положение плутона обусловлено наличием в нем трех различных по возрасту и составу породных ассоциаций:

 серпентинизированные дуниты, апоперидотитовые серпентиниты, оливиновые пироксениты, горнблендиты и лерцолиты, слагающие небольшие

[©] Гордейченко Л. В., 2008

Рис. 1. Схематическая геологическая карта и разрез Большемартыновского интрузива и его положение в структуре Воронежского кристаллического массива (по Фролову С. М., Багдасаровой В. В., [1]): 1–4 – породные ассоциации мамонского (1), ширяевского (2–3) и каменского (4) типов; 5–6 – породы воронцовской серии (5) и осадочного чехла (6); 7 – тектонические нарушения; 8 – скважины и их номера

по масштабам автономные ультраосновные тела ранней фазы (мамонский тип);

 титанистороговообманковые перидотиты, пироксениты и габбро ширяевского типа [5];

 – габбронориты, габбро, габбродиориты и диориты завершающей интрузивной фазы (каменский тип).

Породы ранней фазы (мамонский тип) характеризуются: 1) бесполевошпатовым ультрамафитовым составом (от дунитов до пироксенитов), преимущественным развитием серпентина, актинолита, тремолита и талька; 2) повышенной магнезиальностью (MgO – 37–39,86 вес. %), пониженным содержанием кальция (CaO – 1–3,15 вес. %), алюминия (Al₂O₃ – 1,73–2,01 вес. %) и низкой щелочностью (0,01–0,12 вес. %). Анализ петрохимических особенностей по основным петрогенным компонентам (табл. 1) и сопоставление химических анализов Большемартыновского массива с эталонным полнодифференцированным Нижнемамонским никель-платиноносным интрузивом [6] выявил значительные черты сходства, что проявляется в совпадении полей составов одноименных пород (рис. 2).

Плагиоклазовые пироксениты (вебстериты), оливин – роговообманковые пироксениты, отличаются более высоким содержанием кремнезема (SiO₂ – 43,83–47,22 вес. %), кальция (CaO – 7,15– 12,01 вес. %) титана (TiO₂ – 1,21–3,19 вес. %) и пониженным содержанием магния (Mg0 – 18,87– 26 вес. %). Щелочность этих пород повышается относительно пород первой группы (Na₂0 – 0,2– Петрохимические черты сходства Большемартыновского массива и Нижнемамонского масторождения (ВКМ)

т	0	б	-	**	тт	~	1
1	a	υ	Л	и	ц	a	1

№ п/п	SiO ₂	TiO ₂	Al ₂ O ₃	Fe ₂ O ₃	FeO	MnO	MgO	CaO	Na ₂ O	K ₂ O	P ₂ O ₅		
	Большемартыновский массив												
1	39,07	0,61	1,76	11,35	6,56	0,17	38,65	1,06	0,12	0,12	0,21		
2	40,38	0,68	1,73	10,00	7,52	0,26	37,44	1,61	0,12	0,06	0,21		
3	42,04	0,71	1,40	6,63	9,70	0,26	37,24	1,61	0,12	0,09	0,21		
4	39,76	0,60	2,01	9,28	7,80	0,19	38,41	1,33	0,12	0,12	0,19		
5	39,87	0,73	1,48	10,67	7,45	0,25	38,55	0,80	0,02	0,06	0,13		
6	40,84	0,58	2,06	8,01	7,32	0,26	39,86	0,82	0,01	0,00	0,25		
7	39,67	0,18	1,99	9,29	7,09	0,24	37,47	3,57	0,02	0,00	0,13		
Нижнемамонское месторождение													
8	43,70	0,00	3,68	10,35	5,64	0,19	34,95	0,60	0,23	0,63	0,03		
9	42,78	0,55	4,11	7,15	8,05	0,21	33,03	2,48	0,51	0,56	0,29		
10	41,77	0,25	1,71	8,74	7,63	0,21	36,68	2,86	0,00	0,00	0,15		
11	40,76	0,36	0,56	9,80	5,98	0,39	38,27	3,57	0,06	0,06	0,19		
12	44,86	0,23	1,11	6,27	6,43	0,13	35,35	5,38	0,01	0,13	0,11		
13	44,04	0,26	0,84	6,89	6,62	0,08	37,75	3,25	0,01	0,13	0,14		
14	40,84	0,22	0,26	9,97	6,40	0,11	40,64	1,39	0,01	0,00	0,01		
15	41,60	0,16	0,41	9,43	8,11	0,12	36,74	2,74	0,09	0,41	0,18		
16	39,96	0,33	0,27	9,82	5,74	0,27	42,78	0,56	0,01	0,12	0,14		
17	43,97	0,30	1,91	0,08	7,19	0,26	41,65	4,50	0,01	0,01	0,16		
18	39,45	0,30	1,49	9,51	7,14	0,26	40,18	1,49	0,01	0,00	0,17		
19	42,77	0,28	1,09	5,76	6,21	0,16	38,70	4,31	0,00	0,00	0,49		

