НЕКОТОРЫЕ СВОЙСТВА ГРАНАТОВ ИЗ ГИПЕРГЕННЫХ ОБРАЗОВАНИЙ ПО КИМБЕРЛИТОВЫМ ТЕЛАМ (ЗАПАДНАЯ ЯКУТИЯ)

И. И. Никулин, Т. А. Антонова

Якутское научно-исследовательское геологическое предприятие ЦНИГРИ АК «АЛРОСА», г. Мирный, Якутия

Цвет любого вещества как физическое свойство обнаруживает себя благодаря способности человеческого глаза различать электромагнитное излучение именно в этом диапазоне частот. Поглощение электромагнитного излучения в видимой области спектра зависит от природы, состава и строения вещества, а также от условий освещения. Это относительное свойство вещества необходимо наиболее интенсивно внедрять в практику минералогических исследований. При выработке стандартов условий освещения, измерений и описаний этого свойства возможно получение количественных и качественных оценок цветовых характеристик минералов.

Общеизвестно, что минералы — спутники алмаза обладают чрезвычайно разнообразной окраской различной яркости и насыщенности. Цвет до сих пор служит первым диагностическим признаком минералов — спутников алмаза [4]. По красной «пироповой дорожке» были открыты кимберлиты Якутии [6], и в настоящее время гранаты пиропового ряда служат основным критерием при поисках кимберлитов. На прямую связь между содержанием фиолетово-красных и «малиновых» гранатов с алмазоносностью кимберлитов указывали Е. В. Францессон [7] и В. Н. Щукин [8] с соавторами. На этом этапе исследований Н.Н. Сарсадских [5] предлагала минералогический критерий алмазоносности кимберлитов, основанный на парагенетической связи разноцветных гранатов.

Актуальность данных исследований, с учётом поискового, генетического и кристаллохимического значения окраски гранатов, существует и по настоящее время.

ОБЪЕКТЫ ИССЛЕДОВАНИЙ

Гранат — один из наиболее информативных минералов-спутников алмаза, использующихся при поисковых работах на коренные месторождения алмазов. В связи с этим актуальным является установление типоморфизма гранатов ультраосновных и основных алмазоносных парагенезисов. В данной работе рассматриваются физические особенности кристаллов гранатов пиропового ряда с помощью методов оптической спектроскопии в видимой области. Исследовались гранаты из элювиальных и делювиальных образований дайкообразного кимберлитового тела Накынского поля для раскрытия особенностей окраски и парагенетической принадлежности, установления степени схожести и различия между выборками. По спектрам поглощения определяли оптико-спектроскопических свойства кристаллов и их возможную связь и приуроченность к геологической обстановке отложений. Информацию об образовании этих минералов, глубинной парагенетической принадлежности, а также вероятной алмазоносности коренного источника несет в себе их состав и окраска [1]. Раз-

На данный момент на Накынском поле известны пять кимберлитовых тел, одно из которых разрабатывается карьерным способом (рис. 1). В 2006 году Мархинская партия Ботуобинской ГРЭ, выполняя поисковые работы, вскрыла буровыми скважинами самое южное из известных кимберлитовых тел. По данным буровых работ Ботуобинской экспедиции и предварительным разрезам новое кимберлитовое тело представляет собой дайковое образование и находится на расстоянии от ближайшего кимберлитового тела 3—4 км. Трубка Ботуобинская и Нюрбинская расположены вблизи друг друга (расстояние между ними около 3 км). По принятой классификации, основанной на площади поперечного сечения поверхности, тр. Ботуобинская относится к малым (сочетание линзовидной и округлой форм), а Нюрбинская — к средним (овальная форма) по размерам кимберлитовым

нообразная окраска природных пиропов характеризуется набором и концентрацией примесей, главными из которых являются Cr^{3+} , Fe^{2+} , Fe^{3+} и в меньшей степени Ti^{3+} . Важно отметить эмпирическую закономерность в том, что присутствие хромсодержащих пиропов, бедных кальцием, является индикатором алмаз-пироповой фации кимберлитов, которая указывает на алмазоносность.

