КОРА ВЫВЕТРИВАНИЯ НА МЕРГЕЛЬНО-МЕЛОВЫХ ПОРОДАХ ПОДДУБЕНСКОГО УЧАСТКА (БЕЛГОРОДСКАЯ ОБЛАСТЬ, ГУБКИНСКИЙ РАЙОН)

А. Г. Чигарев

Воронежский государственный универститет

С помощью макроскопических, микроскопических и прецизионных методов исследования изучены отложения сантонского яруса Поддубенского участка. Выделено 5 типов пород, было установлено, что снизу вверх по разрезу происходит увеличение кремнезема общего, в том числе аморфного, с одновременным выносом CaO, что свидетельствует о выветривании мергельно-меловых образований.

Ключевые слова: Белгородская область, силициты, мелоподобный мергель, мергель, трепеловидный мергель, мергель опоковидный.

Типы кор выветривания на мергельно-меловых породах рассмотрены в работах [1, 2], в которых описан их охристо-кремнисто-глинистый состав. Вместе с тем, в разрезах верхнего мела часто встречаются силициты, генезис которых трактуется неоднозначно. Одни авторы считают их осадочными, другие — остаточными в результате растворения карбонатной части мелов и мергелей. Поэтому установление происхождения силицитов, являющихся ценным неметаллическим сырьем, имеет не только теоретическое, но и практическое значение, поскольку позволяет прогнозировать морфологию тел, изменение их состава, а отсюда и технологических свойств по разрезу и площади.

Нами с использованием прецизионных исследований (электронный микроскоп Jeol 6380LW с системой количественного энергодисперсионного анализа «Inca»ВГУ, аналитик С. М. Пилюгин) рассматривается вещественный состав силицитов сантонских отложений для определения их генезиса на примере одного конкретного месторождения Поддубенского, расположенного в 30 км от г. Губкина Белгородской области. Здесь в разрезе сантона выделяются следующие типы пород (снизу вверх).

Мелоподобный мергель (от 2,0 до 3,3 м) серовато-белый, плотный с единичными точечными выделениями гидроокислов железа. Текстура породы неслоистая, структура пелитоморфнозернистая, тонкодисперсная. Основная масса сложена преимущественно пелитоморфнозернистыми агрегатом кальцита, редкими выделениями тонкодисперсного глинистого вещества и ещё реже глобу-

лярным опалом. Эти данные представлены на рис. 1, спектр 5, 7, 10. Кальцит присутствует также в виде единичных плохо сохранившихся органогенных остатков раковин фораминифер, тонких створок остракод. В основной массе породы имеются редкие таблитчатые и призматические зерна цеолита (рис. 1, спектр 8). Обломочный алевритовый материал присутствует в небольшом количестве (не более 1 %) и представлен обломками кварца (рис. 1, спектр 11), реже тонких пластинок мусковита (рис. 1, спектр 3, 4, 9) и зерен глауконита. По рентгено-структурным и химическим анализам содержание карбонатов составляет 80–85 %, кварца — 10–15 %, цеолитов и глин — до 5 %.

Мергель (от 1,0 до 4,4 м) — это светло-серая, массивная порода с неровным изломом, на ощупь глинистая. Текстура неслоистая. Основная масса породы сложена тонкосросшимся агрегатом пелитоморфно-зернистого кальцита, тонкодисперсномикрочешуйчатой глиной и глобулярным опалом. Эти данные прослеживаются на рис. 2, спектр 1, 5, 6. Кальцит развит также по плохо сохранившимся раковинам фораминифер (до 0,3 мм) и обломкам остракод (до 0,3 мм). В разрезе участка преобладает мергель алевритистый, в котором обломочный материал распределен неравномерно, почти отсутствуя на одних участках и достигая 25-40 % в других, составляя в среднем в породе 20-25 %. Обломочный материал представлен глауконитом около 8-10 %, слюдистыми пластинками 3-5 % (рис. 2, спектр 2, 3, 7, 8), корродированными зернами кварца (рис. 2, спектр 4), реже полевых шпатов (рис. 2, спектр 9) и единичными обломками желто-бурого изотропного фосфата (до 0,2 мм). По рентгеноструктурным и химическим анализам содержание

[©] Чигарев А. Г., 2008

А. Г. Чигарев

Рис. 1. Электронно-микроскопический снимок обр. п30 гл 4.0. Ув. 450 х. *Спектры:* 1, 2 — зерно рутила; 3, 4 — чешуйка гидрослюды; 5, 7, 10 — матрикс породы; 6 — перекристаллизованный кальцит; 8 — зерно цеолита; 9 — гидрослюда; 11 — зерно кварца. Количественный анализ спектров представлен в табл. 1

карбонатов составляет 50–70 %, кварца 15–40 %, в том числе халцедона до 20 %, смектитов, слюды и цеолита — от 0 до 7 %.

