ОСОБЕННОСТИ СОСТАВА АМФИБОЛОВ РУДОНОСНЫХ ДАЕК СУЛЬФИДНЫХ ПЛАТИНОИДНО-МЕДНО-НИКЕЛЕВЫХ МЕСТОРОЖДЕНИЙ ВКМ (ЦЕНТРАЛЬНАЯ РОССИЯ)

М. Н. Чернышова

Воронежский государственный университет

Установлены существенные различия в распределении и составе амфиболов дайковых пород мамонского и еланского типов месторождений. Для первого типа: широкое развитие обыкновенной (зеленой и бурой) роговой обманки (f=25-32 мол.%); принадлежность к роговообманково-эденит-ферроэденитканниллоитовой (±тремолит-ферроактинолитовой) серии и к титанистосодержащей разновидности эденит-ферроэденит-паргасит-феррогастингситовой серии; пониженные содержания SiO₂, повышенные TiO₂, Al₂O₃, невысокие – Ni, Zn. Для дайковых пород еланского типа месторождений: ограниченное развитие (роговообманковое габбро) зеленой и зеленовато-бурой роговой обманки роговообманково-эденит-ферроэденит-тремолит-ферроактинолитовой серии(f=14-20 мол.%); избыток Si и дефицит Al в анионной группе; обогащенность Ni, Cr, Co, Zn.

Принадлежность амфиболов к различным типам и сериям отчетливо проявляется в содержаниях Ni, Cu,Co, ЭПГ и составах рудных минеральных парагенезисов дайковых образований.

При достаточно широком проявлении в докембрийском фундаменте разномасштабного сульфидного платиноидно-медно-никелевого оруденения [10] наиболее важные в промышленном отношении сульфидные платиноидно-медно-никелевые месторождения и многочисленные рудопроявления связаны лишь с интрузивами двух раннепротерозойских формаций, сопровождающихся значительным количеством дайковых образований: а) дунитперидотит-пироксенит-габброноритовой зон рассеянного спрединга (мамонский комплекс, 2100-2080 ± 10 млн лет [11]); б) субвулканической ортопироксенит-норит-диоритовой реактивизированных структур рифтогенного типа (еланский комплекс, 2065–2050 ± 14 млн лет [12]). Пространственно они целиком располагаются в раннекарельском Воронцовском эпикратонном прогибе Хоперского мегаблока (рис.1).

В оценке генетической принадлежности дайковых образований к определенным никель-платиноносным комплексам, степени продуктивности слагающих их интрузий на цветные и благородные металлы особая роль принадлежит парагенетическим ассоциациям и типоморфным особенностям породообразующих, рудных и акцессорных минералов. Их количественные и структурные взаимоотношения, состав и свойства выступают в качестве надежных критериев установления петрологогеохимической взаимосвязи дайковых пород с интрузивными рудоносными дифференциатами, структурно-фациальной индивидуальности магматических комплексов, физико-химических условий формирования сульфидных платиноидномедно-никелевых РМС и потенциальной рудоносности. Наиболее отчетливо эти признаки прослеживаются в особенностях состава минералов группы амфиболов, присущих определенным минералого-петрографическим типам дайковых образований, сопровождающихся разномасштабным сульфидным платиноидно-медно-никелевым оруденением.

1. ОСНОВНЫЕ МИНЕРАЛЬНЫЕ ТИПЫ АМФИБОЛОВ И ОСОБЕННОСТИ ИХ СОСТАВА

По составу и структурно-морфологическим особенностям среди амфиболов, постоянно присутствующих в качестве собственно магматических, авто- и аллометаморфических минералов жильных образований никеленосных комплексов, достаточно надежно различается три основных минеральных вида: <u>обыкновенная</u> (микроскопически преимущественно густо-зеленая, реже буровато-зеленая), <u>титансодержащая роговая обманка</u> (темно- и светлокоричневая) типа керсутита, <u>тремолит-актинолит</u> (бледно-зеленая и бесцветная). Их количественная распространенность определяется не только составом жильных пород, но и принадлежностью последних к определенным магматическим комплексам.

[©] Чернышова М. Н., 2006

б

50 км Рис. 1. Схема структурно-формационного районирования ВКМ (а) и размещение сульфидных платиноидно-медноникелевых месторождений и рудопроявлений мамонского и еланского типов на прогнозно-минерагенической карте платинометалльного и золото-платинометалльного оруденения докембрия Воронежского кристаллического массива в рамках Хоперского мегаблока (б) по [13]: а: I — мегаблок КМА, II — Хоперский мегаблок, III — Лосевская шовная зона, IV — Ольховско-Шукавская грабенсинклиналь; б: 1 — (AR10b) — обоянский гранулит-мигматит-гнейсовый комплекс; 2 — (AR₂bg) — белогорьевский комплекс базит-гипербазитов; 3 — (AR₂mh) — михайловская осадочно-вулканогенная (коматиит-базальтовая и базит-риодацитовая) серия; 4 — (AR—K1ls) — лосевская базальт-риолитовая серия; 5 — (K1r) — габброиды рождественского комплекса; 6 — (K1us) — усманский комплекс тоналит-плагиогранитов; 7 — (К1vc) — воронцовская углеродисто-терригенно-сланцевая серия; 8 — трахибазальтовая (K₂pn — панинская толща), сиенитовая и щелочно-сиенитовая (K₂ar — артюшковский комплекс) формации; (К1е, К1т) — еланский и мамонский комплексы базит-гипербазитов; 9 — (К1р) — мигматит-гранитграносиениты павловского комплекса; 10 — субщелочные граниты бобровского комплекса; 11 — (К2n) — траппы новогольского комплекса; 12 — вулканогенно-осадочная формация (К1 vr — воронежская свита); верлит-габбровая (K1sk — шукавский комплекс) и габбронорит-кварцмонцонит-гранитная (K1ol — ольховский комплекс) формации; 13: а — региональные глубинные разломы, б — разрывные нарушения, в — купольные структуры; 14 — месторождения, рудопроявления и потенциально перспективные участки: 1 — Ольховский; 2 — Шукавский; 3 — Садовский; 4 — Восточно-Садовский; 5 — Моховской; 6 — Шишовский; 7 — Астаховский; 8 — Песковатский; 9 — Икорецкий; 10 — Рябиновско-Большемартыновский; 11 — Аннинский; 12 — Новогольский; 13 — Жердевский; 14 — Троицкий; 15 — Елань-Коленовский; 16 — Центральный; 17 — Еланский; 18 — Елкинский; 19 — Уваровский; 20 — Ширяевский; 21 — Нижнемамонский; 22 — Артюховский; 23 — Бычковский; 24 — Юбилейный; 25 — Подколодновский; 26 — Пионерский (Липов Куст); 27 — Сухой Яр; 28 — Воронежский

