О КОРРЕЛЯЦИИ СОДЕРЖАНИЙ РЕДКОЗЕМЕЛЬНЫХ ЭЛЕМЕНТОВ С СОДЕРЖАНИЯМИ ПОРОДООБРАЗУЮЩИХ ОКСИДОВ В КИМБЕРЛИТАХ РАЗНЫХ ПРОВИНЦИЙ

В.Б. Василенко*, В.А. Минин*, Л.Г. Кузнецова,* Ю.В. Гейко**, Н.Н. Зинчук***

*Институт геологии и минералогии СО РАН, Новосибирск, Россия;

**Северное государственное региональное геологическое предприятие «Пивничгеология», Киев, Украина;

*** Западно-Якутский научный центр АН РС, Мирный, Республика Саха (Якутия), Россия.

Результаты исследований элементов редких земель в кимберлитах, изложенные в многочисленных публикациях [26, 8, 25, 11, 7, 27, 21, 24 и др.] позволяют считать изучение связей между РЗЭ и породообразующими элементами весьма актуальной задачей. Решение поставленной задачи существенно упрощается благодаря наличию петрохимической популяционной модели кимберлитовой формации [3, 32, http://www.uiggm.nsc.ru/load/load.html]. В петрологическом обосновании этой модели важная роль отведена диопсиду, ильмениту, кальциту и флогопиту, которые являются основными минералами-концентраторами РЗЭ. Это дает возможность проследить поведение РЗЭ на разных стадиях формирования вещественного состава кимберлитов.

Объекты исследования. Корреляционные связи между РЗЭ и породообразующими оксидами изучены на материале коллекции химических составов кимберлитов, содержащей данные о концентрации породообразующих оксидов и РЗЭ отдельных образцов пород из разных кимберлитовых провинций. В коллекцию были включены анализы только наименее измененных пород кимберлитового клана. Принципы идентификации кимберлитов по химическому составу, использованные при отборе материала, изложены в работе [3].

Содержания РЗЭ в коллекции, отобранной для исследования корреляционных связей в кимберлитах, колеблются в широких пределах. Эмпирические распределения значений содержаний РЗЭ (рис. 1) характеризуются полимодальным строением. Это свидетельствует о том, что составы изучаемой коллекции кимберлитов неоднородны и образуют несколько самостоятельных подсовокупностей. Полимодальность в отношении редких земель сопряжена с полимодальным строением петрохимической части совокупности. Отмеченные обстоятельства диктуют необходимость исследовать корреляционные связи по сгруппированным данным. В настоящей работе группировка данных была проведена по алгоритму петрохимической популяционной модели кимберлитов [3].

наиболее общем уровне иерархии составы кимберлитов подразделяются на 7 ранжированных по содержаниям TiO₂ групп-популяций. Термин «популяция» призван подчеркнуть независимое от исследователя существование петрохимически близких сообществ кимберлитов, дискретно отстоящих друг от друга. Возникновение устойчивых межпопуляционных петрохимических признаков происходит благодаря последовательному уменьшению глубин магмогенеза от 1-й наименее титанистой популяции к 7-й, диапазон глубин которых соответствует условиям устойчивости парагенезисов пироп-алмазной фации глубинности [13].

В этой классификационной схеме на первом,

Вторым таксонометрическим уровнем в предложенной классификации кимберлитов является подразделение популяций на дискретные группы — разновидности популяций. Главным фактором изменчивости составов кимберлитов в пределах отдельных популяций является отрицательная корреляция CaO и MgO. На линиях эмпирической регрессии CaO от MgO фигуративные точки составов обособляются в дискретные группы, так что представляется возможным выделить до 12 разновидностей популяций. Известковые разновидности представляют начальные, наиболее низкотемпературные, этапы селективного плавления перидотита, а магнезиальные — более высокотемпературные этапы этого же процесса. Среди разновидностей, в свою очередь, устанавливаются ультраосновные,

[©] Василенко В.Б., Минин В.А., Кузнецова Л.Г., Гейко Ю. В., Зинчук Н.Н., 2007

слюдистые и лампрофировые вариации, отражающие количества калия участвующего в процессе. Граничные значения перечисленных таксономических признаков приведены в табл. 1.

Важно отметить, что границы популяций и разновидностей статистически устойчивы в кимберлитовых ассоциациях разных регионов, что подтверждает их термодинамическую природу. Разные регионы отличаются лишь представленностью разновидностей разного состава. Так в кимберлитах Африки преобладают магнезиальные разновидности, а в кимберлитах Якутии — разновидности с большим содержанием извести [3]. Корреляционный анализ. Исследуемые составы кимберлитов по содержаниям главных компонентов согласно требованиям табл. 1 были отнесены к соответствующим группам петрохимических разновидностей. Это позволило охарактеризовать границы петрохимических разновидностей средними содержаниями РЗЭ (табл. 2).

Кимберлиты всех выделенных групп весьма богаты легкими лантаноидами (100-700 кратное превышение хондритовых концентраций) и обнаруживают высокую степень фракционирования РЗЭ. Отношение La/Yb варьирует в них от 38 до 508. Особенности поведения легких РЗЭ практиО корреляции содержаний редкоземельных элементов с содержаниями породообразующих оксидов в кимберлитах разных провинций

Таблица 1

1-й уровень. Выделение популяций. Типохимический признак TiO ₂ .												
Номера популяций	1	2	3	4	5	6						
F	-0.1	0,41-	0,61-	1,01-	1,41-	1,81-	2,21-					
траничные значения	<0,4	0,60	1,00	1,40	1,80	2,20	2,80					
2-й уровень. Выдело	ение ра	зновид	цностей	і. Типс	химич	еские і	тризна	ки: SiO	, и Са)/MgO		
Номера разновидностей	1	2	3	4	5	6	7	8	9	10	11	12
Граничные содержания SiO ₂					<30,0						>30,0	
Граничные значения CaO/MgO												
ОТ												
до	>8,20											
6,40	6,39											
3,81	3,80											
2,50	2,49											
1,76	1,75											
1,21	1,20											
0,83	0,82											
0,58	0,57											
0,35	<0,35	>0,40										
0,33	0,32											
0,18	<0,18											
Возможно объединение разно	Возможно объединение разновидностей в следующие группы: $\Sigma(1-4)$ - кимберлитовые карбонатиты (Крб);											
∑(5-6) – карбон	натитов	вые ким	иберли	ты (Са	Кмб);	∑(7 - 9)	– кимб	берлити	ы (Кмб	j);		
Σ	(10-12)) — магі	незиал	ьные к	имберл	иты (М	ЛgКмб).				
3-	й урове	ень. Вы	іделені	ие вари	аций р	азнови	цносте	ей.				
Выделение щелочных вариаций	Ультр	аоснов	ные ва	риации	1 (K1) -	- K,O<	0,75 ма	ic.%; cj	тюдист	тые (К2	(2) - 0.7	5-1,19

Схема популяционной петрохимической классификации пород кимберлитовой формации*

Выделение щелочных вариаций: Ультраосновные вариации (К1) – К₂O<0,75 мас.%; слюдистые (К2) – 0,75-1,19 мас.% К₂O; сублампрофировые+лампрофировые (К3) – 1,20-2,20 мас.% К₂O.

Классификационная характеристика анализа кимберлитов может быть выражена трехпозиционной формулой h.k.l., где h — номер популяции, k – номер разновидности, l – номер вариации.

*(Василенко и др., 2000)

чески одинаковы в кимберлитах различных популяций, спектры тяжелых РЗЭ напротив обнаруживают некоторые различия. Содержания последних постепенно повышаются от 2 к 7 популяционной группе кимберлитов (рис. 2).

Распределение РЗЭ между разными группами петрохимических разновидностей неоднозначно. Средние содержания РЗЭ в разновидностях 2-й и 3-й популяций уменьшаются в более магнезиальных разновидностях (см. табл. 2). Средние содержания РЗЭ в разновидностях 5-й и 6-й популяций уменьшаются в более известковых составах. Такое поведение РЗЭ связано, по-видимому, с отличиями в составах магмогенерирующих субстратов глубинных и менее глубинных популяций. Об этом, в частности, могут свидетельствовать повышенные содержания К₂О, и особенно Na₂O в некоторых петрохимических разновидностях исследуемых кимберлитов. Для того, чтобы можно было принять эти аргументы, необходимо убедиться в справедливости применения популяционной петрохимической модели кимберлитов построенной по материалам Якутской алмазоносной провинции для изучаемой коллекции составов кимберлитов.