Химический состав апогарцбургитовых серпентинитов[6]

Примечание: здесь и далее все анализы приведены к 100 %

Рис. 2. Положение на диаграмме SiO₂–MgO полей составов серпентинитов Большемартыновского плутона (1) и Нижнемамонского сульфидно-медно-никелевого месторождения (2)

1,5 вес. %; К₂О – 0,05–0,61 вес. %) (табл. 2.). По содержанию MgO они проявляют некоторые черты сходства с одноименными породами «ширяевского типа» интрузией (рис. 3).

Наибольший объем Большемартыновского массива составляют мафиты, преимущественно мезократовые габбронориты и их амфиболсодержащие разновидности с коричневой роговой обманкой, кроме того, присутствуют амфиболизированные разновидности, в которых развиты вторичные грубоволокнистые амфиболы, замещающие пироксены. Габбронориты Большемартыновского массива характеризуются присущими для этого семейства пород содержаниями кремнезема (SiO₂ – 49–54,2 вес. %), титана (TiO₂ – 0,46–1,29 вес. %), умеренной глиноземистостью (Al₂O₃ – 12,17–

Л. В. Гордейченко

Таблица2

№ п/п	SiO ₂	TiO ₂	Al ₂ O ₃	Fe ₂ O ₃	FeO	MnO	MgO	CaO	Na ₂ O	K ₂ O	P_2O_5	
Большемартыновский массив												
1	46,53	1,28	2,75	1,74	16,23	0,14	18,87	11,32	0,20	0,61	0,31	
2	43,83	1,32	1,39	2,57	19,55	0,25	22,70	7,15	0,47	0,24	0,55	
3	45,18	0,69	2,49	6,26	8,60	0,18	26,39	9,63	0,37	0,11	0,10	
4	43,59	0,98	1,33	6,59	11,44	0,16	24,03	11,44	0,21	0,05	0,17	
5	45,25	0,73	2,61	4,86	9,15	0,12	24,36	12,01	0,42	0,11	0,19	
6	47,22	1,03	4,35	3,40	10,22	0,07	20,27	11,89	1,03	0,36	0,16	
			·	Нижне	мамонское	е месторо	эждение					
7	49,78	0,29	3,86	3,46	7,63	0,10	21,21	12,87	0,13	0,55	0,13	
8	48,69	0,31	4,40	3,41	7,66	0,08	21,06	13,36	0,24	0,68	0,11	
9	49,74	0,52	1,84	5,84	3,45	0,07	22,38	15,68	0,34	0,00	0,13	
10	49,95	0,37	2,47	6,40	5,19	0,22	20,39	14,09	0,64	0,23	0,05	
11	47,74	0,53	7,78	9,10	6,74	0,11	22,41	3,29	1,12	0,89	0,30	
12	49,52	0,74	5,87	8,99	4,54	0,07	22,20	6,18	0,73	0,70	0,47	
13	50,86	0,26	0,85	7,86	5,96	0,17	29,18	4,23	0,01	0,53	0,09	
14	50,25	0,50	13,32	3,73	5,26	0,45	18,86	4,11	1,53	1,71	0,28	
15	51,38	0,58	4,57	9,24	5,87	0,08	21,65	4,99	0,78	0,61	0,23	
16	48,68	0,51	13,64	7,16	8,18	0,08	10,31	8,57	1,56	1,13	0,17	
17	47,26	0,71	14,32	4,37	8,24	0,06	14,08	8,40	1,58	0,75	0,21	
18	48,22	0,29	4,50	5,48	6,15	0,11	22,74	11,65	0,36	0,31	0,17	
19	47,14	0,44	4,17	7,59	5,07	0,11	22,41	12,17	0,62	0,21	0,06	
20	50,85	0,31	2,19	2,92	11,36	0,22	24,04	7,43	0,42	0,21	0,05	
21	49,96	0,51	2,42	7,76	4,80	0,06	27,80	5,63	0,52	0,27	0,26	