Обыкновенная роговая обманка

Среди амфиболов обыкновенная роговая обманка является наиболее распространенной. Вместе с тем, характер ее распределения в однотипных по составу жильных образованиях никель-платиноносных комплексов существенно различен. Наиболее характерной особенностью является значительное обогащение этим минералом жильных пород мамонского комплекса, среди которых существенная роль принадлежит роговообманковым разновидностям габброидов и диоритов. В жильных ортопироксенитах, норитах и диоритах еланского комплекса количество роговой обманки обычно не превышает 7—10 об.%; исключение представляют лишь ограниченно развитые роговообманковое габбро с повышенным (20—58 об. %) содержанием этого минерала, а так же роговообманковые разновидности ортопироксенитов (5—30 об.%). Максимальными содержаниями обыкновенной роговой обманки отличаются спессартиты (до 75 об. %).

Анализ структурных взаимоотношений амфиболов в минеральном парагенезисе различных жильных образований позволяет выделить две основные генерации обыкновенных роговых обманок: а) собственно магматическую (ранне- и позднемагматическую) и б) авто- и аллометаморфическую [16, 17]. Собственно магматическая роговая обманка представлена компактными равномерно окрашенными в зеленые и зеленовато-бурые тона выделениями с отчетливо выраженной спайностью, контрастным плеохроизмом и с заметным уменьшением угла погасания в ряду последовательно формирующихся жильных образований. В пироксенитах роговая обманка слагает близкие к идиоморфным кристаллы, содержащие включения пироксена, или находится с ними в тесных срастаниях. В роговообманковых разновидностях габброидов она размещается в интерстициях пироксенов или находится в диабластовых срастаниях с плагиоклазом, ассоциируя с биотитом, апатитом, рудными минералами, которые нередко находятся в виде включений в зернах амфиболов; в диоритах, диоритовых порфиритах и лампрофирах роговая обманка в ассоциации с биотитом слагает мелкокристаллические агрегаты, самостоятельные кристаллы и вкрапленники с включениями плагиоклаза, кпш, апатита и рудных минералов.

К поздней, автометасоматической по своей природе роговой обманке относятся: а) реакционные ее оторочки вокруг зерен ортопироксена в норитах и норит-порфиритах [15], образовавшиеся по-видимому, в результате взаимодействия кумулосного пироксена с остаточным расплавом; б) новообразования этого минерала, развивающиеся преимущественно по моноклинному пироксену с образованием в ряде случаев почти полных псевдоморфоз. К этой же группе следует, вероятно, относить зеленую и зеленовато-бурую роговую обманку биотит-роговообманковых и существенно биотитовых метасоматитов, развитых среди ультрамафит-мафитовых интрузий елань-вязовского типа.

Кристаллооптическими исследованиями обыкновенной роговой обманки установлено: а) ее отчетливо выраженный плеохроизм (от зеленоватобурого, зеленого и светлозеленого по Ng и до бледно-зеленого и бесцветного по Np) при достаточно высоких величинах 2V (от 90 до 77°) и меняющемся оптическом знаке; б) заметное повышение общей ее железистости (f от 25—30 до 52 мол. %) по мере перехода от ранних к поздним жильным образованиям мамонского комплекса и в целом пониженное значение этой величины (f=10— 30 мол. %) для обыкновенной роговой обманки жильных пород еланского комплекса.

Полученные на основе оптических исследований параметры общей железистости роговой обманки [15, 16, 17] подтверждаются и результатами химических анализов (табл. 1), которые кроме того выявляют ряд других принципиально значимых различий в составе этой группы амфиболов в зависимости от формационно-генетической принадлежности дайковых пород. Эти различия заключаются, прежде всего, в пониженном содержании SiO₂(41,92—47,98 мас. %), Cr₂O₂ (до 0,13 мас. %) и повышенном TiO₂ (1,02—1,94 мас. %), Al₂O₂(6,71— 11,60 мас. %), FeO(7,5—14,4 мас. %), Na₂O(0,60— 2,00 мас. %) в роговой обманке жильных пород мамонского комплекса по сравнению с одноименным минералом дайковых пород еланского комплекса (SiO₂=47,89—53,13 мас. %, TiO₂=0,28—1,10 мас. %, Cr₂O₃ до 0,5 мас. %), что, в конечном счете, отражается на характере распределения количества ионов.

При несомненной принадлежности рассматриваемого минерала к группе кальциевых моноклинных амфиболов (Na+Ca) >1,36 сравнительный анализ расчитанных по специальной методике [2, 9] кристаллохимических формул и нормативного состава выявляет: а) повышенные (против стандартной формулы — (Ca,Na,K)_{2,3}Mg,Fe²⁺,Fe³⁺,Al)₅ [Si₆(Si,Al)₂O₂₂](OH)₂; [3]) количества Si и дефицит Al в анионной и суммы щелочей в катионной составляющих роговой обманки из жильных пород еланского комплекса (см. табл. 1, рис.2); б) существенные различия ее нормативного состава в жильных породах мамонского и еланского комплексов. По соотношению ведущих миналов (Ро,Эд, Па, Кн, Тр, Ви, Че; см. табл. 1), наиболее полно отражающих все многообразие возможных изо- и гетеровалентных замещений в структуре амфиболов, состав роговой обманки из жильных пород мамонского комплекса определяется ведущей ролью Ро-Эд-Кн(±Тр), а еланского — Ро-Эд-Тр компонентов (см. табл. 1). В известной мере эти особенности состава отражаются на диаграммах соотношений количества атомов (Na,K)-[Al]⁴ и ([Al]⁶+Fe³⁺+Ti)-[Al]⁴ на формульную единицу (см. рис. 2), на которых роговые обманки жильных пород никель-платиноносных комплексов образуют обособленные поля в сложной системе изоморфных серий: паргасит (Па) — эденит (Эд) — роговая обманка (Ро) — тремолит (Тр).

