УДК 552.43(470.323)

СОСТАВ АПАТИТА ИЗ ПОРОД РАЗНОВОЗРАСТНЫХ ЖЕЛЕЗИСТО-КРЕМНИСТЫХ ФОРМАЦИЙ ВОРОНЕЖСКОГО КРИСТАЛЛИЧЕСКОГО МАССИВА — КАК ПОКАЗАТЕЛЬ ФЛЮИДНОГО РЕЖИМА МЕТАМОРФИЗМА

Савко К.А., Пилюгин С.М., Новикова М.А.

Воронежский университет

Изучены минеральные парагенезисы морфология и состав апатитов из разновозрастных железистокремнистых формаций (ЖКФ) Воронежского кристаллического массива. В мезоархейских ЖКФ установлено две генерации апатита, различающиеся по составу и морфологии. На пике метаморфизма мезоархейской ЖКФ (более 900 °C) был устойчив фторапатит, сохранившийся в виде мелких кристаллов, заключенный в крупных зернах орто- и клинопироксенов. Метаморфический флюид характеризовался достаточно высокими фугитивностями НF. Апатиты второй генерации кристаллизовался во время второго и (или) третьего более низкотемпературных (700 °C) метаморфических событий. Он присутствуют в участках развития более поздних по отношению к крупным орто- и клинопироксенам минералов — граната, грюнерита, хлорита. По составу апатит второй генерации отвечает гидроксил-апатиту с примесью хлора, что свидетельствует о водно-солевом составе равновесного флюида. Это подтверждается находкой псевдовторичных водно-солевых флюидных включений с низкими концентрациями 1.9–4.9 мас.% NaCl экв.

В магнетитовых кварцитах неоархейской и палеопротерозойской ЖКФ устойчивы фторапатиты. Изучение составов апатитов показало снижение фугитивности фтора в метаморфическом флюиде от мезоархея до палеопротерозоя, чем обусловлено уменьшение количества апатита в породах неоархейских и палеопротерозойских железисто-кремнистых формаций относительно мезоархейских.

введение

Апатит $Ca_5(PO_4)_3(OH, F, Cl)$ обычный минерал метаморфических пород практически любого состава (пелитового, карбонатного, основного и ультраосновного). Апатит встречается в широком диапазоне температур и давлений от диагенеза и анхиметаморфизма до гранулитов и ультравысокобарических алмазосодержащих пород. Широкое распространение апатита обусловлено присутствием в большинстве пород слагающих его компонентов P, Ca и F (Cl).

Хотя изменения составов апатита хорошо изучены в магматических процессах, исследований вариаций состава метаморфического апатита относительно немного. Они сфокусированы на фугитивности компонентов метаморфического флюида в апатитсодержащих образцах (*Коржинский, 1981;* Yardley, 1985; Smith, Yardley, 1999), апатит-биотит-OH-F термометрии (Stormer, Carmichael, 1971; Ludington, 1978; Sallet, 2000) и распределением компонентов между флюидом и апатитом (Zhu, Sverjensky, 1991, 1992; Brennan, 1993). Для железисто-кремнистых формаций (ЖКФ) таких исследований не проводилось.

Анионный комплекс в метаморфических апатитах включает F и OH (Капустин, 1987), что особенно характерно для метаосадочных пород. Большинство, если не все метаморфические апатиты являются фтористыми конечными членами (фтор-апатитами) (Spear, Pyle, 2003). По данным Ф. Спира и Дж. Пайла (Spear, Pyle, 2003) F/(F+OH) обычно варьирует от 0,4 до 1,0, составляя в среднем 0,85. Таким образом, широкое распространение апатита в метаморфических породах может быть обусловлено наличием в них фтора также как и фосфора. Апатиты с высоким содержанием хлора установлены только в метаэвапоритах, метаморфизованных мафических изверженных породах и жилах в кремнистых мраморах (Penniston-Dorlan, Ferry, 2005)

Фтор и хлор неодинаково распределяются между апатитом и метаморфическим флюидом. Фтор по сравнению с хлором характеризуется очень высокой степенью вхождения в твердый апатитовый раствор, что обусловлено их различиями в ионных радиусах (Cl⁻ = 1.81 Å, F⁻ = 1.33 Å) и отсю-

[©] Савко К.А., Пилюгин С.М., Новикова М.А., 2007

да — различным распределением между флюидом и апатитом. При равных молярных объемах F, Cl и ОН ($X_{F}=X_{CI}=X_{OH}=1/3$) в апатите отношение активностей этих компонентов во флюиде будет составлять $a_{\rm HF}^{}/a_{\rm H2O}^{}$ =10^{-5.2} и $a_{\rm CI}^{}/a_{\rm H2O}^{}$ =10^{-2.8} (Smith, Yardley, 1999). Это значит, что при равных концентрациях фтора и хлора в апатите, во флюиде количество ионов хлора будет на два порядка превышать количество ионов фтора. Эти данные подтверждаются экспериментальными исследованиями (Коржинский, 1981), в результате которых был сделан вывод, что при равной активности фтора и хлора во флюиде $(a_{HCI}/a_{HF} = 1)$ сосуществующий апатит будет явно фтористым. С ростом температуры дегидратация водных силикатов приводит к увеличению H₂O в составе флюида (Коржинский, 1981; Spear, Pyle, 2003), в результате чего породы будут содержать все меньше хлора относительно фтора. Существуют противоречивые представления о смесимости F и Cl в апатите, хотя в последних работах, посвященных этому вопросу, доказывается идеальная смесимость в апатитовом твердом растворе (Hughes et al., 1989, 1990; Nijland et al., 1993; Tacker, Stormer, 1989).

Цель настоящей работы заключается в изучении минеральных парагенезисов и изменения состава апатита из мезоархейских, неоархейских и палеопротерозойских железисто-кремнистых формаций докембрия курской аномалии Воронежского кристаллического массива для выделения различных генераций, отвечающих разновозрастным метаморфическим событиям.

ГЕОЛОГИЯ ДОКЕМБРИЙСКИХ ЖЕЛЕЗИСТО-КРЕМНИСТЫХ ФОРМАЦИЙ ВКМ

Железистые формации в докембрии Курского блока установлены на трех стратиграфических уровнях: мезоархейском, неоархейском и палеопротерозойском (Щеголев, 1985).

