ЖЕЛЕЗИСТЫЙ КАЛИЕВЫЙ ПОЛЕВОЙ ШПАТ — ПРОДУКТ ТЕРМАЛЬНОГО РАЗЛОЖЕНИЯ ПРИРОДНОГО СЕЛАДОНИТА (ЭКСПЕРИМЕНТАЛЬНЫЕ ДАННЫЕ)

К. А. Савко*, В. И. Фонарев**, А. Н. Конилов**, А. Г. Чигарев*, С. М. Пилюгин*

* Воронежский государственный университет ** Институт экспериментальной минералогии РАН, г. Черноголовка

В результате экспериментов по термальному разложению природного селадонита при температуре 700 °С, давлении 1 кбар и Нет-Мад буфере были синтезированы железистый санидин (Fe–Fsp = 0.407—0766 ат. ед.), тетраферрибиотит и кварц. Таким образом, железистый санидин, тетраферрибиотит и кварц образуются при термальном разложении селадонита при относительно высоких значения fO₂. При более восстановительных условиях — на буфере NiNiO — железистый калиевый полевой шпат не образуется, и продуктами разложения селадонита являются тетраферрибиотит и кварц.

введение

В палеопротерозойской железисто-кремнистой формации Курской магнитной аномалии (КМА) широко распространены обогащенные щелочами и фактически не содержащие глинозема железистые кварциты, в составе которых ведущую роль играют рибекит, эгирин, а также ряд редких слоистых силикатов — селадонит, тетраферрибиотит, ферришамозит [2, 3]. Фазовые равновесия безглиноземистых калиевых слюд в высокотемпературной области в настоящее время не изучены: неизвестны ни условия, ни продукты термального разложения селадонита и тетраферрибиотита. Известная реакция Bt+Qtz = Opx+Kfs+H₂O не отвечает отсутствию Al₂O₂ в составе биотита, а чисто железистые (без Al₂O₂) калиевые полевые шпаты в природе не известны. В предыдущей статье [4] было экспериментально показано, что безглиноземистый селадонит при нагревании с кварцем и магнетитом на буфере NiNiO разлагается с образованием тетраферрибиотита. В этой серии опытов синтез железистого калиевого полевого шпата, как высокотемпературного эквивалента калиевых безглиноземистых слюд, осуществить не удалось.

В связи с этим нами был поставлен новый опыт с целью синтеза железистого калиевого полевого шпата, при термальном разложении селадонита, изменив окислительно-восстановительные условия и состав исходной смеси.

МЕТОДИКА ИССЛЕДОВАНИЙ

Основой для приготовления препаратов для опытов является монофракция селадонита из обр. 466p/131. Образец 466p/131 железистого кварцита с селадонитом (в количестве 25 мод. %) отобран из керна скважины 466-Р, пробуренной в контуре карьера Михайловского железорудного месторождения. Образец был предварительно раздроблен в чугунной ступке, полученный после дробления порошок просеяли на ситах (диаметром 0,316; 0,2; 0,15; 0,1). Из фракции 0,316 и 0,2 сначала выделили электромагнитную фракцию, а потом под бинолупой из нее выделили 100 мг селадонита. Для опыта использовалось 20 мг. Состав природного селадонита приведен в табл. 1.

Смесь была тщательно перемешана и истерта в порошок в агатовой ступке в спиртовом растворе. Потом ее поместили в платиновую ампулу. В ампулу была добавлена дистиллированная вода, количество которой соответствовало физическим параметрам, рассчитанным из предполагаемой реакции (рис. 1). Платиновую ампулу заварили и погрузили в золотую ампулу большего диаметра. Для задания окислительно-восстановительных условий в качестве буфера использовался порошок гематита, который был помещен между золотой и платиновой ампулами (рис. 1). Ампула была взвешена, запаяна и помещена в установку УВД-10000. Во время опыта поддерживались условия T = 700 °C, P = 1 кбар. Данные температура и давление оставались постоянными в течение 4 суток. После того как ампулу достали из установки, ее закалили, а потом аккуратно вскрыли.