Химический состав оливинсодержащих вебстеритов [6]

18,66 вес. %) и вместе с тем достаточно высокими содержаниями магния (MgO – 7,10–10,33 вес. %), повышенным содержанием кальция (CaO – 8,33–10,72 вес. %) и щелочей при преобладании натрия (Na₂0 – 2,21–3,21 > K₂0 0,01–1,8 вес. %, табл. 3). Содержание рудообразующих элементов понижено относительно ультраосновных пород (Ni – 0,008–0,0024 вес. %; Co – 0,05–0,0008 вес. %) [6, 7].

Важно особо подчеркнуть, что по петрохимическим параметрам и, прежде всего, по соотношению SiO₂/MgO мафиты Большемартыновского плутона характеризуются, в отличие от одноименных пород Нижнемамонского месторождения (рис. 4), несколько пониженным содержанием MgO и SiO₂, что отражает, вероятно, боле высокую степень метаморфизма габброидов Большемартыновского массива и в частности развитие амфиболов (роговой обманки, тремолита, актинолита).

Таким образом, анализ результатов минералогопетрографических и петрохимических исследований позволяет сделать следующие выводы:

 внутренняя структура Большемартыновского массива определяется наличием в нем трех групп породных ассоциаций: а) ультрамафитов (серпентинизированные дуниты, апоперидотитовые серпентиниты); б) титанисто-роговообманковосодер-