В мезоархее породы железистой формации развиты ограниченно в пределах мелких положительных магнитных аномалий эллипсовидной, серповидной и полосовидной формы (Ушаковские, Кувшиновские, Будановские, Бесединские и др.) и представлены эвлизитами, метаморфизованными в условиях гранулитовой фации. Эти реликты выделяются среди мигматитов и гнейсов нерасчлененного обоянского архейского комплекса, развитого в центральной части ВКМ и метаморфизованного преимущественно в регрессивной амфиболитовой фации (рис. 1). В железистых кварцитах

мезоархея ВКМ обнаружены структуры распада в сосуществующих моноклинных и ромбических пироксенах. Такие структуры в породах первично осадочного происхождения представляют собой уникальное явление и были описаны всего в трех местах: Миннесота (Bonnichsen, 1969), Монтана (Vaniman et al., 1980) и комплекс Напиер, Антарктика (Sandiford, Powell, 1986; Harley, 1987). По составам продуктов распада были восстановлены первичные составы сосуществующих клинопироксена и пижонита. Установлено, что кристаллизация этих минералов, отвечающая первичному (пиковому) метаморфизму пород, происходила при температурах более 900 °С (Fonarev et al., 2006). Методами микротермометрии (криотермометрии) в железистых кварцитах были обнаружены первичные флюидные (углекислотные) включения очень высокой плотности (р=1.152 г/см³) с температурой гомогенизации равной -49.2 °С. По ним было определено давление метаморфизма пород 10-11 кбар (Fonarev et al., 2006).

В неоархее породы железистой формации принимают участие в строении зеленокаменных поясов и находятся в тесной ассоциации с амфиболитами (*Щеголев, 1985*). Они образуют вытянутые тела длиной до 10 км относительно небольшой мощности (до 100 м) и представлены кварц-магнетит-гранат-грюнеритовыми породами. Условия метаморфизма, определенные для тел Западно-Коденцовского участка составляют: T=650±30 °C, P=5 кбар, lgfO₂ = -17 – (-20) (Савко, 1994).

В пределах Тарасовских аномалий (рис. 1) породы ЖКФ наиболее достоверно отнесены к неоархею, так как от палеопротерозойских и мезоархейских разрезов их отличает большой объем метаэффузивов основного и кислого состава и характерные текстурно-структурные и минералогические особенности самих железистых кварцитов. В железистых кварцитах Тарасовских аномалий КМА установлены обломки вулканических пород, что доказывает их вулканогенно-осадочный генезис. По минеральным парагенезисам и зональности гранатов в амфиболитах, вмещающих железистые кварциты, предполагается два эпизода метаморфизма: 1 — ранний высокотемпературный (600-650 °C) и второй низкотемпературный (450-500 °C). Давления при метаморфизме оценены 4-5 кбар (Савко и др., 2004). Низкотемпературный эпизод подтверждается ретроградными каймами роговой обманки по грюнериту в железистых кварцитах и оценками температур для метапелитов.

Условные обозначения: 1 - нерасчлененные плагиогнейсы, мигматиты обоянской серии; 2 - высокоглиноземистые метапелиты;

3 - мафитовые и ультрамафитовые гранулиты; 4 - микроклиновые и плагиоклаз-микроклиновые граниты; 5 - тела эвлизитов;

6 - тектонические нарушения; 7 - местоположение скважин и их номера; 8 - геологические границы; 9 - индекс обоянской серии

Наибольшим распространением в пределах КМА пользуются палеопротерозойские ЖКФ, относимые к курской серии. Слагающие их породы протягиваются в виде двух полос (Щигровско-Оскольской — восточной и Михайловско-Белгородской — западной) северо-западной ориентировки более чем на 550 км (рис. 1).

Железистые кварциты месторождений Щигровско-Оскольской (восточной) и Михайловско-Белгородской (западной) структур отличаются друг от друга химическим составом, параметрами метаморфизма и как следствие содержат различные минеральные парагенезисы. Железистые кварциты железорудных месторождений Михайловско-Белгородской полосы отличаются от известных докембрийских железистых формаций очень низкой глиноземистостью и высоким отношением Fe³⁺/ (Fe³⁺⁺Fe²⁺). В них на начальных этапах метаморфизма были устойчивы кварц, карбонаты, оксиды железа и калиевые слюды специфического состава. При повышении температуры кристаллизуются тетраферрибиотит, селадонит и рибекит. В дальнейшем в зависимости от значений фугитивности кислорода — выше или ниже гематит-магнетитового буфера в отдельных прослоях образуются парагенезисы Aeg+Hem и Rbk+Mag. Температуры метаморфизма оцениваются как 350–510 °C при давлениях 2-3 кбар, активности натрия log[a(Na⁺)/a(H⁺)] = 5.5-6.0 и фугитивности килорода выше гематит-магнетитового буфера в прослоях, содержащих парагенезис Aeg+Hem, и ниже в прослоях с парагенезисом Rbk+Mag (Савко, Поскрякова, 2003).

По химическому составу железистые кварциты железорудных месторождений Оскольско-Щигров-

ской полосы отличаются от железистых кварцитов западной Михайловско-Белгородской полосы большей глиноземистостью, меньшими значениями отношения Fe³⁺/(Fe³⁺⁺Fe²⁺). Это обусловлено положением железистых кварцитов восточной и западной полос на фациальном профиле осадконакопления (Плаксенко, 1966). Железистые осадки восточной полосы формировались ближе к береговой линии, чем западной и содержат большее количество привнесенного терригенного материала. Специфика химического состава отражает и различия в минеральных парагенезисах: тетраферрибиотит, селадонит, рибекит, эгирин в железистых кварцитах западной полосы, ферривинчит, актинолит, эгирин-авгит, стильпномелан и биотит в железистых кварцитах восточной полосы (Савко, Поскрякова, 2003, 2004; Савко, 2006). Кроме того, железорудные толщи восточной полосы подверглись более высокотемпературному метаморфизму 430-630 °С при давлениях 3-5 кбар при меньших значениях фугитивности кислорода и близкой активности натрия в метаморфическом флюиде (Савко, Кальмуцкая, 2002; Савко, 2006).

МЕТОДЫ ИССЛЕДОВАНИЙ

В процессе полевых работ нами был детально задокументирован керн скважин, вскрывших мезоархейские ЖКФ: скв. 3504 и 3588 (Курско-Бесединский блок), неоархейские ЖКФ скв. 3147 и 3145 (Тарасовские аномалии), палеопротерозойские ЖКФ скв. 3911 (Шемраевское месторождение), а также обнажения железистых кварцитов в Лебединском и Стойленском железорудных карьерах. Из отобранных образцов были изготовлены прозрачно-полированные шлифы для изучения минералогии пород и непосредственно апатита. Для микрозондовых исследований были выбраны шлифы железистых кварцитов, содержащих апатит.

Локальные анализы апатитов и снимки в отраженных электронах выполнены на электронном микроскопе "CamScan" с системой количественного энергодисперсионного анализа "Link" (Институт экспериментальной минералогии РАН) и электронном микроскопе Jeol 6380LW с системой количественного энергодисперсионного анализа "Inca (ВГУ)". Условия анализа: ускоряющее напряжение 20 кв, ток зонда 1,2 mA, время набора спектра 70 сек, диаметр пучка 1-3 мкм. ZAF коррекция при расчете содержания окислов и оценка точности проводились с помощью комплекта программ математического обеспечения системы. Точность анализа систематически контролировалась по эталонным образцам природных и синтетических минералов.