С этой целью исследованы корреляционные связи между средними содержаниями породообразующих оксидов в группах разновидностей, приведенных в табл. 2. Результаты этого анализа показаны на рис. 3. Анализ рисунка показывает, что породообразующие оксиды образуют несколько корреляционных комплексов, в пределах которых они связаны тесной положительной связью. В их число входят ильменитовый (TiO₂* Σ FeO), флогопитовый (MgO*K₂O), пироксеновый (SiO₂*Al₂O₃*Na₂O) и карбонатный (CaO*П.п.п.) корреляционные комплексы.

Карбонатный комплекс, являющийся непременной составной частью кимберлитов, отражает присутствие в их составе первично магматического кальцита. Главная особенность этого комплекса состоит в отрицательной связи с другими корреляционными комплексами оксидов. Ильменитовый Таблица 2

Средние содержания породообразующих оксидов и редкоземельных элементов в группах разновидностей кимберлитов

$ \begin{array}{llllllllllllllllllllllllllllllllllll$							Группы	диазновид	ностей						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ι.	2 Km6	2 Mg-	3Ca-	3 Km6	3 Mg-	4 Ca-	4 Km6	4 Mg-	5 Km6	5 Mg-	6 Km6	6 Mg-	7 Km6	7 Mg-
		(1)	K _M 6	Km6	(1)	K _M 6	Km6	(5)	KMG	(3)	Km6	(5)	Km6	(6)	K _M 6
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			(5)	(1)	~	(21)	(1)	~	(15)	× *	(2)	~	(6)	~	(13)
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Ι.	28,83	41,57	20,77	28,13	40,13	33,46	27,70	38,66	29,14	31,56	26,05	32,49	28,19	33,75
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		0,57	0,54	0,89	0,71	0,84	1,06	1,17	1,16	1,66	1,66	1,99	2,00	2,61	2,56
		1,39	3,50	1,82	1,61	3,01	3,01	3,66	3,10	2,31	2,16	2,71	3,26	3,13	3,64
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		6,25	6,51	6,39	6,59	7,03	7,63	9,16	8,01	10,10	9,16	9,25	10,25	8,92	10,09
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		0,16	0,12	0, 19	0,16	0,16	0,14	0,26	0,16	0,20	0,18	0,19	0, 19	0,21	0,21
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ε	23,25	25,69	15,65	23,09	29,00	15,35	25,55	29,62	29,96	29,79	28,55	26,38	28,12	28,33
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4	16,86	5,51	25,45	16,66	4,74	16,11	13,95	4,95	10,49	7,53	10,81	9,08	10,16	5,93
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$.,	0,12	1,30	0,10	0,19	1,01	0,15	0,18	0,54	0,17	0,09	0,06	0, 19	0,21	0,40
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	C	0,43	0,54	0,17	0,46	1,29	0,20	0,76	1,55	0,85	1,13	0,37	1,39	0,99	1,24
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	-	0,71	0,29	0,85	0,78	0,49	0,78	1,28	0,8	0,37	0,57	0,63	0,59	0,66	0,72
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	20,40	12,77	25,45	20,11	12,04	21,48	14,27	11,29	13,13	15,96	18,75	13,33	15,32	12,23
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	15	146,20	24,06	218,73	159,12	47,52	54,90	112,06	74,67	129,36	178,17	113,25	132,11	135,16	117,66
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10	230,60	46,10	353,80	258,70	89,90	10,00	187,79	125,40	259,30	341,40	233,60	243,80	224,80	223,40
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	22,20	ı	34,81	25,30	10,93	ı	11,30	8,93	I	ı	ı		21,70	18,95
$ \begin{array}{lcccccccccccccccccccccccccccccccccccc$	02	70,60	20,96	109,48	80,79	34,35	36,40	56,38	44,11	92,69	112,21	77,34	87,76	79,74	78,42
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	6	8,32	2,75	12,59	9,52	4,80	5,13	7,78	5,67	10,76	13,37	11,51	11,80	10,85	10,05
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	9	2,11	0,73	2,95	2,31	1,28	1,34	1,75	1,54	2,50	3,01	2,63	2,86	2,72	2,63
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	5,46	1,83	8,03	6,19	3,78	ı	4,31	4,35	4,09	4,45	6,22	9,30	6,78	6,65
8 2,09 1,25 2,76 2,20 2,11 - 2,09 2,62 2,56 2,16 3,30 5,76 3,40 3,63 3 0,29 - 0,40 0,31 0,38 - 0,20 0,56 0,54 0,51 0,39 0,55 0,60 2 0,62 0,59 0,83 0,65 0,82 - 0,99 0,69 0,79 1,25 2,20 1,21 8 0,07 0,11 - - 0,13 - - 0,13 1,25 2,20 1,21 1,21 8 0,07 0,11 - - 0,13 - - 0,16 0,19 6 0,38 0,63 0,43 0,43 0,43 0,43 0,77 0,59 0,64 0,77 0,88 0,95 0,95 6 0,05 0,10 0,07 0,05 1,00 0,09 0,09 0,07 0,16 0,19 <td>5</td> <td>0,42</td> <td>0,41</td> <td>0,56</td> <td>0,45</td> <td>0,46</td> <td>0,38</td> <td>0,20</td> <td>0,51</td> <td>0,64</td> <td>0,73</td> <td>0,74</td> <td>0,73</td> <td>0,75</td> <td>0,80</td>	5	0,42	0,41	0,56	0,45	0,46	0,38	0,20	0,51	0,64	0,73	0,74	0,73	0,75	0,80
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	×	2,09	1,25	2,76	2,20	2,11	1	2,09	2,62	2,56	2,16	3,30	5,76	3,40	3,63
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ŝ	0,29	ı	0,40	0,31	0,38	ı	0,20	0,56	0,54	0,51	0,51	0,39	0,55	0,60
8 0,07 - 0,09 0,07 0,11 - 0,13 - 0,13 0,19 0,07 0,10 0,09 0,09 0,09 0,09 0,09 0,09 0,09	\sim	0,62	0,59	0,83	0,65	0,82	1	0,81	0,99	0,69	0,79	1,25	2,20	1,22	1,21
5 0,38 0,63 0,43 0,36 0,79 0,43 0,80 0,77 0,59 0,64 0,77 0,88 0,95 0,95 0,95 0,95 0,95 0,95 0,95 0,95	\sim	0,07	ı	0,09	0,07	0,11	ı	I	0,13	I	ı	ı		0,16	0, 19
6 0,05 0,10 0,07 0,05 1,00 - 0,11 0,11 0,09 0,09 0,08 0,07 0,12 0,14	9	0,38	0,63	0,43	0,36	0,79	0,43	0,80	0,77	0,59	0,64	0,77	0,88	0,95	0,95
	9	0,05	0,10	0,07	0,05	1,00	1	0,11	0,11	0,09	0,09	0,08	0,07	0,12	0,14

В.Б. Василенко, В.А. Минин, Л.Г. Кузнецова, Ю.В. Гейко, Н.Н. Зинчук

титаномагнетитового комплекса. Исключение составляет только Yb, для которого установлена значительная отрицательная корреляция с СаО и положительная — с оксидами флогопитового комплекса (MgO*K,O). Lu занимает особое место среди РЗЭ. Этот элемент характеризуется наличием положительных связей только с Al₂O3 и K₂O, что делает его индикатором повышенных содержаний флогопита.

Показатель степени фракционирования РЗЭ — $\sum(La+...+Eu)/\sum(Tb+...+Yb)$ — отрицательно коррелируется с MgO и положительно — с CaO.

Рис. 2. Вариации содержаний Yb и TiO2 в кимберлитах различных популяций. Цифры у значков — номера популяций, вертикальные и горизонтальные линии — 95% тельно коррелируется с доверительные интервалы. — МgO и положительно — с

и флогопитовый комплексы оксидов связаны между собой слабой положительной связью. Пироксеновый комплекс относительно обособлен.