Таблица3

						*		-			
№ п/п	SiO ₂	TiO ₂	Al ₂ O ₃	Fe ₂ O ₃	FeO	MnO	MgO	CaO	Na ₂ O	K ₂ O	P_2O_5
			-	Больше	гмартын	овский ма	іссив				
1	51,90	0,76	14,89	5,04	6,73	0,11	8,21	8,33	3,21	0,60	0,20
2	50,79	0,47	18,77	1,08	6,64	0,02	8,16	10,72	2,36	0,82	0,18
3	52,64	1,24	16,62	0,76	8,87	0,05	7,41	9,09	2,75	0,31	0,25
4	52,90	1,31	17,99	0,26	7,73	0,03	7,10	9,14	2,85	0,41	0,28
5	51,95	1,19	17,89	1,49	8,85	0.03	5,81	9.03	2,97	0.41	0.39
6	50,67	1,04	14,86	1,87	9,01	0,02	9,03	10,31	2,79	0,20	0,18
7	51,75	0,88	13,82	2,43	8,28	0,02	10,26	9,47	2,25	0,51	0,33
8	51,37	0,99	13,74	1,15	9,39	0,03	9,76	10,62	2,21	0,50	0,23
9	50,68	0,99	14,28	2,00	7,67	0,05	10,33	10,41	2,26	1,08	0,26
10	52,46	0,99	14,43	1,13	8,89	0,04	8,52	9,31	2,83	1,16	0,23
11	51,63	0,88	14,06	1,84	8,54	0,05	9,49	9,75	2,42	1,11	0,23
12	52,63	0,75	12,17	5,43	5,84	0,07	9,02	9,37	3,02	1,41	0,27
13	53,33	1,13	13,43	2,53	8,44	0,04	7,80	8,52	2,71	1,80	0,27
14	52,44	1,04	15,44	1,54	8,52	0,06	7,53	9,30	2,63	1,26	0,25
15	51,68	1,08	13,75	2,15	9,40	0,03	8,95	9,47	2,46	0,70	0,32
16	51,86	1,04	13,55	2,24	9,39	0,04	8,68	9,53	2,37	1,01	0,27
17	52,25	0,98	13,34	1,82	9,30	0,03	9,24	9,67	2,40	0,65	0,32
18	51,66	1,08	14,53	1,76	9,64	0,05	7,61	9,87	2,86	0,61	0,33
19	54,11	1,08	15,07	1,63	8,09	0,02	6,45	9,24	2,66	1,43	0,22
20	51,04	1,10	15,09	2,07	8,58	0,02	8,13	10,63	2,41	0,65	0,27
21	52,00	0,72	12,30	6,36	5,36	0,06	8,32	10,99	2,83	0,81	0,25
22	51,62	1,11	15,23	1,67	8,69	0,03	8,18	10,21	2,42	0,61	0,23
23	51,15	0,90	16,29	2,55	7,65	0,03	7,82	9,92	2,51	0,85	0,34
24	50,70	0,85	14,33	6,78	5,26	0,07	9,04	9,45	2,62	0,60	0,27
25	50,34	1,11	14,75	2,66	9,02	0,02	8,36	10,68	2,32	0,40	0,34
26	49,82	0,91	15,91	3,28	8,11	0,04	8,36	10,44	2,41	0,43	0,29
27	49,56	1,25	14,58	2,71	9,80	0,03	8,45	10,39	2,41	0,40	0,41
28	51,49	1,12	14,02	2,88	8,73	0,02	8,60	9,97	2,41	0,40	0,36
29	52,07	1,17	15,97	1,67	8,65	0,02	5,48	8,77	5,08	0,60	0,52
30	50,74	1,08	14,88	3,26	8,08	0,02	9,08	10,07	2,29	0,28	0,22
31	51,65	1,11	15,57	2,50	8,24	0,02	8,00	9,57	2,67	0,30	0,36
32	50,26	0,85	13,29	5,24	7,68	0,08	8,81	10,67	2,62	0,20	0,27
33	49,53	1,11	14,50	3,02	9,86	0,04	8,80	10,24	2,21	0,35	0,34
34	50,04	1,12	15,60	3,43	8,53	0,05	7,91	10,35	2,27	0,39	0,33

Химический состав габброноритов [6]

Окончаниетабл. 3

№ п/п	SiO ₂	TiO ₂	Al ₂ O ₃	Fe ₂ O ₃	FeO	MnO	MgO	CaO	Na ₂ O	K ₂ O	P ₂ O ₅	
Нижнемамонское месторождение												
35	51,07	0,39	14,63	3,17	7,87	0,08	10,99	8,62	2,27	0,77	0,12	
36	52,52	0,34	17,96	3,94	4,75	0,13	9,93	7,15	2,52	0,72	0,03	
37	51,37	0,38	14,57	3,16	6,46	0,13	11,00	9,79	2,56	0,44	0,10	
38	51,74	0,33	15,67	2,64	6,29	0,04	11,18	8,86	2,55	0,61	0,09	
39	53,86	0,94	13,17	2,54	7,39	0,03	9,92	8,80	2,21	0,94	0,20	
40	55,13	1,01	13,61	2,39	8,30	0,03	6,91	8,91	2,40	0,84	0,48	
41	52,45	0,42	14,34	2,57	8,13	0,06	10,58	8,61	2,27	0,51	0,06	
42	54,20	0,44	12,10	3,44	6,49	0,04	9,12	10,64	2,59	0,76	0,12	
43	53,49	0,43	13,78	3,30	6,65	0,03	8,68	7,98	3,84	1,72	0,10	
44	54,27	0,43	14,92	4,59	5,04	0,06	8,18	7,98	2,65	1,74	0,13	
45	52,77	0,40	11,69	3,46	6,81	0,07	12,02	9,29	2,51	0,71	0,21	
46	54,23	0,41	15,27	2,48	6,29	0,11	8,95	9,38	2,10	0,63	0,11	
47	51,92	0,26	15,00	3,45	5,43	0,05	9,91	11,28	2,29	0,34	0,03	
48	52,34	0,42	13,92	4,81	6,11	0,07	9,10	10,13	2,31	0,59	0,15	