Трепеловидный мергель (от 0,5 до 14,9 м) — это серая, довольно плотная порода, часто трещиноватая с тонкими налетами гидроокислов железа по плоскостям трещин. Микроскопически выделены алевритистые или известковистые разности трепеловидного мергеля, которые, как правило, цеолитсодержащие. Текстура породы неслоистая, структура пелитоморфно-зернистая, реликтовоорганогенная. Основная масса породы в преобладающем количестве сложена из пелитоморфнозернистого кальцита, эти данные показаны на рис. 3, спектр 1, 6, 8. Обломочный алевритовый материал (0,1-0,08 мм) составляет 5-10 % и представлен корродированными обломками кварца (рис. 3, спектр 3), реже полевых шпатов и мусковита (рис. 3, спектр 2, 4, 5, 7). Глауконит составляет 1-2 %, образует микроагрегатные скопления размером 0,03-0,15 мм. Кроме того, порода содержит шламовый материал и плохо сохранившиеся органогенные остатки, сложенные кальцитом (фораминиферы, остракоды).

Толща трепеловидного мергеля по своему строению неоднородна. Неоднородность обусловлена неравномерностью гипергенного процесса, в результате которого мергель постепенно переходит в мергель трепеловидный, а последний в опоковидный мергель и известковистую опоку. В связи с этим в верхней и нижней частях толщи встречаются как линзы малоизмененных пород (мергеля слаботрепеловидного), не увязывающихся между собой по простиранию и падению, мощностью от 0,8 до 3,0 м, так и прослои известковистых опок и мергеля опоковидного мощностью от 0,1 до 1,0 м. Содержание карбонатов по данным рентгеноструктурных и химических анализов изменяется от 45 до 60 реже до 65-70 %, кварца 20-40 %, смектитов 5-15 % и цеолитов 5-17 %.

Известковистая опока и мергель опоковидный (от 0,3 до 2,7 м) представляют собой прослои серых и светло-серых плотных пород, интенсивно трещиноватых и ожелезненных. Микроскопически известковистая опока и опоковидный мергель состоят из тонкосросшихся агрегатов пелитоморфнозернистого кальцита, замещаемого глобулярным опалом и глинистым материалом, текстура неслоистая,

Кора выветривания на мергельно-меловых породах Поддубенского участка...

Рис. 2. Электронно-микроскопический снимок образца п30 гл 3.0. Ув. 400х. *Спектры:* 1, 5, 6 — матрикс породы; 2, 3 — чешуйка биотита; 4 — зерно кварца; 7, 8 — чешуйка биотита; 9 — плагиоклаз. Количественный анализ спектров представлен в табл. 1

Рис. 3. Электронно-микроскопический снимок обр. п20 гл 2.5. Ув. 330х. *Спектры:* 1, 6, 8 — матрикс породы; 2, 4, 5, 7 — чешуйка гидрослюды; 3 — зерно кварца. Количественный анализ спектров представлен в табл. 1