Необходимо отметить отсутствие четко выраженного оливинового (SiO₂*MgO) комплекса, столь характерного для кимберлитов Якутии [3]. В описываемом случае корреляционные связи оливинового комплекса ослаблены за счет появления специфических флогопитового и пироксенового комплексов. Отмеченная особенность оказывает влияние и на корреляционные связи между породообразующими оксидами и РЗЭ (табл. 3). Наиболее важными сведениями, содержащимися в этой таблице, являются отрицательные корреляционные связи всех легких РЗЭ с SiO₂, и положительные тяжелых РЗЭ с TiO₂.

Легкие РЗЭ также отрицательно коррелируются с другими оксидами пироксенового комплекса — Na_2Ou , вероятно, Al_2O_3 . Подчеркивая влияние пироксенового комплекса на распределение РЗЭ заметим, что «добавление» его к составу кимберлита приводит к уменьшению содержаний La, Ce, Nd, Sm и Eu. Содержания Pr не испытывают воздействие пироксенового комплекса и демонстрируют высокую корреляцию с CaO. Положительная связь с CaO характерна и для La.

Все представители тяжелых РЗЭ обнаруживают положительную корреляцию только с оксидами

СаО. Обсуждение результатов. При анализе корреляционных связей легких РЗЭ с породообразующими оксидами обращает на себя внимание отрицательная корреляция легких РЗЭ с пироксеновым

тельная корреляция легких РЗЭ с пироксеновым комплексом в составе SiO₂*Na₂O и, возможно, Al₂O₃ и положительная корреляция La с карбонатным (кальцитовым) корреляционным комплексом.

Обратимся к особенностям пироксенового комплекса. Выделение корреляционного комплекса SiO₂*Na₂O*Al2O₃ в качестве пироксенового не всеми исследователями воспринимается однозначно. Некоторые из них связывают возникновение этого комплекса и, соответственно, повышенных содержаний натрия и алюминия с контаминацией кимберлитовых расплавов глинистыми сланцами. В связи с этим повышение содержания натрия рассматривается как показатель степени загрязнения кимберлитов [22]. Минералами — концентраторами натрия в кимберлитах являются пектолит [29] и богатый титаном эгирин-авгит [18]. Противоречие, состоящее в разном соотношении кремния и алюминия в кимберлитах и глинистых сланцах, сторонники экзогенного происхождения повышенных содержаний натрия и алюминия в кимберлитах разрешают предположением о «кимберлитизации» глинистых сланцев [19].

Альтернативная точка зрения рассматривает богатые натрием и алюминием пироксены как

Таблица 3

Коэффициенты корреляции средних содержаний РЗЭ со средними содержаниями породообразующих оксидов