АПАТИТЫ ИЗ ЖКФ КМА

Апатит из мезоархейской ЖКФ Курско-Бесединского участка был изучен в образцах 3504/V16, 3588/V8 и 3588/250. В этих же образцах ранее изучались структуры распада в пироксенах (Fonarev et al., 2006). В мезоархейских двупироксен-магнетитовых кварцитах Курско-Бесединского блока по составу и морфологии можно выделить две генерации апатитов. Апатит первой (ранней) генерации образует мелкие субизометричной формы или слабо удлиненные кристаллы размером обычно 20-30 мкм редко до 40 мкм в поперечнике виде включений в крупных ортопироксенах со структурами распада клинопироксенов (рис. 2 а, г, е). Иногда апатиты имеют непосредственные контакты с магнетитом, клинопироксеном и кварцем (2 б, в, д). Апатиты первой генерации отвечают по составу фторапатиту, имеющему $X_{F} = 0,91-0,99$, X_{с1}=0-0,09, Х_{он}=0-0,06 (табл. 1). Одно зерно апатита обнаруживает зональность, выраженную в увеличении от центра к краю содержания F (от 0,68 до 0,95-0,97) и уменьшении ОН (от 0,28 до 0,3) (табл. 1). Другие кристаллы апатитов почти незональны. В апатитах, где отношение Са/Р=1,67-1,70 отмечается дефицит фосфора, где оно находится в интервале 1,63-1,65 дефицит кальция. В качестве примесей в апатите присутствует кремний (SiO₂ = 0,17-0,57 мас. %), алюминий (Al₂O₂ = 0-0,26 мас. %), железо (FeO = 0,59-1,13 мас. %), магний (MgO = 0-0,20 мас. %) и натрий (Na₂O = 0-0,25 мас. %) (табл. 1).

Фторапатиты часто обнаруживают избыток галогенов относительно стехиометрии идеального апатита (F+Cl+OH > 1) (табл. 1). Как было показано рядом авторов, такой избыток галогенов в кристаллохимической формуле является реальным свойством апатита, а не аналитическим артефактом (Boudreau, Kruger, 1990; Nijland et al., 1993). Это может быть связано с неупорядоченностью структуры гексагонального апатита в условиях гранулитовой фации (Nijland et al., 1993).

Кристаллы апатита второй генерации в основном имеют более крупные размеры (30-80 мкм) (рис. 3), преимущественно овальной формы. Апатит встречается в виде включений в кристаллах граната (рис. 3 a, е) или в гранатовых каймах между кварцем и магнетитом (рис. 3 б, в), а также в непосредственном контакте с кварцем, магнетитом и грюнеритом (рис. 3 a, в, д), в кварцевых прожилках (рис. 3 ж).

Рис. 2. Минеральные парагенезисы и морфологические типы апатитов ранней генерации из мезоархейских высокометаморфизованных железистых кварцитов Курско-Бесединского блока.

Обр. 3588/250. Электронный микроскоп Jeol 6380LW. Номера точек на рисунках соответствуют номерам микрозондовых анализов апатитов в табл. 1.

¢	σ
- 5	Ę
Ē	1
Ú	Ċ.
2	2

Составы апатитов ранней генерации из мезоархейских жепезистых квариитов КМА (Обр. 3504/V16)

Np-14	0.42	I	ı	0.78	I	1	54.02	0.09	10.75	0.21	3.54	<u>18.96</u>	0.04	ı	I	0.06	ı	I	5.16	0.02	3.08	1.00	0.03	0.97	0.03	ı	1.68	·
Ap-13 A	0.12			0.66			54.43 5		41.37 4	0.33	3.55	99.46 5	0.01			0.05		•	5.17	-	3.10	1.00	0.05	0.95	0.05	•	<i>I.67</i>	
Ap-12	0.33			0.89			54.72		41.02	0.18	3.29	100.43	0.03			0.07		•	5.19	-	3.07	0.92	0.03	0.92	0.03	0.05	1.69	-2.00
Ap-11	0.32	0.22	0.10	0.80	1		54.05	1	40.82	0.06	4.07	100.43	0.03	0.01	0.01	0.06	ı	I	5.15	1	3.07	1.15	0.01	0.99	0.01	ı	1.68	1
Ap-10	0.30			0.59	•		53.48		40.93	0.28	3.60	99.38	0.03			0.04	ı	ı	5.14	I	3.11	1.02	0.04	0.96	0.04	ı	1.65	ı
Ap-9	0.33	1	0.11	1.07	ı		53.86		40.12	0.10	4.24	100.13	0.03	1	0.01	0.08	ı		5.20	I	3.06	1.21	0.02	0.98	0.02	ı	<i>I.70</i>	ı
Ap-8	0.26	1	1	0.42	ı	0.13	54.25		41.16	0.19	3.44	99.85	0.03	1	ı	0.03	ı	0.02	5.16	ı	3.10	0.97	0.03	0.97	0.03	ı	<i>1.66</i>	ı
Ap-7	0.27			0.29	1	0.20	54.18	0.22	41.89	0.30	2.43	99.78	0.02			0.02	ı	0.03	5.10	0.04	3.11	0.68	0.04	0.68	0.04	0.28	1.64	-2.82
Ap-6	0.57	ı	ı	0.66	I		53.51	ı	41.20	0.11	3.38	99.43	0.05	ı	ı	0.05	ı	I	5.10	-	3.10	0.95	0.02	0.95	0.02	0.03	1.65	-1.78
Ap-5	0.82	ı	ı	0.81	I	0.11	53.45	0.11	40.52	0.14	3.53	99.41	0.07	ı		0.06	I	0.01	5.11	0.02	3.06	1.00	0.02	0.98	0.02	ı	<i>I.67</i>	I
Ap-4	0.31	ı	ı	1.13	I	ı	53.28	0.15	41.21	•	3.34	100.12	0.03	ı	ı	0.08	ı	ı	5.08	0.03	3.11	0.94	I	0.94	ı	0.06	1.63	-2.08
Ap-3	0.31		ı	0.74	0.13	0.18	53.09	1	40.54	0.53	3.91	99.43	0.03	ı		0.06	I	ı	5.12	I	3.09	1.11	0.08	0.93	0.07	ı	<i>1.66</i>	I
Ap-2	0.18	I	0.26	0.79	1	I	53.75	I	41.53	0.46	3.62	100.09	0.02	I	0.03	0.06	ı	ı	5.09	I	3.11	1.01	0.07	0.94	0.06	ı	1.64	I
Ap-1	0.53	I	0.10	0.71	I	ı	53.41	0.25	40.17	0.79	4.49	100.45	0.05	I	0.01	0.05	I	ı	5.15	0.04	3.06	1.28	0.12	0.91	0.09	ı	1.68	I
№ анализа	SiO_{2}	TiO,	Al,O,	FeO	MnO	MgO	CaO	$Na_{2}O$	$P_{2}O_{5}$	CI	Ч	Сумма	Si	Ϊ	Al	Fe	Mn	Mg	Ca	Na	Р	F	CI	$X_{_{F}}$	X_{ci}	$^{_{HO}}X_*$	Ca/P	$\log{(f_{_{HF}}/f_{_{H2O}})_{fluid}}$