М. Н. Чернышова

Таблица 1

Химический состав и кристаллохимические формулы обыкновенной роговой обманки из дайковых пород мамонского и еланского никель-платиноносных комплексов и ассоциирующих с ними месторождений и рудопроявлений (по [19])

				1		1.	1		· · ·	1 /				
	1	2	3	4	5	6	7	8	9	10	11	12	13	14
SiO ₂	41,92	47,63	42,15	44,93	47,02	47,98	46,21	55,13	49,76	51,92	47,89	50,84	53,43	45,16
TiO ₂	1,46	1,02	1,94	1,32	1,24	1,10	1,06	0,28	0,60	0,34	1,10	0,72	0,26	2,00
Al ₂ O ₃	9,75	9,19	11,60	10,09	7,89	6,71	10,30	3,97	4,92	4,42	9,82	7,94	3,28	8,36
Cr ₂ O ₃			0,13	—		_		0,56		0,18			0,24	
Fe ₂ O ₃	4,42	3,74	2,79	3,50	2,75	4,05	2,55	5 76	3,70	12.00	5,35	5,40	11 55	6,97
FeO	7,52	8,37	9,37	9,13	9,20	13,08	17,44	5,20	7,29	12,09	6,75	6,33	11,55	7,43
MnO	0,09	0,06	0,12	0,08	0,06	0,07		0,10	0,04	0,21	0,03		0,25	0,04
MgO	18,51	16,31	14,23	15,58	16,98	11,94	10,34	20,45	18,39	16,74	15,54	16,54	15,56	14,66
CaO	10,67	11,37	13,74	11,39	12,33	12,77	10,11	12,15	12,89	11,11	12,00	10,48	12,76	12,91
Na ₂ O	1,80	1,40	1,80	2,00	0,80	0,60	1,00	0,47	1,00	0,57	0,80	0,40	0,42	0,80
K ₂ O	0,40	0,20	0,40	0,40	0,30	0,40	0,90	0,19	0,20	0,14	0,60	1,00	0,06	0,90
P_2O_5	0,26	0,17	0,34	0,34	0,17	0,37	н.о.	н.о.	0,14	н.о.	н.о.	н.о.	н.о.	н.о.
Ппп	2,66		1,36	1,02	0,96	0,88	н.о.	2,00	1,34	2,00	н.о.	н.о.	н.о.	0,37
Сумма	99,54	99,47	99,97	99,80	99,72	99,95	99,94	100,60	100,27	99,72	99,98	99,65	97,81	99,60
				•	Ke	олическ	тво ио	нов		•	•			
Si	5,840	6,736	6,179	6,50	6,605	6,851	6,749	7,625	6,872	7,469	6,729	7,08	7,66	6,472
Ti	0,153	0,109	0,214	0,14	0,131	0,118	0,117	0,029	0,062	0,037	0,117	0,08	0,03	0,215
Al	1,601	1,531	2,005	1,72	1,307	1,129	1,773	1,648	0,802	0,749	1,626	1,30	0,55	1,412
Cr			0,014		_	_		0,061	_	0,020			0,03	
Fe ³⁺	0,464	0,398	0,308	0,38	0,290	0,436	0,281	0.07	0,385	1 45 4	0,566	0,57		0,751
Fe ²⁺	0,881	0,990	1,149	1,10	1,080	1,562	2,130	0,607	0,842	1,454	0,793	0,74	1,38	0,891
Mn	0,011	0,007	0,015	0,01	0,007	0,009		0,012	0,005	0,026	0,003		0,03	0,005
Mg	3,843	3,437	3,109	3,36	3,554	2,540	2,250	4,203	3,785	3,590	3,254	3,43	3,32	3,131
Ca	1,593	1,723	2,158	1,77	1,856	1,354	1,582	1,795	1,908	1,712	1,807	1,56	1,96	1,983
Na	0,486	0,384	0,511	0,56	0,218	0,166	0,283	0,127	0,267	0,159	0,218	0,11	0,12	0,222
K	0,07	0,036	0,074	0,07	0,054	0,072	0,169	0,034	0,035	0,026	0,108	0,18	0,01	0,165
f	28,0	28,9	32,2	32,7	29,8	45,6	51,7	14,4	25,5	29,9	29,5	28,8	30,69	34,5
Si/Al	3,64	4,40	3,08	3,78	5,05	6,07	3,81	4,63	8,57	8,57	4,14	5,45	13,93	4,58
(Ca+Na+K)/Al	1,35	1,40	1,37	1,40	1,63	1,94	1,15	0,84	2,75	2,76	1,31	1,42	3,8	1,68
X _{Mg}	72,0	71,1	67,8	67,3	70,2	54,4	48,3	85,6	74,5	70,1	70,5	71,2	49,85	65,5
					Нор	матив	ный со	став			•			
Po	21,4	55,7	24,4	19,6	38,2	61,4	30,7	19,6	39,6	44,1	75,1	65,2	24,0	67,7
Эд	33,0	43,1	16,5	26,4	30,9	8,8	16,6	18,9	33,1	19,1	12,6	20,9	9,3	21,1
Па	28,6		43,8	36,1	30,9	20,6	27,0		_					
Тр		0,4		_			_	61,5	27,3	36,8	0,3	9,2	64,5	
Кн	17,0		10,5	17,9			25,7							
Ви	_	0,8		_		9,2	_			_	12,0	4,7	2,2	11,2
Че	_			_			_							_

Примечание: 1—7 — обыкновенная (зеленая) роговая обманка из дайковых пород мамонского комплекса: 1 — вебстерит, Пузевский интрузив (скв. 520а/100,0 м); 2—3 — горнблендиты: 2 — Астаховское рудопроявление (скв. 6901/229,6 м); 3 — Садовское рудопроявление (скв. 7210/466,8 м), [9]; 4 — габбро роговообманковое, Подколодновское месторождение (скв. 207а/158,7 м); 5—7 — биотит-роговообманковые диориты: 5 — Сидякинский интрузив (скв. 386а/195,0 м); 6 — Хреновской интрузив (скв. 390а/119,3 м); 7 — Нижнемамонское месторождение (скв. 439а/185,0 м); 8—13 — обыкновенная роговая обманка из дайковых пород еланского комплекса: 8 — меланократовый норит интрузивный, Еланское месторождение (скв. 7931/314,9 м, среднее из 3 анализов [4]; 9 — норит жильный, Вязовский массив (скв. 7623/425,1 м); 10 — габбро роговообманковое, Елань-Вязовский плутон (скв. 8503/1124,4 м, [4]); 11 — норит-порфирит, Вязовский массив (скв. 8081/316,5 м); 12 — норит-порфирит, Вязовский массив (скв. 8081/316,5 м); 14 — лампрофири,

Особенности состава амфиболов рудоносных даек сульфидных платиноидно-медно-никелевых месторождений

Puc. 2. Положение полей составов обыкновенной (поле I и II) и титансодержащей (поле III) роговых обманок из дайковых пород мамонского (I, III) и еланского (II) комплексов на диаграммах: *a*) (Na+K)- $[Al]^4 u \delta$) $([Al]^6+Fe^{+3}+Ti)$ - $[Al]^4$. *Исходные данные приведены в табл.* 1 и 2.