P ₂ O ₅ LOI	0,22 0,61		0,14 $0,49$	0,14 0,49 -0,19 0,79	0,14 0,49 -0,19 0,79 0,04 0,37	0,14 0,49 -0,19 0,79 0,04 0,37 0,07 0,31	0,14 0,49 -0,19 0,79 0,04 0,37 0,07 0,31 0,06 0,29	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
1 ₂ 0 K ₂ 0	,74 -0,23		,74 -0,14	,74 -0,14 ,65 - 0,81	,74 -0,14 ,65 -0,81 ,72 -0,03	,74 -0,14 ,65 - 0,81 ,72 -0,03 ,75 0,01	,74 -0,14 ,65 - 0,81 ,72 -0,03 ,75 0,01 ,74 0,06	74 -0,14 ,65 -0,81 ,72 -0,03 ,75 0,01 ,74 0,06 ,63 -0,04	74 -0,14 ,65 -0,31 ,72 -0,03 ,75 0,01 ,74 0,06 ,73 0,06	74 -0,14 ,65 -0,03 ,75 -0,03 ,76 0,01 ,75 0,01 ,74 0,06 ,53 -0,04 ,37 0,38 ,37 0,40	74 -0,14 ,65 -0,03 ,75 -0,03 ,74 0,01 ,75 0,01 ,74 0,06 ,74 0,06 ,63 -0,04 ,37 0,38 ,37 0,40 11 0,45	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	74 -0,14 ,65 -0,81 ,72 -0,03 ,74 0,01 ,75 0,01 ,63 -0,04 ,23 0,38 ,23 0,46 ,23 0,46 ,049 0,41	74 -0,14 ,65 -0,03 ,75 -0,03 ,74 0,06 ,75 0,01 ,74 0,06 ,74 0,06 ,73 0,04 ,33 0,38 ,23 0,38 ,23 0,40 11 0,45 22 0,41 22 0,41	74 -0,14 .65 -0,81 .72 -0,03 .75 0,01 .74 0,06 .73 0,04 .11 0,45 .23 0,46 .23 0,46 .23 0,46 .23 0,46 .23 0,46 .23 0,46 .23 0,46 .23 0,74	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
CaU 1742	0,64 -0,7		U,43 -U,1	0,4 2 -0,6	0,47 0,82 -0,6 0,37 -0,7	0,49 0,82 -0,6 0,37 -0,7 0,29 -0,7	0,47 0,82 0,37 0,29 0,29 0,7 -0,7	0,44 0,37 0,37 0,29 0,27 0,27 0,44 0,66	0,44 0,82 -0,6 0,29 -0,7 0,27 -0,7 0,27 -0,7 -0,31 -0,2	0,44 -0,0 0,37 -0,0 0,29 -0,7 0,27 -0,7 0,44 -0,6 -0,31 -0,2 -0,31 -0,2	0,44 -0,0 0,37 -0,5 0,29 -0,7 0,27 -0,7 0,27 -0,7 -0,31 -0,2 -0,31 -	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,44 0,37 0,29 0,27 0,29 0,27 0,27 0,24 0,10 -0,31 -0,31 -0,26 -0,26 -0,26 -0,26 -0,26 -0,26 -0,26 -0,2 0,1 -0,26 0,1 -0,2 0,1 -0,2 0,1 -0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2	0,44 -0,0 0,37 -0,0 0,29 -0,0 0,27 -0,0 0,44 -0,6 -0,31 -0,2 -0,31 -0,2 -0,54 0,1 -0,54 0,1 -0,58 0,2 -0,58 0,2 -0,68 0,2 -0,26 0,1 -0,26 0,1 -0,27 -0,26 0,1 -0,26 0,1 -0,26 0,1 -0,27 -0,26 0,1 -0,26 0,1 -0,26 0,1 -0,26 0,1 -0,26 0,27 -0,26 0,1 -0,26 0,1 -0,26 0,1 -0,27 0,26 0,27 0,26 0,1 -0,26 0,10 0,27 0,26 0,1 -0,26 0,10 0,27 0,10 -0,26 0,10 0,10 0,10 0,10 0,10 0,10 0,10 0,1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	-0,23	-0,08		-0,84	-0,84 0,02	-0,84 0,02 0,08	-0,84 0,02 0,08 0,08	-0,84 0,02 0,08 0,08 -0,42	-0,84 0,02 0,08 0,08 0,08 0,08	-0,84 0,02 0,08 0,08 0,08 0,42 0,42	-0,84 0,02 0,08 0,08 0,08 0,42 0,42 0,44 0,10	-0,84 0,02 0,08 0,08 0,08 0,42 0,42 0,44 0,44 0,10 0,58 0,58	-0,84 0,02 0,08 0,08 0,08 0,10 0,10 0,10 0,25 0,58 0,58	-0,84 0,02 0,08 0,08 0,08 0,44 0,10 0,10 0,58 0,58 0,55 0,65	-0,84 0,02 0,08 0,08 0,08 0,42 0,42 0,42 0,58 0,58 0,58 0,66 0,66 0,66	-0,84 0,02 0,08 0,08 0,08 0,10 0,10 0,10 0,58 0,58 0,58 0,58 0,58 0,58 0,58 0,5	-0,84 0,02 0,08 0,08 0,08 0,44 0,10 0,44 0,10 0,58 0,58 0,58 0,66 0,65 0,58 0,51	-0,84 0,02 0,08 0,08 0,42 0,42 0,42 0,42 0,42 0,42 0,42 0,42
EFeO MnO	0,03 0,33	0,18 0,41		-0,45 -0,17	-0,45 -0,17 0,31 0,43	-0,45 -0,17 0,31 0,43 0,43 0,52	$\begin{array}{c cccc} -0.45 & -0.17 \\ 0.31 & 0.43 \\ 0.43 & 0.52 \\ 0.43 & 0.50 \end{array}$	-0,45 -0,17 0,31 0,43 0,43 0,52 0,43 0,50 0,43 0,50 0,43 0,50 0,21 0,31	$\begin{array}{c cccc} -0.45 & -0.17 \\ 0.31 & 0.43 \\ 0.43 & 0.52 \\ 0.43 & 0.50 \\ 0.21 & 0.31 \\ 0.59 & 0.20 \end{array}$	-0,45 -0,17 0,31 0,43 0,43 0,52 0,43 0,50 0,43 0,50 0,43 0,50 0,51 0,31 0,59 0,20 0,59 0,36 0,51 0,36 0,51 0,31 0,59 0,30	$\begin{array}{c ccccc} -0.45 & -0.17 \\ 0.31 & 0.43 \\ 0.43 & 0.52 \\ 0.43 & 0.50 \\ 0.51 & 0.51 \\ 0.59 & 0.20 \\ 0.52 & 0.01 \\ 0.52 & 0.01 \\ \end{array}$	-0,45 -0,17 0,31 0,43 0,43 0,52 0,43 0,52 0,21 0,50 0,59 0,20 0,52 0,20 0,52 0,20 0,52 0,34 0,52 0,20 0,52 0,20 0,52 0,20 0,52 0,34 0,52 0,20 0,52 0,20 0,53 0,34	-0,45 -0,17 0,31 0,43 0,43 0,52 0,43 0,52 0,21 0,31 0,59 0,20 0,52 0,20 0,52 0,20 0,52 0,34 0,52 0,36 0,52 0,36 0,52 0,01 0,52 0,01 0,52 0,01 0,56 0,34 0,56 0,34	$\begin{array}{c ccccc} -0.45 & -0.17 \\ 0.31 & 0.43 \\ 0.43 & 0.52 \\ 0.43 & 0.50 \\ 0.59 & 0.50 \\ 0.59 & 0.20 \\ 0.52 & 0.01 \\ 0.52 & 0.01 \\ 0.52 & 0.01 \\ 0.56 & 0.77 \\ 0.77 & 0.53 \\ 0.77 \\ 0.77 & 0.53 \\ 0.53 \\ 0.77 \\ 0.53 \\ 0$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccc} -0,45 & -0,17 \\ 0,31 & 0,43 \\ 0,43 & 0,52 \\ 0,43 & 0,52 \\ 0,59 & 0,50 \\ 0,59 & 0,20 \\ 0,61 & 0,34 \\ 0,52 & 0,01 \\ 0,52 & 0,01 \\ 0,51 & 0,53 \\ 0,77 & 0,53 \\ 0,77 & 0,53 \\ 0,10 & 0,38 \\ 0,50 & 0,47 \\ 0,51 & 0,53 \\ 0,50 & 0,47 \\ 0,51 & 0,53 \\ 0,51 & 0,53 \\ 0,51 & 0,51 \\ 0,51 & 0,53 \\ 0,51 & 0,51 \\ 0$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Al_2O_3 Σ	-0,66	-0,56 (-0,66	- 0,66 -	-0,66 -0,47 -0,35	-0,66 -0,47 -0,35 -0,33 (-0,66 -0,47 -0,35 -0,33 (-0,33 (-0,47 (-0,47 (-0,35 (-0,33 (-0,18 (0,08 (-0,66 -0,47 -0,35 -0,33 -0,33 (0,08 0,08 (0,08 (0,08 (-0,66 -0,47 -0,35 -0,33 -0,33 (0,08 0,27 0,32 (0,08 0,32 (0,08 0,32 (0,08 (0,08) (0,08	-0,66 -0,47 -0,35 -0,33 -0,33 -0,33 -0,33 0,08 0,08 0,08 0,32 0,32 0,42	-0,66 -0,47 -0,35 -0,33 -0,33 -0,33 0,08 0,08 0,27 0,32 0,32 0,92	-0,66 -0,47 -0,35 -0,33 -0,33 -0,33 -0,33 -0,33 -0,33 -0,33 -0,33 -0,33 -0,33 -0,33 -0,33 -0,33 -0,33 -0,33 -0,33 -0,33 -0,33 -0,33 -0,35 -0,008 -0,22 -0,008 -0,008 -0,008 -0,008 -0,008 -0,000 -0,008 -0,000 -0,008 -0,000 -	-0,66 -0,47 -0,35 -0,33 -0,33 -0,33 -0,33 0,08 0,08 0,08 0,08 0,027 0,027 0,027 0,027 0,027 0,027 0,027 0,027 0,027 0,027 0,032 0,079 (0,008 0,078 0,032 0,078 0,078 0,033 0,078 0,035 0,033 0,035 0,033 0,035 0,033 0,035 0,033 0,035 0,033 0,035 0,033 0,035 0,035 0,033 0,035 0,033 0,035 0,033 0,032 0,008 0,008 0,008 0,032 0,000 0,008 0,002 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000000	-0,66 -0,47 -0,35 -0,33 -0,33 -0,33 0,27 0,08 0,27 0,27 0,27 0,27 0,27 0,27 0,27 0,27	-0,66 -0,47 -0,35 -0,33 -0,33 -0,33 0,08 0,27 0,27 0,27 0,27 0,22 0,22 0,22 0,22	-0,66 -0,47 -0,35 -0,33 -0,33 -0,33 -0,33 -0,33 -0,33 -0,33 -0,33 -0,33 -0,33 -0,27 -0,60 -0,27 -0,60 -0,27 -0,33 -0,27 -0,33 -0,27 -0,27 -0,33 -0,27 -0,33 -0,27 -0,33 -0,27 -0,33 -0,27 -0,27 -0,27 -0,23 -0,27 -0,22 -0,22 -0,22 -0,22 -0,23 -0,27 -0,22 -0,23 -0,27 -0,22 -0,23 -0,27 -0,22 -0,23 -0,27 -0,27 -0,22