Состав апатита из пород разновозрастных железисто-кремнистых формаций воронежского кристаллического массива — как показатель флюидного режима метаморфизма

Таким образом апатиты второй генерации присутствуют в участках развития более поздних по отношению к крупным орто- и клинопироксенам минералов — граната, грюнерита, хлорита, перекристаллизованного кварца. Эти апатиты отвечают по составу гидроксилапатиту с заметной примесью хлора X_{CI} =0,15-0,41, X_{OH} =0,59-0,85 (табл. 2), причем фтор в них не установлен. В незначительных количествах в апатиты содержат SiO₂, TiO₂, FeO, MgO и Na₂O (табл. 2).

В отличие от фторапатитов первой генерации гидроксилапатиты второй генерации не обнаруживают избыток галогенов в рассчитанных кристаллохимических формулах, возможно потому, что количество ОН в них рассчитывается, а не определяется аналитически.

Отметим, что водные силикаты (биотит, грюнерит) в образцах мезоархейских магнетитовых кварцитов, проанализированных на микрозонде, не содержат значимых концентраций фтора и хлора.

Апатиты из неоархейской ЖКФ КМА был исследованы в образце 3147/430, представляющим собой хлорит-грюнерит-магнетитовый кварцит, отобранный из вулканогенно-осадочной толщи в пределах Тарасовских аномалий (рис. 1). Апатит субизометричной, но чаще удлиненной формы, обнаруживает широкие вариации по размеру: от 10-30 мкм — субизометричные кристаллы (рис. 4 а, в) и до 100 мкм по длинной оси — удлиненные зерна (рис. 4 б). Апатит находится в тесной ассоциации с хлоритом, грюнеритом, магнетитом, роговой обманкой и кварцем. Большинство апатитов представлены фтор-апатитом (X_г = 0,88-1,0) (табл. 3). Кроме фтора в анионном комплексе в значительных количествах присутствует группа ОН $(X_{\rm OH}\!=\!0,\!09\text{-}0,\!27),$ причем один анализ отвечает фтористому гидроксилапатиту ($X_{OH} = 0,57, X_F = 0,43$). Такие вари-ации составов не находят отражения в изменении морфологии кристаллов

Рис. 3. Минеральные парагенезисы и морфологические типы апатитов второй генерации из мезоархейских железистых кварцитов Курско-Бесединского блока. Обр. 3588/250.

Электронный микроскоп Jeol 6380LW. Номера точек на рисунках соответствуют номерам микрозондовых анализов апатитов в табл. 2.

 Mag

 Qtz
 Ap

 Gt
 Ap

 Gt
 Ap

 Saku
 X370
 50 Am

Продолжение рисунка 3

апатита. Содержания хлора незначительны и не превышают 0,03 ат. %. Обращает внимание повышенное отношение Ca/P=1,65-1,70, свидетельствующее о дефиците фосфора в апатите. Из других компонентов в незначительных количествах присутствуют железо (FeO = 0,58-1,31 мас. %) и натрий (Na₂O = 0-0,20 мас. %) (табл. 3).

Водные силикаты в ассоциации с апатитом не содержат фтора и характеризуются очень низкими концентрациями хлора (Савко и др. 2004): грюне-

ВЕСТНИК ВГУ, СЕРИЯ: ГЕОЛОГИЯ, 2007, № 2

Савко К.А., Пилюгин С.М., Новикова М.А.

Таблица 2

Составы апатитов поздней генерации из мезоархейских железистых кварцитов КМ.
--

	Обр. 3588/V8													
№ анализа	Ap-1	Ap-2	Ap-3	Ap-4	Ap-5	Ap-6	Ap-7	Ap-8	Ap-9	Ap-10	Ap-11	Ap-12	Ap-13	Ap-14
FeO	0.48	0.46	1.16	0.47	0.52	0.64	0.57	1.05	1.12	1.08	0.98	0.77	0.95	0.59
CaO	54.65	54.71	54.61	54.79	54.95	54.89	54.84	54.75	54.87	54.76	54.60	54.51	54.27	54.55
P ₂ O ₅	42.17	42.62	41.40	42.10	42.07	42.05	42.22	42.28	42.30	42.29	42.17	42.04	42.13	42.11
Cl	1.05	1.22	1.28	1.11	0.88	0.90	0.88	0.98	0.85	0.95	0.82	0.79	0.90	0.85
F	-	-	-	-	-	-	-	-	-	-	-	-		
Сумма	98.35	99.01	98.45	98.47	98.42	98.48	98.51	99.06	99.14	99.08	98.27	98.11	98.25	98.10
Fe	0.04	0.03	0.09	0.03	0.04	0.05	0.04	0.08	0.08	0.08	0.07	0.06	0.07	0.04
Ca	5.14	5.11	5.17	5.15	5.16	5.15	5.14	5.12	5.12	5.12	5.12	5.13	5.10	5.14
Р	3.13	3.14	3.10	3.13	3.12	3.12	3.13	3.12	3.25	3.12	3.12	3.13	3.13	3.13
Cl	0.16	0.18	0.18	0.17	0.13	0.13	0.14	0.14	3.12	0.14	0.12	0.11	0.13	0.13
X _{Cl}	0,16	0.18	0.18	0.17	0.13	0.13	0.14	0.14	0.12	0.14	0.12	0.12	0.13	0.13
X_{F}	-	-	-	-	-	-	-	-	-	-	-	-	-	-
X _{OH}	0.84	0.82	0.82	0.83	0.87	0.87	0.86	0.86	0.88	0.86	0.88	0.88	0.87	0.87
Ca/P	1.64	1.63	1.67	1.65	1.65	1.65	1.64	1.64	1.58	1.64	1.64	1.64	1.63	1.64
$\frac{\log (\mathrm{fH}_{\mathrm{Cl}} / \mathrm{f}_{\mathrm{H2O}})}{\mathrm{f}_{\mathrm{H2O}} \mathrm{f}_{\mathrm{fluid}}}$	-4.03	-3.97	-3.97	-4.00	-4.14	-4.14	-4.10	-4.10	-4.18	-4.10	-4.18	-4.18	-4.14	-4.14