[©] Никулин И. И., Антонова Т. А., 2007

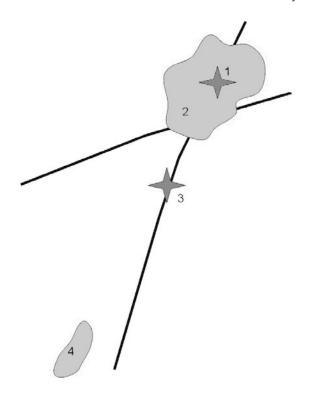


Рис. 1. Схема расположения мест отбора гранат содержащих проб. 1 — трубка Нюрбинская; 2 — россыпь тр. Нюрбинской; 3 — трубка Ботуобинская; 4 — гипергенные образования по одному из дайковых тел.

телам. Остальные тела имеют приблизительно даечное строение. Кимберлитовые трубки Ботуобинская и Нюрбинская характеризуются близостью вещественного состава и алмазоносности слагающих их кимберлитовых пород, которые по ряду вещественно-индикационных признаков и продуктивности попадают в разряд уникальных, впервые обнаруженных в пределах центральной части Якутской алмазоносной провинции.

МЕТОДИКА

Изучаемые минералы обладают чаще всего незначительными размерами (фракция 0,5+3 мм). Для исследований использовались кристаллы гранатов с максимум одним сколом. Для оптико-спектроскопических исследований были отобраны целые, визуально не трещиноватые кристаллы. Образцы для изучения изготовлялись в виде полированных плоско-параллельных прозрачных пластинок произвольной кристаллооптической ориентировки. Проведены анализы 1876 зерен гранатов.

Для оптико-спектроскопических исследований применяется аппаратурный комплекс, изготовленный на базе микроскопа-спектрофотометра МСФУ Л-312. Спектры исследуемых гранатов снимались

по однолучевой схеме, при комнатной температуре в диапазоне 370-800 нм с интервалом 1 нм. Парагенетическая принадлежность гранатов определялась в соответствии с методикой, изложенной в «Авторском свидетельстве» № 1568013 (заявка № 4370175 от 28.12.87) «Способ определения парагенетической принадлежности гранатов-спутников алмаза» (авторы С. С. Мацюк и др.). Расчет колориметрических характеристик осуществлялся по спектрам пропускания гранатов. Для инструментального измерения и описания окраски гранатов была использована методика расчета параметров цветности (колориметрических параметров) в международной колориметрической системе ХҮХ (МОК, 1931). Густота окраски всех изученных гранатов для удобства сравнения пересчитана на толщину 1 мм (т.е. цвет минерала и густота окраски соответствует эквивалентному зерну размерами в 1 мм). Фигуративные точки цветности гранатов выносились на диаграмму λ_{ι} (длина волны основного цветового тона) — р (насыщенность основного цветового тона) с помощью программы, разработанной в ЯНИГП ЦНИГРИ АК «АЛРОСА». Для гранатов пиропового ряда с использованием модифицированной диаграммы цветности определялась парагенетическая принадлежность в системе $\lambda_{k} - p_{c}$ [2, 3].

В оптических спектрах поглощения гранатов ультраосновных парагенезисов фиксируются две интенсивные полосы, связанные с оптическими центрами Cr^{3+}_{VI} , расположенные на фоне полосы поглощения переноса заряда $O^{2-} \rightarrow Fe^{3+}$. В области 16060-17860 см⁻¹ (U- полоса) и 22200-24540 см⁻¹ (Ү-полоса), соответствующие разрешённым по спину электронным переходам $^4A_{2g} \xrightarrow{} ^4T_{2g}$ и $^4A_{2g} \xrightarrow{} ^4T_{1g}$. Кроме хрома и полосы переноса заряда $O^2 \xrightarrow{}$ Fe^{3+} , в видимой области спектра проявляются Fe^{2+} , Ti^{4+} или $Fe^{2+} \rightarrow Ti^{+4}$ [3]. Известно, что с возрастанием содержания титана наблюдается увеличение интенсивности полосы переноса заряда $O^{2-} \rightarrow Fe^{3+}$ и сдвиг её коротковолнового края в длинноволновую область спектра (Ті-эффект). Спектральное положение полосы хрома зависит как от концентрации хрома, так и от концентрации кальция [2, 3]. Для оценки значения коэффициента поглощения полос хрома наиболее удобна U-полоса, так как на Ү- полосу наиболее сильно влияет интенсивная полоса переноса заряда $O^{2-} \rightarrow Fe^{3+}$, Fe^{2+} и Ti^{4+} .