Содержание этих компонентов в значительной мере определяется щелочностью и кислотностью расплава, в качестве показателей которых используются [9] величины отношений (Ca+Na+K)/Al и Si/Al. Широкие вариации величин как (Ca+Na+K)/Al (от 1,15 до 1,94 — для роговой обманки мамонского и от 0,84 до 3,8 — еланского комплекса), так и Si/Al (от 3,08 до 6,07 и от 3,81 до 8,57 соответственно) отношений (см. табл.1) свидетельствуют о формировании роговой обманки пород дайковой фации никель-платиноносных комплексов в условиях неоднократного изменения относительной кислотности и щелочности минералообразующей среды.

Титансодержащая роговая обманка

Преимущественное нахождение титансодержащей роговой обманки лишь в интрузивно-дайковой породной ассоциации ширяевского типа [7, 9, 14, 16], которые инъецируют рудоносные ультрамафитовые интрузии мамонского типа и полностью отсутствуют среди норит-диоритовых тел еланского комплекса, выдвигают этот минерал в качестве одного из наиболее значимых для определения возрастной последовательности формирования никельплатиноносных комплексов, разработка формационно-генетической систематики дайковых образований и установления их соотношения с сульфидным медно-никелевым оруденением [14, 18].

Впервые эта разновидность роговой обманки была установлена в составе так называемых [5, 8] «куммингтонитовых и куммингтонит-плагиоклазовых пироксенитов», сопровождающихся своеобразными «пятнистыми» пирротиновыми рудами и относимых ранее к продуктам сложного околотрещинного магматического замещения [6]. Совокупный анализ условий залегания, структурно-текстурных, минералого-петрографических и петрохимических особенностей пироксенитов с титансодержащей роговой обманкой и ассоциирующих с ними руд позволил сделать вывод об их принадлежности к жильным дериватам ультрамафит-мафитовых плутонов ширяевского типа, формированию

Вязовский массив (скв. 8026/276,1 м). Символы миналов и изовалентных серий: Ро — обыкновенная (безнатровая) роговая обманка — $Ca_2(Mg, Fe^{2+})_4$ (Fe^{3+}, Al)[$AlSi_7O_{22}$](OH)₂; [4, 9, 20]; Эд — эденит-ферроэденитовая — $NaCa_2(Mg, Fe^{2+})_5$ [$AlSi_7O_{22}$] (OH)₂; Ia — паргасит-феррогастингситовая — $NaCa_2(Mg, Fe^{2+})_4(Fe^{3+}, Al)$ [$AlSi_6O_{22}$] (OH)₂; Tp — тремолит-ферроактинолитовая — $Ca_2(Mg, Fe^{2+})_5$ [Si_8O_{22}](OH)₂; $K\mu$ — канниллоитовая — $CaCa_2(Mg, Fe^{2+})_5$ [$Al_2Si_6O_{22}$](OH)₂; Bu — винчитовая — (NaCa)₂(Mg, Fe^{2+})₄(Fe^{3+}, Al)[Si_8O_{22}](OH)₂; 4e — чермакит-феррочермакитовая — $Ca_2(Mg, Fe^{2+})_5$ [Si_8O_{22}](OH)₂; 4e — чермакит-феррочермакитовая — $Ca_2(Mg, Fe^{2+})_5$ [Si_8O_{22}](OH)₂; 4e — чермакит-феррочермакитовая — $Ca_2(Mg, Fe^{2+})_5$ [Si_8O_{22}](OH)₂; 4e — чермакит-феррочермакитовая — $Ca_2(Mg, Fe^{2+})_5$ [Si_8O_{22}](OH)₂; 4e — чермакит-феррочермакитовая — $Ca_2(Mg, Fe^{2+})_5$ [Si_8O_{22}](OH)₂; 4e — чермакит-феррочермакитовая — $Ca_2(Mg, Fe^{2+})_5$ [$AlSi_7O_{22}$](OH)₂; Ba — барруазитовая — (NaCa)₂(Mg, Fe^{2+})₃[Fe^{3+}, Al)₂[$AlSi_7O_{22}$](OH)₂: Ba — $Sa_2(Mg, Fe^{2+})_5$ [$Sa_2(Mg, Fe^{2+})_5$]($Sa_2(Mg,$

которых предшествовало становление высокомагнезиальных ультрамафитовых интрузий мамонского типа [14, 16].

Выступающая в качестве типоморфного минерала ширяевского типа интрузий и их жильных дериватов (пироксениты-вебстериты, горнблендиты, роговообманковое габбро, габбродиориты, иногда диориты) титансодержащая роговая обманка в пироксенитах слагает крупные (до 2-2,5 см, иногда до 3 см) пойкилокристаллы, которые на фоне более мелкозернистой основной массы распределены в виде отдельных пятен близкой к идиоморфной форме и содержат многочисленные включения оливина, орто- и клинопироксена, апатита, ильменита, реже плагиоклаза. В рудных пироксенитах роговая обманка находится в срастаниях с сульфидами, образуя крупные порфировые сегрегации с образованием своеобразных «пятнистых» пирротиновых руд. Для жильных роговообманковых габбро и габбродиоритов характерны диабластовые срастания ее с плагиоклазом и биотитом.