Продолжение таблицы 2

			C	<u>бр. 3588/</u>	250				
№ анализа	Ap-1	Ap-2	Ap-3	Ap-4	Ap-5	Ap-6	Ap-7	Ap-8	Ap-9
SiO ₂	1.49	1.16	1.37	1.05	1.11	1.05	1.22	1.24	1.23
TiO,	0.11	0.12	-	0.10	-	0.19	-	0.31	0.24
Al ₂ O ₃		-	-	0.10	-	-	-	0.10	0.12
FeO	1.33	1.45	-	0.38	0.60	0.76	1.95	1.79	1.01
MnO	0.19	-	-	-	-	-	-	0.12	-
MgO	-	-	-	0.16	0.33	-	-	-	0.09
CaO	54.34	54.48	54.89	54.65	54.52	54.48	54.08	54.30	54.55
Na ₂ O	0.11	-	-	0.17	0.03	0.11	0.15	0.09	0.09
P ₂ O ₅	40.90	41.31	42.48	41.98	41.95	41.74	39.68	40.51	41.29
Cl	1.21	1.38	1.23	1.12	1.10	1.51	2.71	1.04	1.18
F	-	-	-	-	-	-	-	-	-
Сумма	99.57	99.90	99.97	99.71	99.64	99.84	99.79	99.50	99.80
Si	0.13	0.10	0.12	0.09	0.10	0.09	0.11	0.11	0.11
Ti	0.01	0.01	-	0.01	-	0.01	-	0.02	0.02
Al	-	-	-	0.01	-	-	-	0.01	0.01
Fe	0.10	0.11	-	0.03	0.04	0.06	0.15	0.13	0.07
Mn	0.01	-	-	-	-	-	-	0.01	-
Mg	-	-	-	0.02	0.04	-	-	-	0.01
Ca	5.07	5.08	5.05	5.06	5.05	5.06	5.15	5.09	5.07
Na	0.08	-	-	0.03	0.01	0.02	0.03	0.02	0.02
Р	3.01	3.04	3.09	3.07	3.07	3.07	2.99	3.00	3.03
F	-	-	-	-	-	-	-	-	-
Cl	0.18	0.20	0.18	0.16	0.16	0.22	0.41	0.15	0.17
X_{Cl}	0.18	0.20	0.18	0.16	0.16	0.22	0.41	0.15	0.17
$X_{_F}$	-	-	-	-	-	-	-	-	-
X _{OH}	0.82	0.80	0.82	0.84	0.84	0.78	0.59	0.85	0.83
Ca/P	1.64	1.67	1.63	1.65	1.64	1.65	1.72	1.70	1.67
$\log (f_{HCI}/f_{H2O})_{fluid}$	-3.97	-3.92	-3.97	-4.03	-4.03	-3.38	-3.47	-4.07	-4.00

Г

Рис. 4. Минеральные парагенезисы и морфологические типы апатитов из неоархейских железистых кварцитов Тарасовских аномалий. Обр. 3147/430. Электронный микроскоп Jeol 6380LW. Составы апатитов в точках анализа на микрозонде соответствуют номерам в таблице 3.

риты и роговые обманки до 0,11 мас. %, хлориты до 0,09 мас. % и биотиты до 0,13 мас. % Cl.

Апатиты из палеопротерозойской ЖКФ КМА был исследованы в образцах щелочноамфиболовых магнетитовых кварцитов из Лебединского и Стойленского месторождений, где они находятся в тесной ассоциации с кварцем, магнетитом и щелочными амфиболами (ферривинчитом и рибекитом) (рис. 5 а). Апатит представлен мелкими субизометричными зернами размером до 30 мкм в поперечнике, иногда отмечаются шестигранные сечения (рис. 5 г). В апатите могут встречаться микровключения кварца и магнетита (рис. 5 г), что доказывает их метаморфическую природу. По составу апатиты отвечают фторапатиту, за исключением одного анализа, который соответствует гидроксилапатиту в высоким содержанием фтора (Ар-15, табл. 4). Это зерно в отличие от других является включением в крупном зональном кристалле ферривинчита. Количество хлора не превышает 0,3 ат. %. В апатитах из обр. Л-5 (Лебединское железорудное месторождение) отмечается значительные содержания гидроксильного компонента (0,27-0,53 ат. %). В железистых кварцитах Стойленского месторождения только в одном анализе в центре зерна апатита количество ОН составляет 22 мол. % (табл. 4). Все остальные составы соответствуют почти чистому фторапатиту ($X_F = 0,97-1,0$), причем обнаруживают избыток галогенов относительно стехиометрии идеального апатита.

Повышенное отношение Ca/P=1,65-1,70 свидетельствует о дефиците фосфора в апатите. Из других компонентов в виде незначительных примесей присутствуют железо (FeO до 0,88 мас. %), марганец (MnO до 0,19 мас. %) и натрий (Na₂O до 0,19 мас. %). В амфиболах (единственные присутствующие силикаты, содержащие группу OH) в изученных образцах Л-5 и Cт-20 не установлены Савко К.А., Пилюгин С.М., Новикова М.А.

Таблица 3

		` 1			· •	,	/			
№ анализа	Ap-1	Ap-2	Ap-3	Ap-4	Ap-5	Ap-6	Ap-7	Ap-12	Ap-13	Ap-14
FeO	1.31	0.73	1.08	0.74	0.58	0.94	1.03	0.84	0.95	1.19
CaO	53.49	53.81	53.85	54.02	54.08	53.98	53.62	54.22	54.12	54.09
Na ₂ O								-	0.20	0.16
P,0,	40.09	41.17	40.04	40.96	40.91	40.50	40.28	41.67	40.81	40.83
Cl	0.02	-	-	0.17	-	0.15	0.16	-	0.06	0.02
F	4.79	3.73	4.94	3.11	4.23	3.99	3.83	1.53	2.64	2.57
Сумма	99.70	99.44	99.91	99.00	99.80	99.56	98.92	98.26	98.78	98.86
Fe	0.10	0.05	0.08	0.06	0.04	0.07	0.08	0.06	0.07	0.09
Ca	5.20	5.15	5.23	5.18	5.19	5.21	5.20	5.14	5.19	5.18
Na	-	-	-		-	-	-	-	0.03	0.03
Р	3.08	3.12	3.07	3.10	3.10	3.09	3.09	3.12	3.09	3.09
Cl	-	-		0.03	-	0.02	0.02	-	0.01	-
F	1.37	1.05	1.42	0.88	1.20	1.14	1.10	0.43	0.75	0.73
X _{CI}	-	-	-	0.03	-	0.02	0.02	-	0,01	-
X_{F}	1.00	1.00	1.00	0.88	1.00	0.98	0.98	0.43	0,75	0,73
X _{OH}	-	-	-	0.09	-	-	-	0.57	0,24	0,27
Ca/P	1.69	1.65	1.70	1.67	1.67	1.69	1.68	1.65	1.68	1.68
$\log (f_{\rm HF}/f_{\rm H2O})_{\rm fluid}$	-	-	-	-4.40	-	-	-	-5.28	-4.90	-4.97