Для гранатов эклогитового парагенезиса характерна комбинация хромофорных центров Fe^{2+}_{VIII} — $Ti^{4+}_{VI} + Fe^{3+}_{VI}$ (Mg) + (Fe^{2+}_{VIII}). В спектрах хорошо фиксируется полоса поглощения, связанная с оп-

тически активными центрами Fe^{2+}_{VII} — Ti^{4+}_{VI} (~ 23700 — 24100 см $^{-1}$). Для гранатов алмазоносных Mg-Fe эклогитов характерно наличие узкой полосы поглощения (~ 23100 — 23300 см $^{-1}$), связанной с ионами Fe^{3+} . Кроме этого, в спектрах гранатов из алмазов зафиксированы слабые полосы поглощения ионов Fe^{3+}_{VI} и Fe^{2+}_{VIII} , наложенных на относительно интенсивную полосу переноса заряда O^{2-} \rightarrow Fe^{3+}

Учитывая относительно высокую концентрацию ${\rm TiO_2}$ (до 1 %) в данных гранатах, заметную роль играет «Ті-эффект». Определение состава гранатов эклогитовых парагенезисов по оптическим спектрам поглощения затруднено из-за присутствия повышенного содержания титана, вызы-

вающего сдвиг коротковолнового края полосы переноса заряда $O^{2-} \rightarrow Fe^{3+}$ в длинноволновую область спектра (Ті-эффект) и из-за отсутствия четко выраженной полосы хрома. Для диагностики таких гранатов использовались методики инструментального определения цвета по спектрам поглощения и парагенетической принадлежности гранатов с использованием модифицированной диаграммы [2].

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЙ

Для иллюстрации типоморфного значения окраски гранатов на модифицированную цветовую диаграмму в координатах $\lambda_k - p_c$ были нанесены точки цветности всех представленных образцов гранатов (рис. 2).

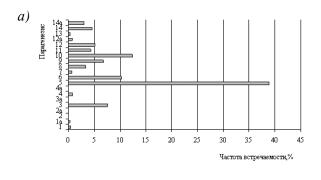
Рис. 2. Модифицированные диаграммы цветности: а) россыпи тр. Нюрбинской (n =591); б) тр. Нюрбинская (n =954); в) тр. Ботуобинская (n=243) и г) из экзогенных образований тел даечного типа (n=88): 1 — дуниты; 1а — потенциально алмазоносные дуниты; 2 — гарцбургиты; 2а — потенциально алмазоносные гарцбургиты; 3 — хромит-гранатовые ультрабазиты; 3а — потенциально алмазоносные хромит-гранатовые ультрабазиты; 4 — верлиты; 4а — потенциально алмазоносные верлиты; 5 — лерцолиты; 6 — катаклазированные лерцолиты и магнезиально-железистые пироксениты; 7 — желваки граната; 8 — ильменитовые перидотиты; 9 — магнезиальные эклогиты; 10 — магнезиальные вебстериты; 11 — клинопироксениты; 12 — магнезиально-железистые эклогиты; 12а — потенциально алмазоносные магнезиально-железистые эклогиты; 13 — корундовые эклогиты; 14 — дистеновые эклогиты и гроспидиты; 14а — потенциально алмазоносные дистеновые эклогиты и гроспидиты.