Типоморфными особенностями этой разновидности роговой обманки являются [14, 16]: а) темнокоричневая с красноватым оттенком окраска; б) отчетливо выраженные спайность и плеохроизм (Ng-коричневый, коричнево-красный, Np-бледножелтый до бесцветного); в) уменьшение интенсивности окраски от темно-коричневой и бурой в центре до бледнозеленой и бесцветной по периферии крупных пойкилокристаллов с одновременным снижением показателя преломления и величины общей железистости (на 10—15 мол. %) вследствии вероятного снижения концентрации Ті и Fe в том же направлении [9]. Исследованиями кристаллооптических свойств кроме того установлено заметное увеличение общей железистости (от f = 27—30 мол. % до 60 мол. %) бурой роговой обманки по мере снижения магнезиальности и возрастания кремнекислотности и щелочности жильных пород.

По сравнению с зеленой бурая роговая обманка характеризуется (табл. 2): а) повышенным содержанием TiO₂ (до 3,46 мас. %), Cr₂O₃(до 0,98 мас. %), и особенно щелочей (Na+K₂O до 3,60 мас. %) при пониженной роли SiO₂, что сказывается на его дефиците в анионном комплексе $[Si,Al] \leq 8$. По соотношению (Na+K)- $[Al]^4$ и ([Al]⁶+Fe³+Ti)-[Al]⁴ (ионов) титансодержащая роговая обманка занимает обособленное поле (см. рис. 2), вблизи паргасита. В целом по оптическим свойствам и нормативному составу бурая роговая обманка в жильных породах, ассоциирующих с интрузивами ширяевского типа, принадлежит к титансодержащим разновидностям Са амфиболов, занимающих промежуточное положение между эденит-паргаситовой серии.

Таблица 2

Химический состав и кристаллохимические формулы титансодержащей роговой обманки из дайковых пород разнотипных по структурно-вещественной принадлежности и степени рудоносности интрузивов мамонского комплекса

	1	2	3	4	5	6					
SiO ₂	41,61	41,50	40,79	40,87	40,68	40,54					
TiO ₂	3,32	3,30	2,84	2,50	3,18	3,46					
Al ₂ O ₃	10,23	10,56	9,88	12,83	10,87	10,75					
Cr ₂ O ₃	0,53	0,50	0,98			0,03					
Fe ₂ O ₃	4,33	4,35	5,45	3,60	6,17	6,91					
FeO	7,45	7,65	5,96	9,28	10,29	14,69					
MnO	0,08	0,06	0,08	0,08	0,10	0,12					
MgO	16,87	16,76	15,82	15,20	12,79	8,64					
CaO	12,48	12,50	13,85	11,12	11,83	11,79					
Na ₂ O	2,50	2,60	1,80	2,10	2,40	1,30					
K ₂ O	0,80	0,73	0,90	0,60	1,20	1,10					
P_2O_5	0,29	0,30	0,31		0,13	0,29					
Ппп			1,26	1,58	0,26	0,44					
Сумма	100,49	100,91	99,92	99,76	99,90	99,88					
	Количество ионов										
Si	5,97	5,968	5,998	5,791	5,961	6,105					
Ti	0,36	0,357	0,315	0,267	0,350	0,392					
Al	1,73	1,790	1,712	2,142	1,877	1,908					

Особенности состава амфиболов рудоносных даек сульфидных платиноидно-медно-никелевых месторождений

	1	2	3	4	5	6	
Cr	0,10	0,057	0,113			0,004	
Fe ³⁺	0,47	0,0471	0,602	0,383	0,680	0,784	
Fe ²⁺	0,89	0,920	0,732	1,100	1,261	1,850	
Mn	0,01	0,007	0,010	0,009	0,012	0,015	
Mg	3,61	3,593	3,468	3,210	2,793	1,900	
Ca	1,92	1,962	2,183	1,688	1,857	1,901	
Na	0,70	0,725	0,513	0,577	0,681	0,380	
K	0,15	0,134	0,168	0,109	0,224	0,212	
f	33,1	27,9	27,9	31,7	41,2	58,3	
Si/Al	3,45	3,3	3,50	2,70	3,18	3,20	
(Ca+Na+K)/Al	1,60	1,6	1,67	1,11	1,47	1,31	
X _{Mg}	66,9	72,1	72,1	68,3	58,8	41,7	
6		Н	ормативный сос	тав			
Ро	7,0	6,6	24,3	21,7	8,2	35,6	
Па	41,0	42,7	55,5	50,5	82,7	45,1	
Эд	46,3	46,4	14,7	23,7	5,9		
Дж	5,7	4,3	5,5	4,1	3,2		
Ба						14,1	
Че						5,2	

Примечание: 1 — плагиопироксенит интрузивный, Ширяевский массив (скв. 7169/253,6—279,2 м; [7]); 2 — вебстерит жильный, Воскресеновское рудопроявление (скв. 7009/313,9 м); 3 — вебстерит роговообманковый жильный, Елань-Коленовский массив (скв. 7694/420,0 м; [9]); 4 — горнблендит, Воскресеновское рудопроявление (скв. 7105/289,1 м); 5 — габбро пегматоидное, Нижнемамонское месторождение (скв. 0402/150,7 м); 6 — габбродиорит, Мечеткинский интрузив (скв. 515а/117,6 м). Символы миналов и изоморфных серий приведены в табл. 1.

По значениям величин Si/Al и (Ca+Na+K)/Al, которые, как отмечалось, в известной мере отражают режим кислотности – щелочности кристаллизующейся системы, эта разновидность амфибола близка к зеленой роговой обманке мамонского комплекса.

Различные количественные соотношения главных компонентов в зеленой и бурой роговых обманках, сложный и неодинаковый характер их изоморфных замещений в условиях неоднократного изменения режима щелочности и кремнекислотности в процессе минералообразования в известной мере сказываются на составе и концентрациях элементов-примесей амфиболов из дайковых пород различных никеленосных комплексов. Количественный спектральный анализ зеленой и бурой роговых обманок выявил в целом сходный видовой состав элементов-примесей. Вместе с тем зеленая роговая обманка дайковой пород еланского комплекса по сравнению с жильной фацией мамонского комплекса характеризуется повышенными концентрациями Cr, Cu, Ni, Co, Zn, Zr, Y и постоянным присутствием Pb, Мо. Для бурых роговых обманок, в отличие от зеленых, помимо высоких содержаний титана, характерны повышенные концентрации V, Zn, Sr, Ga [19].