TiO ₂	0,10	0,26	-	-0,11	-0,11 0,39	-0,11 0,39 0,53	-0,11 0,39 0,53 0,58	-0,11 0,39 0,53 0,58 0,58	-0,11 0,39 0,53 0,58 0,58 0,41	-0,11 0,39 0,53 0,58 0,58 0,41 0,41	-0,11 0,39 0,53 0,58 0,58 0,41 0,80 0,80	-0,11 0,39 0,53 0,58 0,58 0,41 0,41 0,67 0,67 0,68	-0,11 0,39 0,53 0,58 0,58 0,58 0,58 0,58 0,58 0,58 0,58	-0,11 0,39 0,53 0,58 0,58 0,58 0,58 0,58 0,58 0,58 0,58	-0,11 0,39 0,53 0,58 0,58 0,58 0,41 0,58 0,58 0,58 0,58 0,55 0,55	-0,11 0,39 0,53 0,58 0,58 0,58 0,41 0,58 0,58 0,67 0,67 0,67 0,67 0,67 0,76 0,94 0,76	-0,11 0,39 0,53 0,58 0,58 0,41 0,41 0,41 0,58 0,67 0,58 0,67 0,57 0,71 0,55 0,55 0,55 0,55 0,55	-0,11 0,39 0,53 0,58 0,58 0,41 0,58 0,41 0,58 0,58 0,58 0,56 0,55 0,55 0,55 0,55
01 SiO ₂	64 -0,84	64 -0,80		80 -0,82	80 -0,82 64 -0,73	80 -0,82 64 -0,73 64 -0,73	80 -0.82 64 -0.73 64 -0.73 64 -0.70	80 -0,82 64 -0,73 64 -0,73 64 -0,70 66 -0,59	80 -0,82 64 -0,73 64 -0,73 64 -0,70 66 -0,59 64 -0,12	80 -0,82 64 -0,73 64 -0,73 64 -0,73 66 -0,59 66 -0,59 66 -0,12	80 -0,82 64 -0,73 64 -0,73 64 -0,73 66 -0,12 68 0,27	80 -0,82 64 -0,73 64 -0,73 64 -0,73 64 -0,12 66 -0,16 68 0,27 60 -0,01	80 -0.82 64 -0.73 64 -0.73 64 -0.73 64 -0.73 64 -0.70 66 -0.116 68 0,27 60 -0.01 83 0,38	80 -0.82 64 -0.73 64 -0.73 64 -0.73 66 -0.116 68 0.27 60 -0.01 83 0.38 83 0.38	80 -0,82 64 -0,73 64 -0,73 64 -0,73 64 -0,73 64 -0,12 66 -0,12 68 0,27 60 -0,01 83 0,38 64 0,32 64 0,32	80 -0,82 64 -0,73 64 -0,73 64 -0,73 64 -0,73 64 -0,12 68 0,27 68 0,27 64 0,38 64 0,32 64 0,32 64 0,32	80 -0,82 64 -0,73 64 -0,73 64 -0,73 64 -0,73 66 -0,59 68 0,27 68 0,27 68 0,27 69 0,38 64 0,32 64 -0,13 64 -0,82 64 -0,13	80 -0,82 64 -0,73 64 -0,73 64 -0,73 64 -0,70 66 -0,12 68 0,27 66 0,27 64 -0,33 64 0,32 64 -0,32 64 -0,13
\mathbf{r}_0	0,6	0,6		3,67 0,8	$\begin{array}{c c} 0,67 & 0,8 \\ 0,51 & 0,6 \end{array}$	$\begin{array}{c c} 0,67 & 0,8\\ 0,51 & 0,6\\ 0,51 & 0,6\\ 0,51 & 0,6 \end{array}$	$\begin{array}{c c} 0,67 & 0,8 \\ 0,51 & 0,6 \\ 0,51 & 0,6 \\ 0,51 & 0,6 \\ 0,51 & 0,6 \\ 0,6 $	$\begin{array}{c cccc} 0,67 & 0,8 \\ 0,51 & 0,6 \\ 0,51 & 0,6 \\ 0,51 & 0,6 \\ 0,51 & 0,6 \\ 0,53 & 0,6 \end{array}$	$\begin{array}{c cccc} 0,67 & 0,8 \\ 0,51 & 0,6 \\ 0,51 & 0,6 \\ 0,51 & 0,6 \\ 0,53 & 0,6 \\ 0,51 & 0,6 \\ 0,51 & 0,6 \\ 0,51 & 0,6 \\ \end{array}$	$\begin{array}{c cccc} 0,67 & 0,6\\ 0,51 & 0,6\\ 0,51 & 0,6\\ 0,51 & 0,6\\ 0,51 & 0,6\\ 0,53 &$	$\begin{array}{c cccc} 0,67 & 0,67 & 0,8 \\ 0,51 & 0,6 & 0,51 & 0,6 \\ 0,51 & 0,6 & 0,53 & 0,6 \\ 0,53 & 0,6 & 0,53 & 0,6 \\ 0,53 & 0,6 & 0,6 & 0,6 \\ 0,55 & 0,6 & 0,6 & 0,6 \\ \end{array}$	$\begin{array}{c cccc} 0,67 & 0,67 & 0,8 \\ 0,51 & 0,6 & 0,51 & 0,6 \\ 0,51 & 0,6 & 0,53 & 0,6 \\ 0,53 & 0,6 & 0,53 & 0,6 \\ 0,53 & 0,6 & 0,53 & 0,6 \\ 0,53 & 0,6 & 0,6 & 0,6 \\ 0,54 & 0,6 & 0,6 & 0,6 \\ 0,56 & 0,6 & 0,6 & 0,6 \\ 0,56 & 0,6 & 0,6 & 0,6 \\ 0,56 & 0,6 & 0,6 & 0,6 \\ 0,56 & 0,6 & 0,6 & 0,6 \\ 0,56 & 0,6 & 0,6 & 0,6 \\ 0,56 & 0,6 & 0,6 & 0,6 \\ 0,56 & 0,6 & 0,6 & 0,6 \\ 0,56 & 0,6 & 0,6 & 0,6 \\ 0,56 & 0,6 & 0,6 & 0,6 \\ 0,56 & 0,6 & 0,6 & 0,6 \\ 0,56 & 0,6 & 0,6 & 0,6 \\ 0,56 & 0,6$	0,67 0,67 0,8 0,51 0,6 0,51 0,6 0,51 0,6 0,53 0,6 0,53 0,6 0,53 0,6 0,53 0,6 0,53 0,6 0,53 0,6 0,53 0,6	$\begin{array}{c cccc} 0,67 & 0,67 & 0,8 \\ 0,51 & 0,6 & 0,51 & 0,6 \\ 0,51 & 0,6 & 0,53 & 0,6 \\ 0,53 & 0,6 & 0,53 & 0,6 \\ 0,53 & 0,6 & 0,53 & 0,6 \\ 0,53 & 0,6 & 0,53 & 0,6 \\ 0,53 & 0,6 & 0,6 & 0,6 \\ 0,51 & 0,$	$\begin{array}{c cccc} 0,67 & 0,67 & 0,8 \\ 0,51 & 0,6 & 0,51 & 0,6 \\ 0,51 & 0,6 & 0,53 & 0,6 \\ 0,53 & 0,6 & 0,53 & 0,6 \\ 0,53 & 0,6 & 0,53 & 0,6 \\ 0,53 & 0,6 & 0,53 & 0,6 \\ 0,51 & 0,6 & 0,53 & 0,6 \\ 0,51 & 0,6 & 0,6 & 0,6 \\ 0,51 & 0,6 & 0,6 & 0,6 \\ 0,53 & 0,6 & 0,6 & 0,6 \\ 0,51 & 0$	$\begin{array}{c ccccc} 0,67 & 0,67 & 0,8 \\ 0,51 & 0,6 & 0,51 & 0,6 \\ 0,51 & 0,6 & 0,51 & 0,6 \\ 0,51 & 0,6 & 0,53 & 0,6 \\ 0,53 & 0,6 & 0,53 & 0,6 \\ 0,51 & 0,6 & 0,53 & 0,6 \\ 0,51 & 0,6 & 0,51 & 0,6 \\ 0,51 & 0,51 & 0,51 & 0,51 \\ 0,51 & 0,51 & 0,51 & 0,51 \\ 0,51 & 0,51 & 0,51 & 0,51 \\ 0,51 & 0,51 & 0,51 & 0,51 \\ 0,51 & 0,51 & 0,51 & 0,51 \\ 0,51 & 0,51 & 0,51 & 0,51 \\ 0,51 & 0,51 & 0,51 & 0,51 \\ 0,51 & 0,51 & 0,51 & 0,51 \\ 0,51 & 0,51 & 0,51 & 0,51 \\ 0,51 & 0,51 & 0,51 & 0,51 \\ 0,51 & 0,51 & 0,51 & 0,51 \\ 0,51 & 0,51 & 0,51 & 0,51 \\ 0,51 & 0,51 & 0,51 & 0,51 \\ 0,51 & 0,51 & 0,51 & 0,51 \\ 0,51 & 0,51 & 0,51 & 0,51 \\ 0,51 & 0,51 & 0,51 & 0,51 \\ 0,51 & 0,51 & 0,51 & 0,51 \\ 0,51 & 0,51 & 0,51 & 0,51 \\ 0,51 & 0,51 & 0,51 & 0,51 \\ 0,51 & 0,51 & 0,51 \\ 0,51 & 0,51 & 0,51 \\ 0,51 & 0,51 & 0,51 \\ 0,51 & 0,51 & 0,51 \\ 0,51 & 0,51 & 0,51 \\ 0,51 & 0,51 & 0,51 \\ 0,51 & 0,51 & 0,51 \\ 0,51 & 0,51 & 0,51 \\ 0,51 & 0,51 & 0,51 \\ 0,51 & 0,51 & 0,51 \\ 0,51 & 0,51 & 0,51 \\ 0,51 & 0,51 & 0,51 \\ 0,51 & 0,51 & 0,51 \\ 0,51 & 0,51 $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
r_{05}	0,51	0,51		Ŭ														