А. Г. Чигарев

Таблица1

Назв. обр.	№ спектра	Na	Mg	Al	Si	K	Ca	Ti	Cr	Mn	Fe	Итог
Обр. п10 гл 0.0	Спектр 1	0.00	3.68	10.02	56.48	8.13	2.67	0.27	0.04	0.14	18.57	100.00
	Спектр 2	0.27	0.07	17.09	63.89	17.00	1.11	0.43	0.03	0.00	0.11	100.00
	Спектр 3	0.06	0.46	4.85	61.50	1.56	30.11	0.32	0.05	0.03	1.07	100.00
	Спектр 4	0.01	0.57	3.43	64.07	0.58	29.78	0.01	0.00	0.11	1.47	100.00
	Спектр 5	0.01	0.28	4.06	63.98	0.67	28.82	0.03	0.05	0.02	2.08	100.00
Обр. п20 гл 2.5	Спектр 1	0.60	2.12	9.25	52.27	1.95	29.01	0.27	0.00	0.51	4.04	100.00
	Спектр 2	0.11	16.51	19.99	35.78	3.72	2.82	0.94	0.20	0.00	19.93	100.00
	Спектр 3	0.07	0.00	0.00	99.06	0.00	0.11	0.00	0.23	0.00	0.53	100.00
	Спектр 4	0.38	4.01	10.00	55.81	7.83	1.28	0.33	0.37	0.30	19.70	100.00
	Спектр 5	0.42	3.77	25.16	50.42	12.67	0.37	1.11	0.00	0.00	6.08	100.00
	Спектр 6	0.68	1.94	8.30	53.04	1.65	29.90	0.19	0.00	0.09	4.21	100.00
	Спектр 7	0.02	3.50	19.55	56.03	8.83	0.59	0.19	0.28	0.00	11.01	100.00
	Спектр 8	1.07	1.81	9.19	54.72	1.73	27.53	0.69	0.14	0.00	3.11	100.00
Обр. п3 гл 3.0	Спектр 1	0.44	1.23	8.02	33.42	1.65	51.55	0.24	0.54	0.02	2.90	100.00
	Спектр 2	0.12	13.48	18.60	41.69	9.57	1.46	1.47	0.00	0.00	13.61	100.00
	Спектр 3	0.36	13.51	19.02	41.96	9.07	1.45	1.80	0.25	0.11	12.46	100.00
	Спектр 4	0.00	0.27	0.36	96.14	0.12	2.40	0.04	0.00	0.13	0.55	100.00
	Спектр 5	0.00	1.33	7.94	41.74	1.77	44.47	0.03	0.00	0.08	2.64	100.00
	Спектр 6	0.12	1.44	7.07	35.59	1.53	50.53	0.25	0.08	0.00	3.38	100.00
	Спектр 7	0.04	5.20	8.35	57.56	8.28	1.30	0.30	0.15	0.00	18.83	100.00
	Спектр 8	0.10	5.19	8.65	57.30	8.06	3.18	0.15	0.00	0.00	17.37	100.00
	Спектр 9	8.68	0.31	21.30	62.49	0.32	6.24	0.21	0.00	0.00	0.46	100.00
Обр. п30 гл 4.0	Спектр 1	0.00	0.04	0.53	1.31	0.20	8.19	89.12	0.19	0.00	0.41	100.00
	Спектр 2	0.20	0.03	0.51	0.79	0.03	3.33	94.55	0.48	0.00	0.09	100.00
	Спектр 3	0.35	1.86	22.35	36.89	7.37	27.76	1.06	0.00	0.00	2.36	100.00
	Спектр 4	0.25	1.08	18.98	32.98	5.60	38.15	0.89	0.00	0.00	2.06	100.00
	Спектр 5	0.00	0.98	4.39	22.13	1.20	68.22	0.65	0.42	0.00	2.02	100.00
	Спектр 6	0.07	0.35	1.39	2.91	0.22	93.99	0.19	0.00	0.01	0.87	100.00
	Спектр 7	0.00	1.09	3.63	18.82	1.12	73.01	0.00	0.00	0.38	1.95	100.00
	Спектр 8	12.57	0.00	18.65	67.95	0.18	0.40	0.00	0.00	0.06	0.18	100.00
	Спектр 9	0.42	1.54	20.47	36.23	6.64	31.70	0.52	0.26	0.16	2.06	100.00
	Спектр 10	0.00	0.31	3.64	20.66	0.95	71.52	0.38	0.00	0.18	2.37	100.00
	Спектр 11	0.00	0.00	0.00	96.16	0.53	1.41	0.00	0.00	0.89	1.01	100.00

Количественный анализ образцов: n10 гл 0.0; n20 гл 2.5; n30 гл 3.0; n30 гл 4.0

Рис. 4. Электронно-микроскопический снимок обр. п10 гл 0.0. Ув. 400х. *Спектры:* 1 — слюда; 2 — кпш; 3, 4, 5 — матрикс породы. Количественный анализ спектров представлен в табл. 1

ВЕСТНИК ВГУ, СЕРИЯ: ГЕОЛОГИЯ, 2008, № 1, январь-июнь

эти данные отображены на рис. 4, спектр 3, 4, 5. Обломочный материал (5–7%) неравномерно распределен в породе и состоит из корродированных обломков кварца (0,02–0,08 мм) и единичных пластинок полевого шпата (рис. 4, спектр 2) и слюды (рис. 4, спектр 1). Глауконит образует редкие микроагрегатные скопления. По данным рентгеноструктурных и химических анализов содержание карбоната 40–50%, кремнезема 40–50%, глинистого материала до 10%.

выводы

На Поддубенском участке по результатам поисково-оценочных работ было установлено, что снизу вверх происходит увеличение кремнезема общего, в том числе аморфного, с одновременным уменьшением содержания СаО. Что обусловливает для отложений сантонского яруса характерный постепенный переход мелов турон-коньякского ярусов в мергель мелоподобный, затем мергель натуральный, далее в мергель слаботрепеловидный, мергель трепеловидный и завершают разрез прослои известковых опок и опоковидного мергеля. Таким образом, трепеловидные мергели и прослои опок и опоковидного мергеля на Поддубенском участке относятся к остаточным образованиям по первичным морским биогенным осадкам пород, в последующем претерпевшим эпигенные метасоматические преобразования. На это указывает: 1 – сохранение реликтовой органогенной структуры; 2 — замещение карбонатной составляющей на кремнистую; 3 — увеличение снизу вверх кремнезема; 4 — распространение остаточных пород согласно современной конфигурации рельефа.

ЛИТЕРАТУРА

1. Бушинский Г. И. Литология меловых отложений Днепровско-Донецкой впадины / Г. И. Бушинский // Труды института геологических наук АН СССР. — М., 1654.

2. Семенов В. П. Геология кремнистых метасоматитов карбонатных пород верхнего мела КМА / В. П. Семенов, Б. В. Аскоченский, В. Н. Селезнев, П. В. Семенов. — Воронеж : Изд-во ВГУ, 1980. — 84 с.