Амфиболы тремолит-актинолитового ряда

Амфиболы тремолит-актинолитового ряда в различных количествах присутствуют во всех формационно-генетических типах дайковых образований. Генетическая связь их с постмагматическими авто- и аллометаморфическими преобразованиями как интрузивных [5, 8, 9, 16, 17], так и ассоциирующих с ними дайковых пород, обуславливает появление двух ведущих типов тремолит-актинолитовых парагенезисов, существенно различающихся по характеру распределения и соотношению с другими породообразующими минералами.

Различные по интенсивности автометаморфические преобразования дайковых пород мамонского комплекса приводят обычно к разномасштабному замещению (вплоть до образования полных гомоосевых псевдоморфоз) преимущественно кальциевых моноклинных пироксенов и первично магматической роговой обманки, амфиболами тремолит-актинолитового ряда в ассоциации с серпентином, биотитом, хлоритами с сохранением первичного структурно-текстурного облика пород.

В породах дайковой фации еланского комплекса в этот процесс, помимо обыкновенной роговой обманки и более ограниченно развитых клинопироксенов, вовлекается и ромбический пироксен, при этом в норит-порфиритах наиболее интенсивному замещению подвергаются его ранние, ксеногенные по своей природе фенокристаллы [15], центральные части которых нередко представлены гомоосевыми псевдоморфозами лучистого и кристаллобластического тремолита, а краевые — сопровождаются биотитовыми и биотит-тремолитовыми каемками с вростками рудных минералов. Широким развитием амфиболов актинолит-тремолитового ряда (до 30-40 об. %) отличается промышленно рудоносное роговообманковое габбро того же комплекса [19].

С проявлениями аллометаморфических преобразований, возникших под воздействием дайковых пород преимущественно среднего и кислого состава и сопутствующих им гидротермальных процессов, связано широкое развитие в интрузивах никель-платиноносных комплексов различных по мощности (от первых сантиметров до 0,5—1,5 м), строению (симметрично- и ассиметрично-зональных) и составу (тальк-актинолит-вермикулитовые, серпентин-хлорит-актинолитовые, тальк-актинолит-карбонатные и др.) жильных тел, детально описанных в ряде публикаций [5, 8]. Пространственно они располагаются как в непосредственных контактах даек, так и вне их, контролируясь в этом случае сложной системой разрывных нарушений.

Наиболее сложным составом отличаются актинолит-тремолитсодержащие парагенезисы, развивающиеся непосредственно на контакте высокомагнезиальных интрузивных дифференциатов мамонского комплекса с дайками гранитоидов, которые сопровождаются реакционной вермикулит-хлоритовой оторочкой, за которой следует существенно тремолит-актинолитовая и тальковая зоны. Породы актинолит-тремолитовой зоны характеризуются [5, 8, 16]: а) отсутствием магматических структур и развитием нематофибробластовой вторичной структуры; б) поперечной (по отношению к зальбаидам жилы) ориентировкой кристаллов амфиболов тремолит-актинолитового ряда (до 80 об. %), ассоциирующих с тальком, хлоритом, хризотилом, антигоритом, карбонатами и магнетитом.

По результатам оптических исследований амфиболы, развивающиеся по пироксенам и обыкновенной роговой обманке, характеризуются [16] заметными вариациями кристаллооптических свойств, содержаний Са, Fe, компонента (20-35 мол. %), определяющего (в соответствии с классификацией [3]) их принадлежность к тремолиту маложелезистому актинолиту. В жильных образованиях, связанных с аллометаморфическими процессами, присутствуют бесцветные амфиболы тремолит-актинолитового ряда с содержанием Са, Fe, от 10 до 38 мол. %. Эти данные в полной мере согласуются с результатами химических анализов амфиболов: а) производных автометаморфических процессов (SiO₂ = 55,70 мас. %, TiO₂ = 0,03%, $Al_2O_3 = 0,07\%$, $Fe_2O_3 = 1,27\%$, FeO = 7,71%, MnO = 0,02 %, MgO = 22,57 %, CaO = 8,41 %, Na₂O = 0,40 %, K₂O = 0,11 %, H₂O⁺ = 0,72 %, H₂O = 0,14 %, п.п.п. = 2,05, сумма = 99,20 мас. %; б) связанных с аллометаморфическими жильными образованиями $(SiO_2 = 54,76 \text{ mac. }\%; TiO_2 = 0,20 \%, Al_2O_3 = 1,41 \%,$ $Fe_{2}O_{3} = 0.17$ %, FeO = 9.48 %, MnO = 0.12 %, MgO= 17,89 %, CaO = 12,73 %, Na₂O = 1,40 %, K₂O = 0,10 %, H₂O⁺ = 2 %, H₂O⁻ = 0,14 %, сумма = 100,54 мас. %. Сравнительный анализ этих результатов свидетельствует о заметном обогащении Al₂O₂, ТіО,, щелочами амфибола жильных образований по сравнению с тремолит-актинолитовым рядом автометаморфической природы.

2. ТИПЫ РУД, АССОЦИИРУЮЩИХ С РОГОВООБМАНКОВЫМИ ПАРАГЕНЕЗИСАМИ ДАЙКОВЫХ ОБРАЗОВАНИЙ СУЛЬФИДНЫХ ПЛАТИНОИДНО-МЕДНО-НИКЕЛЕВЫХ МЕСТОРОЖДЕНИЙ

Среди многочисленных, разнообразных по составу и возрасту даек, отражающих полигенный процесс формирования РМС, выделяется два существенно различных по формационно-генетической принадлежности и составу типов амфиболов дайковых образований, с которыми связаны существенно различные по концентрации Ni, Cu, Со, ЭПГ, минеральным парагенезисам и масштабам рудопроявления, ассоциирующие: а) с жильными пироксенитами с титансодержащей разновидностью роговой обманки; б) роговообманковым габбро.

Первый тип оруденения наиболее полно проявился в Нижнемамонском и Подколодновском месторождениях. По составу эпигенетические по своей природе руды являются существенно пирротиновыми (пирротин=84—96%), при крайне ограниченном (до 2—6%) развитии других минералов (пирит, халькопирит, пентландит, маккинавит, хромшпинелиды, ильменит, титаномагнетит). Пирротин находится в тесном срастании с роговой обманкой с образованием своеобразной «пятнистой» текстуры. По содержанию Ni, Co, Cu, S и величинам их отношений они значительно отличаются от более ранних по времени формирования руд мамонского типа (табл. 3).