О корреляции содержаний редкоземельных элементов с содержаниями породообразующих оксидов в кимберлитах разных провинций

Рис. 3. Корреляционный дендрограф породообразующих оксидов [9, 10] в группах разновидностей кимберлитов. Сплошная линия — положительные связи, пунктирная — отрицательные, жирная — значимые (n = 15, r01 = 0.64).

составную часть мантийного субстрата из которого выплавлялись кимберлитовые магмы.

Установленная в данной работе отрицательная корреляция легких РЗЭ с пироксеновым комплексом оксидов должна рассматриваться как следствие разубоживания содержаний РЗЭ в результате обогащения кимберлитов материалом с более низкими содержаниями РЗЭ. Для выяснения природы этого явления обратимся к данным по петрохимии и алмазоносности кимберлитов Якутии и, в частности, кимберлитов хорошо изученной трубки Мир.

Кимберлиты этой трубки прорывают карбонатно-терригенные и галогенно-карбонатные образования кембрийской системы. Часто встречаемые повышенные содержания натрия и алюминия в кимберлитах трубки Мир некоторые исследователи связывали с контаминацией галогенных образований (ксенолиты их известны) или обработкой кимберлитов захороненными рассолами [12]. Однако, участие натрия в корреляционных комплексах с алюминием и кремнием не позволило согласиться с гипотезой о галогенных образованиях как источнике натрия в кимберлитах [1, 2, 3]. В настоящей работе мы имеем возможность сравнить химические составы кимберлитов трубки Мир в трех эмпирически полученных кластерах с разным содержанием Na₂O (табл. 4). Главными особенностями высоконатровых составов являются пониженное содержание алмазов и меньшая степень окисленности железа. Это свидетельствует о том, что повышение содержания натрия и понижение алмазоносности произошло за счет эндогенного материала. Об этом же свидетельствуют данные об обратной корреляции концентраций хромшпинелида и алмазоносности в тяжелой фракции кимберлитов трубки Мир [6].

Поиски эндогенных источников повышенных содержаний натрия в кимберлитах привели к необходимости сопоставить кимберлиты с повышенным содержанием натрия с относительными количествами содержащихся в них разных типов мантийных ксенолитов. В

результате было установлено [31], что количество ксенолитов магнезиальных эклогитов линейно связано с изменением натровости модальных популяций кимберлитов. Обогащение кимберлитов натрием в связи с присутствием в них ксенолитов эклогитов отмечалось и другими исследователями [15]. Все это позволяет считать пироксены эклогитов главным источником натрия в кимберлитах и одним из главных факторов нарушения корреляционных связей легких РЗЭ с СаО. Об этом же свидетельствуют низкие содержания РЗЭ в ксенолитах эклогитов (рис. 4). По той же причине, по-видимому, отсутствуют корреляционные связи легких РЗЭ с ТіО₂.

В кимберлитах, образованных при селективном плавлении гранатовых перидотитов, корреляционные связи легких РЗЭ с CaO (кальцитом) могут иметь большое петрологическое значение, поскольку кальций опосредованно отражает температурный режим формирования кимберлитовых расплавов. Это следует из особенностей селективного плавления перидотитов, которое начинается с клинопироксен-оливиновой котектики и в присутствии CO_2 приводит к образованию карбонатитовой жидкости. П. Уайли и В. Ли [33] в результате исследовании системы CaO-(Na₂O+K₂O)--(MgO+FeO)-(SiO₂+Al₂O₃)-CO₂ показали, что карбонатитовые магмы, образованные CO_2 -содержащими перидо-

Элементы		Трубка Мир	
	1 (168)	2 (18)	3 (17)
SiO ₂	31.51	30.45	32.51
TiO_2	1.42	1.43	1.38
Al_2O_3	2.32	2.37	2.66
Fe_2O_3	5.78	4.42	3.29
FeO	2.91	3.84	4.07
MgO	27.34	27.51	25.96
CaO	8.45	8.14	7.56
Na ₂ O	0.13	0.66	2.51
K_2O	0.64	1.07	1.43
P_2O_5	0.34	0.44	0.36
LOI	18.81	19.66	18.27
А, кар/10т	20.07	19.86	18.80

Средние содержания групп кимберлитов трубок Мир

титами, являются первой низкотемпературной частью непрерывной совокупности малообъемных частичных выплавок, включающих кимберлиты. Дж. Дальтон и Д. Пресналл [23] показали, что при 70 кбар даже небольшое повышение температуры всегда приводит к изменению состава от карбонатита к кимберлиту. Пределы колебаний температур

Рис. 4. Распределение хондрит-нормализованных значений содержаний РЗЭ в стандартном кимберлите (1), щелочном базальте (2), ксенолите гранатового перидотита в кимберлите (3), ксенолите эклогита в кимберлите (4) по материалам [8].

твенно. Для Алакитского поля, где Mg-кимберлиты присутствуют в подчиненных количествах, $T_n = 1430$ °C. В Далдынском поле, где Mgкимберлиты практически отсутствуют, $T_n = 1395$ °C. Кимберлитовые карбонатиты формируются, по-видимому, при $T_n \le 1100$ °C.

Таблица 4

Одним из главных минералов-концентраторов легких редких земель в породах мантии является клинопироксен (рис. 5), в котором лантаноиды могут замещать кальций по схеме гетеровалентного изоморфизма — (3Ca²⁺ — 2Ln³⁺) и (2Ca²⁺ — NaLn³⁺). Фиксируемый разброс значений ликвидусных температур в несколько сотен градусов и давлений в несколько десятков кбар создают, по всей видимости, благоприятную основу для возникновения вариаций содержания легких РЗЭ в расплавах, образующихся при селективном плавлении этой минеральной фазы. В процес-

О корреляции содержаний редкоземельных элементов с содержаниями породообразующих оксидов в кимберлитах разных провинций

Рис. 5. Распределение хондрит-нормированных значений средних содержаний редко- ний TiO, в кимберлитах земельных элементов в клинопироксенах (залитые кружки) и гранатах (открытые от первых десятых долей кружки) из алмазоносных эклогитов трубок Удачная и Мир [30] и из перидотита процента до 2,6 % дает UV100/91 трубки Удачная [16].

литов. Об этом свидетельствуют геологические, минералогические [3, 4] и экспериментальные данные. Согласно последним [17, 28] с увеличением равновесного давления содержания TiO₂ в клинопироксене и гранате перидотитов уменьшаются. Из этого следует, что содержание титана в селективных выплавках на основе этих минералов также будет уменьшаться при росте давления. Как следствие этого механизма наименее глубинные (≈ 150 км) популяции содержат наибольшее количество ильменита. В этой связи важно напомнить, что Бойд и Никсон [20] предполагали обогащение титаном и железом верхней части низкоскоростной зоны астеносферы (200-150 км).

Изменение содержавозможность для значительных колебаний со-

се плавления происходит интенсивное экстрагирование некогерентных элементов, следствием чего является относительное обогащение остаточных фаз когерентными элементами. Деплетированные легкими РЗЭ клинопироксен и гранат из некоторых перидотитов (см. рис. 5) могут, в таком контексте, рассматриваться как пример образовавшегося в процессе кимберлитогенеза мантийного рестита.

Корреляция тяжелых РЗЭ преимущественно с оксидами ильменитового комплекса позволяет считать ильменит минералом- концентратором тяжелых РЗЭ в кимберлитах. Этот факт открывает широкие возможности для использования тяжелых РЗЭ при петрологических реконструкциях, так как содержания TiO₂ в кимберлитах являются индикатором глубины формирования популяций кимбер-

держаний тяжелых РЗЭ. Кроме того, следует учитывать и изменения в составе ильменитов разных диатрем (Соболев, 1974), которые могут сопровождаться значительными изменениями в составе и содержаниях РЗЭ.