Составы апатитов неоархейских железистых кварцитов КМА

(Тарасовские аномалии, образец 3147/430)

Таблица 4

Составы апатитов из палеопротерозойских железистых кварцитов КМА

№ образца		Л-5					St	-20			
№ анализа	Ap-15	Ap-16	Ap-17	Ap-1	Ap-2	Ap-3	Ap-5	Ap-1-1	Ap-2-2	Ap3-3	Ap4-4
SiO ₂	0.03	0.03	-	-	-	-	-	-	-	-	-
Al ₂ O ₃	0.06	-	0.09	-	-	-	-	-	-	-	-
FeO	0.56	0.42	0.40	-	-	0.45	-	0.88	0.65	0.57	0.43
MnO	0.19	0.12	0.06	-	-	-	-	-	-	-	-
MgO	0.08	-	-	-	-	-	-	-	-	-	-
CaO	55.21	54.99	54.93	53.98	54.48	54.05	54.16	53.23	54.25	54.43	54.43
Na ₂ O	0.06	0.19	0.13	-	-	-	-	-	-	-	-
P_2O_5	41.85	41.51	42.01	41.23	41.68	41.21	40.92	41.02	40.98	40.90	41.08
Cl	0.16	0.21	0.22	-	0.08	0.07			0.14	0.17	0.01
F	1.63	2.52	2.06	4.69	2.75	4.12	4.72	4.79	3.57	3.64	4.05
Сумма	99.83	99.99	99.90	99.90	98.99	99.90	99.80	99.92	99.59	99.71	100.00
Si	-	-	-	-	-	-	-	-	-	-	-
Al	0.01	-	0.01	-	-	-	-	-	-	-	-
Fe	0.04	0.03	0.03	-	-	0.03	-	0.07	0.05	0.04	0.03
Mn	0.01	0.01	-	-	-	-	-	-	-	-	-
Mg	0.01	-	-	-	-	-	-	-	-	-	-
Ca	5.17	5.17	5.15	5.18	5.18	5.17	5.22	5.12	5.20	5.22	5.21
Na	0.01	0.03	0.02	-	-	-	-	-	-	-	-
Р	3.10	3.10	3.11	3.13	3.13	3.12	3.11	3.13	3.10	3.10	3.10
Cl	0.02	0.03	0.03	-	0.01	0.01	-	-	0.02	0.03	-
F	0.45	0.70	0.57	1.33	0.77	1.16	1.34	1.36	1.01	1.03	1.14
X _{Cl}	0,02	0,03	0,03	-	0,01	0,01	-	-	0,02	0,03	-
$X_{_{F}}$	0,45	0,70	0,57	1,00	0,77	0,99	1,00	1,00	0,98	0,97	1,00
X _{OH}	0,53	0,27	0,40	-	0,22	-	-	-	-	-	-
Ca/P	1.67	1.67	1.66	1,65	1,65	1,66	1,68	1,64	1,68	1,68	1,68
$\log (f_{\rm HF}/f_{\rm H2O})_{\rm fluid}$	-6.36	-6.10	-5.84	-	-5.70	-	-	-	-	-	-
-											

ВЕСТНИК ВГУ, СЕРИЯ: ГЕОЛОГИЯ, 2007, № 2

Рис. 5. Минеральные парагенезисы, морфологические типы и точки микрозондовых анализов апатитов из палеопротерозойских железистых кварцитов Стойленского и Лебединского месторождений: а - обр. Л-5, б-г - обр. Ст-20. Электронный микроскоп Jeol 6380LW.

значимые содержания галогенов, хотя в других образцах ферривинчиты содержат до 0,2 мас.% Cl (Савко, 2006).

Данные по составам апатитов суммированы на треугольных диаграммах (рис. 6).

СОСТАВ АПАТИТА КАК ИНДИКАТОР ФУГИТИВНОСТИ НСL И НF В МЕТАМОРФИЧЕСКОМ ФЛЮИДЕ

Эксперименты в водно-фторидном и водно-хлоридном флюидах с апатитом проводились при 500-700°С и давлениях 1-4 кбар (Коржинский, 1981). Согласно этим данным "фугитивностные" отношения ($f_{\rm HF}/f_{\rm H2O}$) и ($f_{\rm HCI}/f_{\rm H2O}$) для равновесия апатит-раствор зависят от температуры как:

log $(f_{HF}/f_{H2O})_{fluid} = \log (X_F/(1-X_F)_{Ap} + 0,0085*T(K) - 13,25 (1),$ где $X_F = F/(F+OH).$ log $(f_{HCI}/f_{H2O})_{fluid} = \log (X_{CI}/(1-X_{CI})_{Ap} + 0,00276*T(K) - 6.00 (2),$ где $X_{CI} = CI/(CI+OH).$

Для расчета фугитивности HF в апатитах ранней генерации из мезоархейской ЖКФ была принята минимально возможная температура на пике метаморфизма 900 °С (Fonarev et. al., 2006). Расчеты согласно уравнению (1) показали значения фугитивности фтора во флюиде log $(f_{\rm HF}/f_{\rm H2O})_{\rm fluid} =$

ВЕСТНИК ВГУ, СЕРИЯ: ГЕОЛОГИЯ, 2007, № 2

-1,78 — (-2,82), которые для удобства показаны в табл. 1-3. Эти значения несколько выше сообщаемых для фторапатитов из основных гранулитов Норвегии (Nijland et. al., 1993) и сопоставимы с экспериментально синтезированными фторапатитами при 1050 °C и 20 кбар (Brenan, 1993), а также

с фугитивностями фтора во флюиде из высокотемпературных контактовых ореолов (Penniston-Dorland, Ferry, 2005).

К сожалению, там, где фторапатиты обнаруживают избыток галогенов относительно стехиометрии идеального апатита (F+Cl>1), было невозможно рассчитать формульные количества (OH) и получить значения фугитивности фтора. Но если принять, что в апатите присутствовало хотя бы минимальное количество воды (1 мол. %), то тогда $\log (f_{\rm HF}/f_{\rm H2O})_{\rm fluid} = -1,28$.