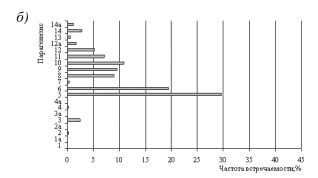
Таблица 1 Распределение цветовых разновидностей гранатов из пород Накынского поля различного генезиса

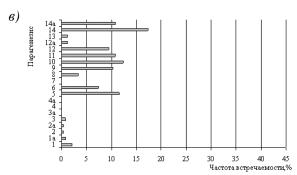
Цвет гранатов	трубки Нюрбинская	россыпь трубки Нюрбинская	трубка Ботуобинская	гранаты из экзогенных образований тела даечного типа
Желтый	0,7	0,5	3,3	14,8
Желтовато-оранжевый	4,8	10,7	30,9	39,8
Оранжевый	43,5	29,6	42,8	13,6
Красный	3,9	8,3	0,8	1,1
Красновато-оранжевый	31,0	28,6	15,2	8,0
Красновато-пурпурный	1,3	0,8	0	2,3
Красно-пурпурный	5,9	4,4	3,7	9,1
Пурпурновато-красный	4,4	8,6	2,5	5,7
Пурпурно-красный	3,4	8,1	0,4	2,3
Пурпурный	0,6	0,3	0	0
Синевато-пурпурный	0,4	0	0	1,1
Фиолетовый	0	0	0,4	0
Зеленовато-желтый	0	0	0	2,3

Результаты определения цвета минералов по колориметрическим характеристикам приведены в таблице 1. Изменение окраски в пиропах связано с наличием примесей, главными из которых являются хром и железо [3]. Так, для пиропов с высоким содержанием Cr3+ характерны фиолетовые и пурпурно-красные цвета, где плавные их переходы от одного цвета к другому зависят от содержания примесей. В оптических спектрах таких гранатов хорошо выражены две полосы поглощения хрома, причем с уменьшением количества хрома интенсивность максимума длинноволновой полосы поглощения уменьшается, и окраска гранатов соответственно меняется от фиолетовой до краснооранжевой. В малохромистых и безхромистых гранатах главной примесью является двух- и трехвалентное железо. В таких гранатах цвета принимают более светлые тона, здесь окраска меняется от красной до оранжево-желтой. Для гранатов с желтой окраской характерна незначительная примесь титана.

Россыпи вблизи тр. Нюрбинская. Исследовались зерна пиропов из россыпи околотрубочного пространства трубки Нюрбинская (n=591). Были представлены гранаты из 78 скважин. Общая картина данной россыпи такова: преобладают гранаты красновато-оранжевые (28,6%) и оранжевые (29,6%) зерна гранатов (табл. 1). Гранаты распределились по 16 парагенетическим принадлежностям. Гранаты из лерцолитов преобладают и составляют 49,2% от общей выборки. Основные черты данной россыпи можно свести к следующему:


а) подавляющее количество гранатов принадлежит лерцолитовому парагенезису;


- б) типично низкое содержание дунит гарцбургитового парагенезиса (0,8 %);
- в) отмечено присутствие гранатов верлитового парагенезиса (0.8 %);
- г) содержание граната эклогитового парагенезиса составляет 20,6 %.


Трубка Нюрбинская. Для оптико-спектроскопических исследований материал представлен зернами гранатов из 6 скважин трубки Нюрбинская (954 кристалла). Во всех горизонтах, вскрытых скважинами, преобладают, главным образом, гранаты красновато-оранжевой и оранжевой окраски. Частота встречаемости этих цветов в разных скважинах различная. Так же встречаются красноватопурпурные, красные, пурпурно-красные, желтые. В пределах горизонтов присутствуют гранаты из семнадцати парагенетических разновидностей в разных соотношениях для этих разрезов (рис. 3). Отмечаются следующие особенности граната тр. Нюрбинская:

- а) присутствует подавляющее количество гранатов лерцолитового парагенезиса;
- б) низкое содержание гранатов дунит-гарцбургитового алмазоносного парагенезиса (0,1 %);
- в) в небольших количествах присутствует гранат верлитового, а также пироксенитового парагенезисов;
- г) содержание гранатов эклогитового парагенезиса составляет около 21 %.