Один из тяжелых РЗЭ — Үb помимо корреляции с TiO, обнаруживает значительную положительную корреляцию с MgO и K₂O и отрицательную — с СаО, что, по-видимому, отражает возможность для Уb помимо 3-х валентного состояния находиться также и в 2-х валентном состоянии (табл. 10). Увеличение содержаний Уb в разновидностях с высоким содержанием К₂О происходит в связи с тем, что в исследованную коллекцию составов кимберлитов вошло значительное количество анализов слюдяных кимберлитов (К₂O>1.2%)

[3], в которых повышение содержаний K₂O произошло в связи с присутствием в зонах магмогенеза наряду с перидотитами также и богатых калием пироксенитов [5].

Соотношение суммарных содержаний легких РЗЭ к суммарному содержанию тяжелых коррелируется положительно с СаО и отрицательно — с МgО. Это свидетельствует о том, что легкие РЗЭ накапливаются в карбонатных разновидностях кимберлитов. Об этом же свидетельствуют хондрит-нормированное распределение РЗЭ в трех группах разновидностей кимберлитов всех популяций исследованной коллекции составов кимберлитов (рис. 6). На этом рисунке вариационная кривая содержаний РЗЭ в кальциевых кимберлитах занимает верхнее положение в области легких РЗЭ и нижнее — в области тяжелых РЗЭ. Группа магнезиальных кимберлитов относительно обогащена тяжелыми и обеднена легкими РЗЭ.

Установленные корреляции позволяют использовать показатель степени фракционирования РЗЭ для отнесения кимберлитов к одной из петрохимических разновидностей, подобно тому как используется показатель CaO/MgO в классификационной схеме (табл. 1), а также для вычисления содержаний оксидов по содержаниям РЗЭ и наоборот (табл. 5, 6). Выводы. Содержания РЗЭ в породах кимберлитовой формации коррелируются с содержаниями породообразующих оксидов. Сравнение проведено методом сопоставления средних составов петрохимических разновидностей пород кимберлитовой формации. В результате было установлено:

- легкие РЗЭ отрицательно коррелируются с SiO₂, Na₂O и Al₂O₃;

- La и Pr положительно коррелируются с CaO;

- тяжелые РЗЭ положительно коррелируются с TiO₂ и ∑FeO;

- Yb также коррелируется положительно с MgO, K₂O и отрицательно с CaO;

- Lu коррелируется положительно с Al2O3 и отрицательно с CaO;

- отношение суммарного содержания легких РЗЭ к суммарному содержанию тяжелых РЗЭ коррелируется положительно с CaO и отрицательно с MgO;

- карбонатные разновидности кимберлитов обогащены легкими и обеднены тяжелыми РЗЭ;

- магнезиальные разновидности кимберлитов обогащены тяжелыми и обеднены легкими РЗЭ.

Оценивая в целом полученные результаты отметим, что содержания РЗЭ в породах кимберлитовой формации отражают все факторы колебания химических составов пород, учитываемые петрохимической моделью кимберлитовой формации.

Рис. 6. Распределение хондрит-нормированных значений средних содержаний редкоземельных элементов в группах разновидностей кимберлитов: 1 — карбонатных кимберлитов, 2 — кимберлитов, 3 — магнезиальных кимберлитов.

Индивидуальные особенности РЗЭ и изменчивость составов главных минералов-концентраторов РЗЭ в кимберлитах (кальцит, ильменит) позволяют надеяться на получение дополнительной петрологической информации. В числе новой информации может оказаться и зависимость алмазоносности кимберлитов от набора и содержаний РЗЭ. В пользу этого свидетельствуют корреляционные связи РЗЭ с петрохимическими показателями, с которыми установлены связи с алмазоносностью кимберлитов [31], но также и способность РЗЭ восстанавливать окислы до металлов, а СО и СО, до углерода. Наличие восстановленных

О корреляции содержаний редкоземельных элементов с содержаниями породообразующих оксидов в кимберлитах разных провинций

Таблица 5

Уравнения эмпирической регрессии между средними содержаниями РЗЭ

			n	* *	* **		y=a+bx	
JN≌ 11/11	Функция (у)	Apryment (x)	11	1 _{xy} .	1 ₀₁	а	b	S
1	La	SiO,	15	-0.84	0.64	361.608	-7.7331	29.6626
2	Ce	SiO,	15	-0.80	0.64	593.161	-12.2635	54.6198
3	Pr	SiO,	9	-0.82	0.80	53.098	-1.0998	7.0103
4	Nb	SiO,	15	-0.73	0.64	177.665	-3.4442	19.1188
5	Sm	SiO,	15	-0.73	0.64	21.461	-0.4024	2.2283
6	Eu	SiO,	15	-0.70	0.64	4.822	-0.0852	0.5156
7	Gd	SiO,	14	-0.58	0.66	11.416	-0.1899	1.6055
8	∑(La-Eu)	SiO,	15	-0.82	0.66	1121.41	-24.9317	104.4683
9	Tb	TiO,	15	0.80	0.64	0.2862	0.1977	0.1082
10	Dy	TiO,	14	0.67	0.66	1.4045	0.9834	0.8280
11	Но	TiO,	13	0.71	0.68	0.2567	0.1212	0.0921
12	Er	TiO,	14	0.68	0.66	0.4591	0.3835	0.3178
13	Tm	TiO,	8	0.94	0.83	0.0532	0.0482	0.0169
14	Yb	TiO,	15	0.76	0.64	0.3622	0.2207	0.1392
15	∑(Tb-Yb)	TiO,	15	0.71	0.66	2.2978	2.1021	1.5541
16	Lu	Al ₂ O ₃	14	0.82	0.66	0.0198	0.0266	0.0163
17	$\frac{\sum(\text{La-Eu})}{\sum(\text{Tb-Yb})}$	MgO	15	-0.78	0.66	334.7770	-9.3495	36.2187

и породообразующими оксидами

*r – коэффициент корреляции; **r – коэффициент корреляции для 99% вероятности; s – приведенная стандартная ошибка оценки.

Таблица 6

Уравнения эмпирической регрессии между средними содержаниями породообразующих оксидов и средними содержаниями РЗЭ

No. 17/17	<u>Фуннения</u> (у)		N	r *			y=a+bx	
JN≌ 11/11	Функция (у)	Apryment (x)	1N	I _{xy} .	I ₀₁	a	b	S
1	SiO ₂	La	15	-0.84	0.64	42.1632	-0.0912	3.2212
2	SiO,	Ce	15	-0.80	0.64	42.1671	-0.0521	3.5618
3	SiO,	Pr	9	-0.82	0.80	42.4845	-06353	4.7828
4	SiO,	Nb	15	-0.73	0.64	42.0523	-0.1548	4.0534
5	SiO,	Sm	15	-0.73	0.64	43.0099	-1.3280	4.0480
6	SiO ₂	Eu	15	-0.70	0.64	43.6340	-5.7515	4.2374
7	SiO ₂	Gd	14	-0.58	0.66	41.0452	-1.8173	4.9658
8	SiO,	∑(La-Eu)	15	-0.82	0.66	42.5225	0.02668	3.4226
9	TiO ₂	Tb	15	0.80	0.64	-0.4635	3.2652	0.4397
10	TiO ₂	Dy	14	0.67	0.66	0.0931	0.4595	0.5660
11	TiO,	Но	13	0.71	0.68	-0.3534	4.1140	0.5348
12	TiO,	Er	14	0.68	0.66	0.1774	1.1989	0.5619
13	TiO,	Tm	8	0.94	0.83	18.1746	0.0482	0.3274
14	TiO ₂	Yb	15	0.76	0.64	-0.3889	2.61998	0.1392
15	TiO,	∑(Tb-Yb)	15	0.71	0.66	0.1188	0.2376	0.5225
16	Al_2O_3	Lu	14	0.82	0.66	0.3518	25.3316	0.5019
17	MgO	$\frac{\sum (\text{La-Eu})}{\sum (\text{Tb-Yb})}$	15	-0.78	0.66	31.7297	-0.0647	3.0132

*r – коэффициент корреляции; **r – коэффициент корреляции для 99% вероятности; s – приведенная стандартная ошибка оценки металлов и углерода в селективных выплавках кимберлитового состава должно увеличивать кинетическую активность процессов образования алмазов.

Приведенные в настоящей работе материалы о количестве петрохимических разновидностей пород кимберлитовой формации и сложном строении отдельных кимберлитовых диатрем с очевидностью свидетельствуют о необходимости проводить исследования поведения РЗЭ на петрохимической основе. Данные о содержаниях РЗЭ следует сопровождать содержаниями породообразующих оксидов.