При расчете фугитивностей по OH-Cl апатитам поздней генерации из мезоархейской ЖКФ принималась температура, полученная с помощью минеральной термометрии для второго метаморфического события 700 °C. Значения фугитивности хлора во флюиде log $(f_{HCl}/f_{H2O})_{fluid}$ -3.38 – (-4.18), что в целом соответствует результатам, полученным в других метаморфических областях (Sisson, 1987; Nijland et. al., 1993; Penniston-Dorland, Ferry, 2005). По-видимому, при уменьшении температуры во время третьего метаморфического события (650

Рис. 6. Состав анионной группы апатитов из магнетитовых кварцитов ЖКФ КМА. а) мезоархейские ЖКФ,

б) неоархейские ЖКФ,

в) палеопротерозойские ЖКФ.

°C), апатит становился более хлористым, так как при постоянном отношении $f_{\rm HC}/f_{\rm H2O}$ во флюиде понижение, как температуры, так и давления приводит к увеличению хлористости апатита (Коржинский, 1981).

Значения фугитивности HF в апатитах из пород неоархейской ЖКФ рассчитывались для пиковых температур первого высокотемпературного метаморфического события (650 °C) (Савко и др., 2004) и составляют ($f_{\rm HF}/f_{\rm H2O}$)_{fluid} = -4,40 – (-5,28), что ниже, чем для фторапатитов из мезоархейских ЖКФ. Для большей части апатитов не удалось получить эти значения, так как они обнаруживают избыток галогенов относительно стехиометрии апатита (F+Cl > 1) и нельзя рассчитать формульные количества (OH).

Еще более низкие значения $[(f_{HF}/f_{H2O})_{fluid} = -5,74 - (-6,36)]$ получены для апатитов палеопротерозойских железистых формаций при пиковых температурах метаморфизма 550 °C (Савко, 2006).

Снижением фугитивности фтора в метаморфическом флюиде от мезоархея до палеопротерозоя обусловлено уменьшение количество апатита в породах железисто-кремнистых формаций. По данным И.Н. Щеголева (Щеголев, 1985) концентрация апатита убывает от древних толщ к более молодым. Если в мезоархейских железистых кварцитах его содержание составляет первые килограм-

мы, в неоархейских — первые сотни граммов, то в палеопротерозойских — всего лишь первые десятки граммов на 1 тонну породы.

ИНТЕРПРЕТАЦИЯ ПОЛУЧЕННЫХ РЕЗУЛЬТАТОВ

Недавними исследованиями в мезоархейской железисто-кремнистой формации ВКМ было установлено три метаморфических события (Fonarev et al., 2006). Пик метаморфизма (М1) характеризуется температурами около 1000 °С, определенными по реинтеграции структур распада орто- и клинопироксенов и полевых шпатов, и давлениями 10-11 кбар. Для пикового метаморфизма характерны высокоплотные углекислотные, азотные и азотно-метановые включения (FL1). Кристаллизация железистого граната и захват флюидных включений второй генерации FL2 (псевдовторичные углекислотные и водно-солевые включения) характеризует второе (регрессивное) метаморфическое событие в регионе $(M2) - T = 700 \degree C$ и 5 кбар. Этот процесс (кристаллизации Grt с флюидными включениями) продолжался при субизобарическом охлаждении до температур порядка 650 °C, отвечающих, очевидно, уже третьему (МЗ) тектоно-термальному (метаморфическому) событию в регионе. Относительно редкие углекислотные и водно-солевые включения наиболее низкой плотности (генерация FL3) характеризуют, вероятно, наиболее поздние (низкотемпературные) процессы в регионе.

Нами были установлены в тех же образцах с апатитом водно-солевые флюидные включения. Это обычно изометричные светлые включения размером не более 5–10 мкм, присутствующие во всех изученных типах пород (рис. 7). В большинстве случаев они относятся к псевдовторичному или вторичному типам и локализуются по залеченным трещинам в минералах. К сожалению, из-за малого размера этих включений не удается измерить температуру их начального плавления и тем самым определить их состав. Конечная температура плавления варьирует от -1.1°C до -3.0°C, что соответствует относительно низким концентрациям 1.9–4.9 мас.% NaCl экв.

Сопоставляя эти результаты с данными, полученными по парагенезисам, морфологии и составам апатитов из тех же железистых пород, можно сделать ряд заключений. Фтористый апатит первой (ранней) генерации представлен преимущественно включениями в первичных крупных орто-и клинопироксенах и кристаллизовался во время пикового высокотемпературного метаморфизма.

Апатиты первой генерации, изолированные в виде включений, были законсервированы, не принимали участия в метаморфических реакциях и поэтому сохранили свой состав. Остальные ранние апатиты были перекристаллизованы во время последующих низкотемпературных событий, характеризовавшихся активизацией водно-солевых флюидов, и изменили свой состав:

Рис. 7. Первичные азотно-метановые включения (некоторые с водой) ассоциируют с псевдовторичными водносолевыми включениями с Т пл = -2.9 – -3°С (обр. V16).

Апатит второй (поздней) генерации находится в тесной ассоциации с поздними по отношению к крупным орто- и клинопироксенам минералами — гранатом, грюнеритом, хлоритом, перекристаллизованным кварцем. Эти апатиты отвечают по составу гидроксилапатиту с заметной примесью хлора. Очевидно, что они кристаллизовались во время второго и (или) третьего метаморфических событий, характерной особенностью которых является присутствие водно-солевых флюидных включений. Этим и объясняется хлористо-гидрооксильный состав поздней генерации апатита, так как содержание галогенов апатите контролируется активностями фтора и хлора во флюиде (Коржинский, 1981; Zhu, Sverjensky, 1991, 1992).

Вторичные включения имеют явно более позднее происхождение по отношению к первичным. Относительно невысокими содержаниями NaCl во флюиде и объясняется преимущественно водный состав апатита второй генерации (X_{OH} =0.78-0.88, X_{Cl} =0.12-0.22) с примесью хлора.

выводы

В мезоархейских ЖКФ установлено две генерации апатита, различающиеся по составу и морфологии. На пике метаморфизма мезоархейской ЖКФ (более 900 °С) был устойчив фторапатит, сохранившийся в виде мелких кристаллов, заключенный в крупных зернах орто- и клинопироксенов. Метаморфический флюид характеризовался достаточно высокими фугитивностями HF. Апатиты второй генерации кристаллизовался во время второго (700 °C) и (или) третьего более низкотемпературных (650 °C) метаморфических событий. Он присутствуют в участках развития более поздних по отношению к крупным орто- и клинопироксенам минералов — граната, грюнерита, хлорита. По составу апатит второй генерации отвечает гидроксил-апатиту с примесью хлора, что свидетельствует о водно-солевом составе равновесного флюида. Это подтверждается находкой псевдовторичных водно-солевых флюидных включений с низкими концентрациями 1.9-4.9 мас.% NaCl экв.