Из основных парагенезисов выявлены гранаты магнезиальных эклогитов, магнезиально-железистых и потенциально алмазоносных магнезиально-железистых, корундовых и дистеновых, потенциально алмазоносных дистеновых эклогитов. По

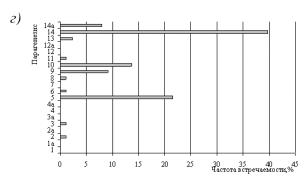


Рис. 3. Распределения гранатов по парагенетическим ассоциациям: а) россыпи тр. Нюрбинской (n =591); б) тр. Нюрбинская (n =954); в) тр. Ботуобинская (n=243) и г) из экзогенных образований тел даечного типа (n=88): 1 — дуниты; 1а — потенциально алмазоносные дуниты; 2 — гарцбургиты; 2а — потенциально алмазоносные гарцбургиты; 3 — хромит-гранатовые ультрабазиты; 3а — потенциально алмазоносные хромит-гранатовые ультрабазиты; 4 — верлиты; 4а — потенциально алмазоносные верлиты; 5 — лерцолиты; 6 — катаклазированные лерцолиты и магнезиально-железистые пироксениты; 7 — желваки граната; 8 — ильменитовые перидотиты; 9 — магнезиальные эклогиты; 10 — магнезиальные вебстериты; 11 — клинопироксениты; 12 — магнезиально-железистые эклогиты; 12а — потенциально алмазоносные магнезиально-железистые эклогиты; 13 — корундовые эклогиты; 14 — дистеновые эклогиты и гроспидиты; 14а — потенциально алмазоносные дистеновые эклогиты и гроспидиты.

данным оптико-спектроскопических исследований граната парагенезис Mg-Fe-эклогитов для трубки составляет 5,1 %, общее же содержание эклогитового парагенезиса установлено на уровне 20,7 %.

Трубка Ботуобинская. Исследовались 243 кристалла. Преобладают гранаты оранжевого и желтовато-оранжевого цветов (табл. 1). Основные особенности гранатов тр. Ботуобинская заключаются в следующем:

- а) преобладают гранаты из эклогитового парагенезиса (50,2 %);
- б) присутствует незначительная доля гранатов алмазоносного дунит-гарцбургитового парагенезиса (1,2%).

Алмазоносные ассоциации представлены: дунитами — 0.8 % и гарцбургитами — 0.4 %, магнезиально-железистыми — 1.2 % и дистеновыми — 10.7 % эклогитами.

При исследовании 88 кристаллов гранатов из экзогенных образований одного из тел даечного типа были получены следующие результаты. Преобладают гранаты желтовато-оранжевого цвета

(около 40 %). Не встречены гранаты из дунитов и верлитов, магнезиально-железистых эклогитов и желваков граната. Из алмазоносных ассоциаций не присутствуют в изученной выборке гранаты из дунитов и гарцбургитов, хромит-гранатовых ультрабазитов и верлитов, дистеновых эклогитов. Отмечаются следующие особенности:

- а) высокое содержание гранатов эклогитового парагенезиса: дистеновые эклогиты 39.8 %, алмазоносные дистеновые эклогиты 8 %, магнезиальные эклогиты 9.1 %, корундовые эклогиты 2.3 % (рис. 3);
- б) отсутствие гранатов дунит гарцбургитового алмазоносного парагенезиса;
- в) гранаты алмаз-пиропоповой фации глубинности представлены только из дистеновых эклогитов.

По парагенетическим принадлежностям гранаты из экзолитов дайкового тела схожи с гранатами трубки Ботуобинской, но также есть и отличие. Оно заключается в том, что в придайковых образованиях отсутствуют гранаты из магнезиально-железис-

тых эклогитов, в отличие от трубки Ботуобинская, и, что алмазоносные ассоциации граната представлены только из основной серии алмаз-пироповой фации глубинности.