Рис. 4. Положение на диаграмме SiO₂ – MgO полей составов габброноритов Большемартыновского плутона (1) и одноименных пород Нижнемамонского сульфидно-медно-никелевого месторождения (2)

жащих ультрамафитов и мафитов (перидотиты, пироксениты, габбро); в) мафитов (габбронориты, габбро, габбродиориты, диориты);

 минералого-петрографический облик каждой из этих породных групп характеризуется специфическими минералого-петрографическими и петрохимическими особенностями, позволяющими оценить их принадлежность к трем типам интрузий: мамонскому, ширяевскому и каменскому;

3) ведущими признаками трех породных ассоциаций Большемартыновского массива, определяющими их приуроченность к различным группам, являются: а) бесполевошпатовый состав в различной степени серпентинизированных ультрамафитов, повышенная магнезиальность, пониженное содержание кальция, алюминия, низкая щелочность – мамонский тип; б) титанисто-роговообманковый парагенезис при повышенном содержании кремнезема, кальция, титана и особенно щелочей, что характерно для пород ширяевского типа интрузий; в) количественно преобладающие в составе минералого-петрографических, петрохимических и других особенностей мафиты Большемартыновского массива в полной мере соответствуют каменской группе интрузии, завершающей становление мамонского комплекса;

4) на диаграмме полей составов MgO – SiO₂ ультрамафиты Большемартыновского массива размещены в поле составов апоперидотитовых серпентинитов Нижнемамонского сульфидно-

Петрохимические черты сходства Большемартыновского массива и Нижнемамонского масторождения (ВКМ)

медно-никелевого месторождения, что является одним из ведущих признаков, свидетельствующим о потенциальной никеленосности этой породной ассоциации.

Работа выполнена при финансовой поддержке РФФИ (проект № = 08-05-0093–р-офи).

ЛИТЕРАТУРА

1. *Чернышов Н. М.* Платиноносные формации Курско-Воронежского региона : (Центральная Россия) / Н. М. Чернышов. – Воронеж : Изд-во Воронеж. гос. унта, 2004. – 448 с.

2. Чернышов Н. М. Сульфидные медно-никелевые месторождения юго-востока Воронежского кристаллического массива / Н. М. Чернышов. – Воронеж : Изд-во Воронеж. гос. ун-та, 1971. – 312 с.

3. Фролов С. М. Генетические типы базит-гипербазитовых интрузий мамонского комплекса ВКМ и их

Гордейченко Людмила Валентиновна – аспирант, кафедра минералогии и петрологии, Воронежский государственный университет. Тел.: (4732) 208-779, е-mail: gordeichenko l@mail.ru

взаимоотношение / С. М. Фролов // Вопросы геологии и металлогении докембрия Воронежского кристаллического массива. – Воронеж : Изд-во Воронеж. гос. ун-та, 1976. – С. 61–33.

4. Бочаров В. Л. Геология, геохимия и металлогения ультрамафит-мафитовых формаций Воронежского кристаллического массива : автореф. дис. ... д-ра геол.-минералог. наук / В. Л. Бочаров. – Киев, 1988. – 56 с.

5. *Хунг Ч. К.* Ширяевская дифференцированная интрузия среднепротерозойского никеленосного мамонского комплекса : автореф. дис. ... канд. геол.-минералог. наук / Ч. К. Хунг. – Воронеж, 1975. – 20 с.

6. *Чернышов Н. М.* Химические составы ультраосновных и основных пород докембрия Воронежского кристаллического массива / Н. М. Чернышов, В. Л. Бочаров. – Воронеж : Изд-во Воронеж. гос. ун-та, 1972. – 240 с.

7. Багдасарова В. В. Интрузивные мафитовые породы раннего докембрия ВКМ : автореф. дис. ... канд. геол.минералог. наук / В. В. Богдасарова. Киев, 1987. – 23 с.

Gordeichenko Lyudmila Valentinovna – Post-Graduate Student, Chair of Mineralogy and Petrology, Voronezh State University. Tel.: (4732) 208-779, e-mail: gordeichenko l@mail.ru