В магнетитовых кварцитах неоархейской и палеопротерозойской ЖКФ устойчивы фторапатиты. Изучение составов апатитов показало снижение фугитивности фтора в метаморфическом флюиде от мезоархея до палеопротерозоя, чем обусловлено уменьшение количество апатита в породах неоархейских и палеопротерозойских железисто-кремнистых формаций относительно мезоархейских. Работа выполнена при финансовой подержке грантов РФФИ (проекты 06-06-64088, 07-05-10014К)

ЛИТЕРАТУРА

Коржинский М.А. Апатитовый твердый раствор как индикатор летучести HCl и HF в гидротермальном флюиде // Геохимия, 1981. №5. С. 689-706.

Савко К.А. Фаялит-грюнерит-магнетит-кварцевые породы железистой формации ВКМ: фазовые равновесия и условия метаморфизма // Петрология, 1994. Т.2. № 5. С. 540-550.

Савко К.А. Фазовые равновесия в породах палеопротерозойской железистой формации Лебединского месторождения Курской магнитной аномалии и петрогенезис щелочно-амфиболовых железистых кварцитов // Петрология, 2006. Т. 14. №6. С. 621-642.

Савко К.А., Кальмуцкая Н.Ю. Физико-химические условия метаморфизма магнетит-грюнерит-рибекитовых пород Приоскольского железорудного месторождения Курской магнитной аномалии // Вестн. Воронежского ун-та, сер. геол., 2002. № 1. С. 95-103.

Савко К.А., Пилюгин С.М., Новикова М.А. Минералогия, фазовые равновесия и условия метаморфизма пород неоархейской железисто-кремнистой формации в пределах Тарасовских аномалий // Вестн. Воронежского ун-та, сер. геол., 2004. № 2. С. 111-126.

Савко К.А., Поскрякова М.В. Рибекит-эгирин-селадонитовые железистые кварциты Михайловского железорудного месторождения Курской магнитной аномалии: фазовые равновесия и условия метаморфизма // Петрология, 2003. Т. 11. №5. С. 471-490.

Савко К.А., Поскрякова М.В. Минералогия, фазовые равновесия и условия метаморфизма пород Шемраевского железорудного месторождения Курской магнитной аномалии // Вестн. Воронежского ун-та, сер. геол., 2004. № 1, С. 68-84.

Щеголев И.Н. Железорудные месторождения докембрия и методы их изучения. М.: Недра. 1985. 197 с.

Bonnichsen B. Metamorphic pyroxenes and amphiboles in the Biwabik iron formation, Dunka River area, Minnesota// Mineral. Soc. Amer. Spec. Pap. 1969. V. 2. P. 217—239.

Brenan J.M. Partitioning of fluorine and chlorine between apatite and aqueous fluids at high pressure and temperature: implications for the F and Cl content of high P-T fluids // Earth Planet Sci. Lett., 1993. V. 117. P. 251-263.

Boudreau A.E., Kruger F.J. Variation in the composition of apatite through the Merensky cyclic unit in the Western Bushveld Complex // Econ. Geol., 1990. V. 85. P. 737-745.

Fonarev V.I., Pilugin S.M, Savko K.A., Novikova M.A. Exsolution textures of orthopyroxene and clinopyroxene in high-grade BIF of the Voronezh Crystalline Massif: evidence of ultrahigh-temperature metamorphism // J. metam. Geol., 2006. V. 24. P. 135–151.

Harley S.L. A pyroxene-bearing metaironstone and other pyroxene granulites from Tonagh Island, Enderby Land, Antarctica: further evidence for very high tempereture (> 980 °C) Archean regional metamorphism in the Napier Complex// J. Metam. Geol. 1987. V. 5. P. 341-356.

Hughes J.M., Cameron M., Crowley K.D. Structural variations in natural F, OH, and Cl apatites // Amer. Mineral., 1989. V. 74. P. 870-876.

Hughes J.M., Cameron M., Crowley K.D. Crystal structures of natural ternary apatites: solid solution in the Ca5(PO4)3X (X=F, OH, Cl) system // Amer. Mineral., 1990. V. 75. P. 295-304.

Ludington S. The biotite-apatite geothermometer revisited // Amer. Mineral., 1978, V. 63. P. 551-553.

Nijland T.G., Jansen J.B.H., Maijer C. Halogen geochemistry of fluid during amphibolite-granulite metamorphism as indicated by apatite and hydrous silicates in basic rocks from the Bamble sector, South Norway // Lithos, 1993. V. 30, 167-189.

Penniston-Dorlan S.C., Ferry J.M. Coupled dichotomies of apatite and fluid composition during contact metamorphism of siliceous carbonate rocks // Amer. Miner., 2005.V. 90. P. 1606-1618.

Sallet R. Fluorine as a tool in the petrogenesis of quartzbearing magmatic associations: applications of an improved F-OH biotite-apatite thermometer grid // Lithos, 2000. V. 50. P. 241-253.

Sandiford M., Powell R. Pyroxene exsolution in granulites from Fyfe Hills, Enderby Land, Antarctica: Evidence for 1000 °C metamorphic temperatures in Archean continental crust // Amer. Miner. 1986. V. 71. № 7-8. P. 946-954.

Sisson V.B. Halogen chemistry as an indicator of metamorphic fluid interaction with the Ponder Pluton, Coast Plutonic Complex, British Columbia, Canada // Contrib. Mineral. Petrol. 1987. V. 95. P. 123-131.

Smith M.P., Yardley B.W.D. Fluid evolution during metamorphism of the Otago Schist, New Zealand; (II) Influence of detrital apatite on fluid salinity // J. Metam. Geol., 1999. V. 17. P. 187-193.

Spear F.S., Pyle J.M. Apatite, monazite, and xenotime in metamorphic rocks // Rev. Mineral. 2003. V. 48. P. 1-63.

Stormer J.C., Carmichael I.S.E. Fluorine-hydroxyl exchange in apatite and biotite: a potential igneous geothermometer // Contrib. Miner. Petrol., 1971. V. 31. P.121-131.

Tacker R.C. Stormer J.C. A thermodynamic model for apatite solid solutions, applicable to high-temperature geologic problems // Amer. Mineral., 1989. V. 74. P. 877-888.

Vaniman D.T., Papike J.J., Labotka T. Contact metamorphic effect of the Stillwater Complex, Montana: the concordant iron formation // Amer. Mineral. 1980. V. 65. P. 1087-1102.

Yardley B.W.D. Apatite composition and fugacities of HF and HCl in metamorphic fluids // Mineral. Mag., 1985. V. 49. P. 77-79.

Zhu C., Sverjensky D.A. Partitioning of F-Cl-OH between minerals and hydrothermal fluids // Geochim. Cosmochim. Acta., 1991. V. 55. P. 1837-1858.

Zhu C., Sverjensky D.A. F-Cl-OH partitioning between biotite and apatite // Geochim. Cosmochim. Acta, 1992. V. 56. P. 3435-3467.