ЗАКЛЮЧЕНИЕ

Таким образом, цвет граната, как и любого минерала, сам по себе, без знания его природы, не может являться диагностическим признаком. Наконец, что самое существенное, окраска, оценённая визуально с предельно возможной точностью и использованием цветовых эталонов или специально подобранных цветовых шкал гранатов, ещё не может рассматриваться как типоморфный признак. Без знания особенностей оптических спектров поглощения, а также без объективного (инструментального) изменения цветовых (колориметрических) параметров не могут служить диагностическим, а тем более кристаллохимическим и генетическим индикатором. Следовательно, объективная типизация гранатов и других минералов-спутников алмаза по особенностям окраски возможна только на основе детальных исследований. Вполне очевидно, что окраска гранатов, инструментально измеренная и объективно выраженная с помощью колориметрических параметров, может рассматриваться в качестве чувствительного индикатора физико-химических условий минералообразующей среды или, по крайней мере, весьма надёжного типоморфного признака.

Детальный анализ полученных данных свидетельствует, прежде всего, о том, что среди перечисленных выше кимберлитовых тел практически нет двух объектов, которые обладали бы аналогичными цветовыми значениями. И в свою очередь, специально приведённые исследования россыпи близ тр. Нюрбинская показывают родство россыпных гранатов с гранатами, находящимися в материнской породе.

Подытоживая поисково-оценочное значение типоморфных особенностей окраски гранатов пиропового ряда, можно заключить, что это свойство в купе с химическим составом кристалла, отражающее кристаллохимические и генетические особенности минералов, могут быть успешно использованы при решении следующих задач:

- 1) сопоставление гранатов различных ореолов индикаторных минералов кимберлитов;
- 2) экспресс-идентификация минералов-спутников с известными или неизвестными кимберлитовыми телами:
- 3) определение генетического типа коренного источника пиропов;

- 4) типизация кимберлитовых тел и разновозрастных терригенно-осадочных отложений;
- 5) прослеживание эволюционного тренда рассеивания гранатов от трубки к ореолу и определение направление их переноса в благоприятных ситуациях;
- 6) прогнозирование потенциальной алмазоносности коренных источников минералов спутников алмаза.

Исключительно высокая информативность оптико-спектроскопических и колориметрических характеристик гранатов позволяет значительно повысить целенаправность и эффективность шлихоминералогических и других методов поисков кимберлитов, а также создаёт благоприятные предпосылки для дальнейшего их совершенствования. Данные колориметрического исследования минералов-спутников алмаза должны обязательно учитываться при составлении особенно среднемасштабных карт прогноза и минералогическом картировании алмазоносных россыпей всех генетических типов.

ЛИТЕРАТУРА

- 1. Антонова Т.А. Информативность выборки гранатов по данным оптической спектроскопии в видимой области / Геология алмазов настоящее и будущее (геологи АК« АЛРОСА» к 50-летнему юбилею г. Мирный и алмазодобывающей промышленности России)». ВГУ, 2005. С. 1485—1493.
- 2. *Мацюк С.С, Зинчук Н.Н.* Оптическая спектроскопия минералов верхней мантии. М.: Недра, 2001. 426 с.
- 3. *Мацюк С.С., Платонов А.Н., Хоменко В.М.* Оптические спектры и окраска мантийных минералов в кимберлитах. Киев, Наук. думка, 1985. 221 с.
- 4. Методы минералогических исследований.: Справочник/ Под ред. А. И. Гинзбурга. М.: Недра, 1985. 480 с.
- 5. *Сарсадских Н.Н.* О неоднородности вещества верхней мантии//Докл. АН СССР. 1970, Т. 193. № 6. С. 1392—1395.
- 6. Сарсадских Н.Н., Попугаева Л.А. Новые данные о проявлении ультраосновного магматизма на сибирской платформе // Разведка недр. 1955. \mathbb{N} 6. С. 31—38.
- 7. Францессон Е.В. Критерии и факторы алмазоносности кимберлитовых пород // Сов. геология. 1972. № 5. С. 61—70.
- 8. Щукин В.Н., Харькив А.Д., Борис Е.И. Об открытии новой алмазоносной кимберлитовой трубки в Мало-Ботуобинском районе // Докл. АН СССР, 1967. Т. 177. № 1. С. 193—196.

Поступила в редакцию 16.10.06 г.