Проявления разномасштабного сульфидного медно-никелевого оруденения во внутриинтрузивной жильной фации роговообманкового габбро связано обычно в случае пространственного сонахождения даек с зонами рудоносных норитов. Особенностями руд, ассоциирующих с роговообманковыми габбро, являются: а) высокие содержания в них пентландита (иногда до 40—55 об. %), а так же сульфоарсенидов (до 4—6 %) Ni и Co (никелин, кобальтин, герсдорфит), наличие миллерита, теллуровисмутита, гаухекорнита, повышенные количества (до 16 %) халькопирита и пониженные хромшпинелидов; б) преобладание вкрапленных и богатых высоконикелистых с повышенными концентрациями Си платиносодержащих (ЭПГ до 0,6 г/т) гнездово-прожилковых руд с переходом в массивные; в) значительные черты сходства в содержаниях и величинах отношений рудообразующих элементов в однотипных текстурных разновидностях руд, ассоциирующих с интрузивными норитами и дайками роговообманковых габбро (табл. 4), подчеркивая тем самым их принадлежность к единой рудномагматической системе еланского типа.

По составу силикатной матрицы с рудами в роговообманковых габбро определенные черты сходства обнаруживают вскрытое в пределах Еланского месторождения богатое золото-платиносодержащее сульфидное кобальт-медисто-никелевое оруденение (табл. 5), выделяемое в особый сульфидно-пегматоидный тип [19].

Таблица 3

Содержание рудообразующих элементов (мас. %) и величины их отношений в рудах, ассоциирующих с дайками (восточно-садовский, северо-бычковский, ширяевский, артюховский и коммунский типы) и рудах Нижнемамонского и Подколодновского месторождений [16, 19]

NoNo	NºNº		Co	Cu	S/NI:	S /NI: S		Ni/Co	в 100 % сульфидов			
п/п	3	111	0	Cu	5/1NI	Ni+Co+Cu	INI/Cu	INI/CO	Fe	Ni	Co	Cu
1(5)	10,27	0,20	0,044	0,19	51,4	23,7	1,1	4,5	60,4	0,74	0,16	0,70
2(7)	6,72	0,76	0,06	0,67	10,0	4,5	1,1	12,7	55,03	3,71	0,24	3,16
3(4)	3,88	0,29	0,028	0,42	63,4	5,3	0,7	10,4	54,78	2,84	0,27	4,11
4(11)	20,19	2,58	0,11	0,14	7,8	7,13	18,4	23,5	56,63	4,85	0,21	0,26

Примечание: 1 – «гнездовые» руды в дайковых пироксенитах с титансодержащей роговой обманкой; 2–4 – вкрапленные руды в дунитах и перидотитах (2), оруденелых оливиновых пироксенитах (3) и инъекционные массивные руды (4) Нижнемамонского и Подколодновского месторождений. Расчет состава сульфидной фазы здесь и далее приведен при S = 38 % по средним содержаниям. В рудных пироксенитах с титансодержащей роговой обманкой присутствуют (*г/m*) – *Pt*=0,218; *Pd*=0,413 (*Pd/Pt*=1,89).

Таблица 4

Содержание рудообразующих элементов (мас. %) и величины их отношений в рудах, ассоциирующих с дайками роговообманкового габбро и рудах Еланского месторождения

NoNo	c	S Ni	NI	Ca	Cu	C/NI:	<u>S</u>	NE/Cu	NE/Co	в 100% сульфидов			
п/п	5	INI			5/INI	Ni+Co+Cu	NI/Cu	NI/CO	Fe	Ni	Co	Cu	
1(3)	3,75	0,474	0,019	0,067	10,02	8,48	7,91	24,95	56,34	4,80	0,19	0,67	
2(12)	10,77	3,422	0,052	0,285	2,86	2,86	12,01	65,81	48,80	12,07	0,18	1,01	
3(1)	14,85	6,25	0,10	0,87	2,38	2,06	7,18	62,50	43,52	15,99	0,26	2,23	
4(42)*	4,02	1,31	0,04	0,14	3,07	2,7	9,36	32,93	47,92	12,36	0,38	1,32	
5(17)	18,87	5,48	0,25	0,19	2,35	2,2	28,84	23,92	44,42	16,18	0,74	0,56	
6(11)	24,82	8,01	0,19	0,07	3,10	3,0	114,4	42,16	49,34	12,26	0,29	0,11	

Примечание: 1—3 — вкрапленные (1), прожилково-вкрапленные и гнездовые (2) и массивные (3) руды в дайках роговообманковых габбро; 4-6 – вкрапленные (4), гнездово- прожилковые (5) и массивные (6) руды, ассоциирующие с интрузивными норитами Еланского месторождения; *) в скобках — количество анализов

М. Н. Чернышова

Таблица 5

Интервалы рудных тел по стволу скв.7614	Ni	Со	Cu	Pt	Pd	Au
272,1—272,3	9,35	0,342	1,140	0,42	1,14	1,03
293,3—293,8	5,65	0,190	0,180	0,27	0,69	0,57
294,4—295,0	5,38	0,197	0,428	0,30	0,72	0,54
296,1—297,1	7,65	0,296	0,925	0,37	0,88	0,91

Содержание Ni, Co, Cu (мас. %) и благородных металлов (Pt, Pd, Au; г/т) в сульфидно-пегматоидных рудах Еланского месторождения

Позднемагматические эпигенетические роговообманково-плагиоклазовые жилы с золото-платиносодержащими сульфидными кобальт-медноникелевыми рудами этого типа несут отчетливые черты сульфидно-пегматоидных по своей природе расплавов, обогащенных флюидной фазой. Кроме того, об этом свидетельствует характерное для поздних стадий становления РМС еланского типа широкое развитие в составе высоконикелистых руд разнообразных арсенидов и сульфоарсенидов никеля и кобальта — никелина, герсдорфита, кобальтина, гаухекорнита, обычно обогащенных платиноидами, а также галенита, самородного золота, молибденита [19].