ЛИТЕРАТУРА

1. Василенко В.Б., Зинчук Н.Н., Кузнецова Л.Г., Серенко В.П., Хлестов В.В. Петрохимия и алмазоносность кимберлитов Якутии // Докл.РАН, 1994. Т.338. № 1. — С. 85-88.

2. Василенко В.Б., Зинчук Н.Н., Кузнецова Л.Г., Серенко В.П. Петрохимическая модель кимберлитовой трубки Мир // Геология и геофизика., 1996. № 2. — С. 97-110.

3. Василенко В.Б.; Зинчук Н.Н.; Кузнецова Л.Г. Петрохимические модели алмазных месторождений Якутии. — Новосибирск: Наука, 1997. — 557 с.

4. Василенко В.Б., Зинчук Н.Н. Кузнецова Л.Г., 2000. К методологии геологического картирования кимберлитовых объектов на петрохимической основе // Петрография на рубеже XXI века. Итоги и перспективы. Второе Всероссийское петрографическое совещание. Сыктывкар. — С. 261-264.

5. Василенко В.Б.; Зинчук Н.Н.; Кузнецова Л.Г. О сопряженности составов глубинных включений и петрохимических разновидностей кимберлитов в диатремах Якутии // Петрология — 2001. — Т. 9. — N 2. — С. 209-220.

6. Зольников Г.В., Филиппов Н.Д. О содержаниях титана и хрома в компонентах кимберлитовой брекчии // Магматические образования Северо-Востока Сибирской платформы. — Якутск: ЯФ СО АН СССР, 1975. — С. 169-177.

7. Илупин И.П., Ваганов В.И., Прокопчук Б.И. Кимберлиты. — М.: Недра, 1990. — 248 с.

8. Каминский Ф.В., Сазонова О.Ф., Францессон Е. В. О содержании редкоземельных элементов в кимберлитах и ультраосновных включениях // Геохимия, 1978, № 7. — С. 1008-1094.

9. Крамбейн У., Грейбилл Ф. Статистические модели в геологии. М.: Мир, 1969. 400 с.

10. Крамбейн У., Кауфмен М., Мак-Кемон Р. Модели геологических процессов. М.: Мир, 1973. — 149 с.

11. *Маршинцев В.К.* Вертикальная неоднородность кимберлитовых тел Якутии. Новосибирск: Наука, 1986. — 240 с.

12. Павлов Д.И., Илупин И.П., Горбачева С.А. Захороненные рассолы Сибирской платформы как возможный фактор преобразования первичного состава кимберлитов // Изв. АН СССР. Сер. геол.. 1985. № 3. — С. 44-53.

13. Соболев Н.В. Глубинные включения в кимберлитах и проблема состава верхней мантии. — Новосибирск, Наука. 1974. — 264 с.

14. *Перчук Л.Л., Ваганов В.И.*, 1978 Природа кимберлитов Якутии // Проблемы петрологии земной коры и верхней мантии. — Новосибирск: Наука. — С. 27-48.

15. Уханов А.В., Рябчиков И.Д., Харькив А.Д. Литосферная мантия Якутской кимберлитовой провинции. М.: Наука, 1988. — 286 с.

16. Шимизу Н., Похиленко Н.П., Бойд Ф.Р., Пирсон Г. Д. Геохимические характеристики мантийных ксенолитов из кимберлитовой трубки Удачная // Геол. и Геоф. 1997. Т. 38. № 1. — С. 194-205.

17. *Akella, J., Boyd, F.R.,* 1972.Partitioning of Ti and Al between pyroxenes, garnets and oxides. Carnegie Inst. Washington. Year Book 71. — P. 378-384.

18. *Berg, G.W.*, 1990. Aegirine and the geochemistry of sodium in kimberlite. Geocongress, 1990, Cape Town, Abstr. — P. 45.

19. *Berg, G.W.*, 1998. Geochemical Relations which reflect the History of Kimberlites from the Type area of Kimberley, South Africa. 7th Internatiolan Kimberlite Conference. Extended abstracts. Cape Town, 1998. — P. 76-78.

20. *Boyd, F.R., Nixon, P.H.*, 1973. Origin of the Ilmenite-Silicate Nodules in Kimberlites From Lesotho and South Africa // Lesotho Kimberlites, Ed. P.H.Nixon, Lesotho Nat. Corp., Maseru. — P. 254-268.

21. *Chakhmoradian, A.R., Mitchell, R.H.*, 1999. Niobian ilmenite, hidroxylapatite and sulfatian monazite: alternative host for incompatible elements in calcite kimberlite from International'naya, Yakutia // Canad. Miner. Vol 37. N 5. — P. 1177-1189.

22. Clement, C.R., Skinner, E.M.W., Scott-Smith, B.H., 1984. Kimberlite Redefined // Journ. Geol. 92. — P. 223-228.

23. *Dalton, J.A., Presnall, D.C.,* 1997. Phase relations in the system CaO–MgO–Al₂O₃–SiO₂–CO₂ from 3.0 to 7.0 GPa: carbonatites, kimberlites and carbonatite-kimberlite relations. GAG/MAC Ann. Meeting, Abstr. — P. 34.

24. Edwards, D., Rock, N.M..S., Taylor, W.R., Griffin, B.J., Ramsay, R.R. Mineralogy and petrology of the Aries diamondiferous kimberlite pipe, central Kimberley block, West Australia // J.Petrol. 1992.V. 33. N5. — P. 965-1005.

25. Fieremans, M., Hertogen, J., Demaiffe, D. Petrography, geochemistry and strontium isotopic composition of the Mbuji-Mayi and Kundelungu kimberlites (Zaire)//Kimberlites. I: Kimberlites and related rocks, (ed. J. Kornprobst). Amsterdam: Elsevier. 1984. — P. 110-120. О корреляции содержаний редкоземельных элементов с содержаниями породообразующих оксидов в кимберлитах разных провинций

26. *Frey, F.A., Haskin, L.A., Haskin, M.A.* Rare-earth abundances in some ultramafic rocks // J. Geophys. Res. 1971. V. 76. N 8. — P. 2057-2070.

27. *Larsen,L.M., Rex, D.C.*, 1992. A review of the 2500 Ma span of alkaline-ultramafic, potassic and carbonatitic magmatism in West Greenland // Lithos. Vol. 28. N 3-6. — P. 367-402.

28. *Ringwood, A.E.*, 1975. Composition and Petrology of the Earths Mantle. McGraw-Hill, Book Company, New York. — 618 p.

29. *Scott-Smith, B.H., Skinner, E.M., Clement, C.R.,* 1983. Further data on the occurence of pectolite in kimberlite. Min.Mag. V. 47. — P. 75-78.

30. Taylor, L.A., Snyder, G.A., Crozaz, G., Sobolev, V.N., Yefimova, E.S., Sobolev, N.V., 1996. Eclogitic inclusions in diamonds: evidence of complex mantle processes over time // Earth and Planetary Science Letters, 142. — P. 535-551. 31. Vasilenko, V.B., Zinchuk, N.N., Krasavchikov, V.O., Kuznetsova, L.G., Khlestov, V.V., Volkova, N.I., 2002. Diamond potential estimation based on kimberlite major element chemistry // J. Geochemical Explor. V. 76, N 2. — P. 93-112.

32. Vasilenko, V.B., Zinchuk, N.N., 2003. Mantle plumes as determining factor of vertical migration of magma generation zones, fixed the bulk kimberlite composition // Plumes and problems of deep sources of alkaline magmatism. Proceedings of the International Conference / Khabarovsk, Publishing House of the Irkutsk State Technical University. P. 96-114.

33. *Wyllie*, *P.J.*, *Lee*, *W.-J.*, 1998. Kimberlites, carbonatites, peridotites and silicate-carbonate liquid immiscibility explained in CaO–(Na_2O+K_2O)–(MgO+FeO)–($SiO_2+Al_2O_3$)– CO_2 // Seventh Intern. Kimb. Conf. Extended abstracts. Cape Town. — P. 974-976.