выводы

Таким образом, сопоставление состава и типоморфных особенностей амфиболов различных по формационно-генетической принадлежности дайковых пород выявляет более широкое (по сравнению с еланским типом месторождений) в минеральном парагенезисе жильных пород мамонской группы месторождений и рудопроявлений собственномагматических, авто- и аллометаморфических амфиболов трех разновидностей — тремолитактинолита, обыкновенной зеленой и бурой титансодержащей роговых обманок. При этом количественно преобладающая зеленая роговая обманка дайковых пород в сульфидных медно-никелевых месторождениях, ассоциирующих с мамонским комплексом по составу и свойствам (значительные вариации железистости — от 25 до 52 мол.%, пониженные содержания SiO₂, Cr₂O₃, повышенные TiO₂, Al₂O₂, FeO, Na₂O, ведущая роль в ее составе Ро-Эд-Кн компонентов) существенно отличается от одноименного минерала жильных пород (прежде всего роговообманкового габбро) еланского комплекса и связанных с ним месторождений (пониженная общая железистость, повышенные количества Si и дефицит Al в анионной и щелочей в катионной составляющих, обогащенность Cr, Ni, Со, Zn, ведущая роль в нормативном составе Ро-Эд-Тр компонентов.

Эти различия, отражающие природу исходных магматических расплавов интрузивно-дайковых породных ассоциаций, существенно сказались на особенностях состава руд, ассоциирующих с роговообманковыми дайковыми образованиями, выступающих в качестве важнейшего структурно-вещественного и рудонесущего компонента сульфидных платиноидно-медно-никелевых РМС мамонского и еланского типов.

ЛИТЕРАТУРА

1. Буковшин В.В., Молотков С.П., Чернышова М.Н. Богатые эпигенетические медно-никелевые руды пегматоидного типа Еланского месторождения. // Проблемы геодинамики и минерагении Восточно-Европейской платформы: Материалы междунар. конф. — Воронеж, ВГУ, 2003. — Т. 2. — С. 261—263.

2. *Булах А.Г.* Руководство и таблицы для расчета формул минералов. — М.: Наука, — 1967. — 144 с.

3. *Дир У.А., Хауи Р.А., Зусман Дж*. Породообразующие минералы. — М.: Мир, — 1965. — Т. 1—3. 70, 405, — 318 с.

4. Переславцев А.В., Слюняев А.А. Породообразующие минералы и петрогенезис никеленосных норитдиоритовых интрузий Воронежского кристаллического массива // Изв. АН СССР. Сер. геол. — 1992. — № 11. — С. 81—98.

5. Фролов С.М. Гипербазиты южно-восточных сульфидных медно-никелевых месторождений и их метаморфические изменения: Автореф. дис. канд. геол.-мин. наук. — Воронеж, 1969. — 24с.

6. Фролов С.М. Петрография никеленосной перидотит-габброноритовой формации ВКМ / Воронеж. гос. ун-т, 1988. — 171 с. — Деп. в ВИНИТИ

7. *Хунг Ч.К.* Ширяевская дифференцированная интрузия среднепротерозойского никеленосного мамонского комплекса: Автореф. дис. канд. геол.-мин. наук.-Воронеж, — 1975. — 20 с.

8. Чернышов Н.М. Сульфидные медно-никелевые месторождения юго-востока Воронежского кристаллического массива: Породы, руды, генетические особенности. — Воронеж: Изд-во Воронеж. ун-та, 1971. — 312 с.

9. *Чернышов Н.М., Дмитренко Г.Г.* Породообразующие минералы никеленосных интрузий ВКМ / Воронеж: Изд-во Воронеж. ун-та, 1979. — 248 с.

Особенности состава амфиболов рудоносных даек сульфидных платиноидно-медно-никелевых месторождений

10. Чернышов Н.М. Генетические типы месторождений медно-никелевой формации Воронежского кристаллического массива (ВКМ) // Рудообразование и генетические модели эндогенных рудных формаций. – Новосибирск: Наука, 1988. — С. 182—190.

11. Чернышов Н.М., Баянова Т.Б., Чернышова М.Н. и др. Уран-свинцовый возраст норит-диоритовых интрузий еланского никеленосного комплекса и их временные соотношения с габброноритами дифференцированных ультрамафит-мафитовых плутонов мамонского комплекса ВКМ // Геология и геофизика, 1998. — Т. 39. — № 8. — С. 1064—1071.

12. Чернышов Н.М., Баянова Т.Б., Чернышова М.Н., Левкович Н.В. Уран-свинцовый возраст норит-диоритовых интрузий еланского никеленосного комплекса Воронежского кристаллического массива // Докл. РАН. — 1998. — Т. 359, № 1. — С. 98—101.

13. *Чернышов Н.М.* Платиноносные формации Курско-Воронежского региона (Центральная Россия). — Воронеж: Изд-во Воронеж. гос. ун-та, 2004. — 448 с.

14. *Чернышова М.Н.* О генетической природе жильных титанистороговообманковых пироксенитов никеленосных интрузий мамонского комплекса ВКМ // Вестн. Воронеж. ун-та. Сер. геол. — 1996. — № 2. — С. 42—48.

15. Чернышова М.Н. О генетической природе жильных норит-порфиритов еланского никеленосного комплекса // Вестн. Воронеж. ун-та. Сер. геол. — 1997. — № 3. — С. 65—76.

16. *Чернышова М.Н.* Дайки мамонского никеленосного комплекса и их соотношение с оруденением / Воронеж: ВГУ, 1999. — 121с.

17. Чернышова М.Н. Дайки сульфидных платиноидно-медно-никелевых месторождений еланского типа и их соотношение с оруденением (Воронежский кристаллический массив) / Воронеж: Изд-во Воронеж. гос. ун-та, 2002. — 184 с.

18. Чернышова М.Н. Дайки как важнейший структурно-вещественный элемент никель-платиноносных формаций и их соотношение с оруденением. // Современные проблемы формационного анализа, петрология и рудоносность магматических образований. — Новосибирск. Изд-во СО РАН, филиал «ГЕО», 2003. — С. 373—374.

19. Чернышова М.Н. «Дайки сульфидных платиноидно-медно-никелевых месторождений Воронежского кристаллического массива (Центральная Россия)». — Воронеж: Изд-во Воронеж. гос. ун-та, 2005. — 368 с.

20. Leake B.E., Woolley A.R. et al. Nomenclature of amphiboles: Report of the Subcommittee on Amphiboles of the International Mineralogical Association, Commission on New Minerals and Mineral Names // American Mineralogist, 1997. — Vol. № 82. — P. 1019—1037.

Поступила в редакцию 20.12.06 г.