[©] Савко К. А., Фонарев В. И., Конилов А. Н., Чигарев А. Г., Пилюгин С. М., 2006

Таблица 1

IC	Обр. 466-р/131		Полученные в экспе-		Полученные в экспери-		Полученные в экспери-	
Компо-			рименте при 700 °C,		менте при 650 °С, буфер		менте при 750 °С, буфер	
ненты			Hem-Mag буфер		NiNiO		NiNiO	
	Sld-2	Sld-3	Bt-16	Bt-17	Bt-3-650	Bt-6-650	Bt-5-750	Bt-6-750
SiO ₂	50,49	50,85	39,37	39,85	43,61	43,03	39,91	40,00
Al ₂ O ₃	0,49	0,35	0,68	0,59	2,31	2,23	2,10	2,62
TiO ₂	0,01	0,01	0,01		0,11		0,03	
FeO	26,15	26,07	33,26	31,51	38,68	39,42	42,13	41,72
MnO			—	0,19	0,12	0,18	0,18	0,06
MgO	4,80	4,90	14,61	14,37	8,52	7,27	6,52	6,82
CaO	0,05	0,01	0,09	0,40	0,33	—	0,24	0,24
Na ₂ O	0,05	0,04	0,50	0,26	0,17	0,46	0,06	0,26
K ₂ O	10,66	10,35	8,04	9,01	6,03	7,13	8,77	8,20
Сумма	92,70	92,58	96,56	96,18	99,88	99,72	99,94	99,92
Si	3,77	3,80	3,168	3,272	3,403	3,361	3,192	3,175
AlIV	0,04	0,03	0,064	0,056	0,212	0,205	0,198	0,245
Fe3+	0,19	0,17	0,768	0,672	0,385	0,434	0,610	0,580
Σ	4,00	4,00	4,00	4,00	4,000	4,000	4,000	4,000
Ti			0,001		0,006		0,002	—
Fe ³⁺	1,25	1,19	0,682	0,358	0,079			—
Fe ²⁺	0,19	0,27	0,564	0,891	2,007	2,141	2,208	2,189
Mn				0,013	0,008	0,012	0,012	0,004
Mg	0,53	0,55	1,753	1,737	0,970	0,847	0,777	0,807
Σ	1,97	2,01	3,00	2,999	3,070	3,000	2,999	3,000
Ca			0,008	0,034	0,027		0,021	0,020
Na	0,01	0,01	0,078	0,041	0,025	0,070	0,009	0,004
K	1,01	0,99	0,825	0,932	0,588	0,711	0,895	0,830
Σ	1,02	1,00	0,911	1,007	0,640	0,781	0,925	0,854
X _{Fe}	0,27	0,33	0,243	0,339	0,696	0.717	0.740	0.731

Составы природных селадонитов и синтезированных тетраферрибиотитов

Рис. 1. Схема заполнения ампулы исходной смесью селадонита и воды

Полученное вещество было извлечено из ампулы для исследований. Часть этого вещества исследовалась на рентгеновской установке Дрон-4 с целью выяснения кристаллической структуры минеральных фаз. Другая часть была использована для приготовления препаратов для изучения состава и морфологии минеральных индивидов на растровом электронном микроскопе CamScan с системой энергодисперсионного количественного анализа Link.

РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТА

После проведения эксперимента при T = 700 °C и 1 кбар (Нет-Мад буфер) была получена смесь, состоящая из железистого калиевого полевого шпата, тетраферрибиотита, кварца и магнетита (рис. 2).

Калиевый полевой шпат представлен мелкими выделениями размером 5—10 мкм (рис. 2). По составу это железистый калиевый полевой шпат, содержащий Fe_2O_3 от 10,3 до 18,7 мас. %, что соответствует 40,7—76,6 мол. % минала чисто железистого калиевого полевого шпата (табл. 2) при содер-

VAC: HIVac Device: Vega TS5130MM RSMA Group IEM RAS *Puc. 2.* Вид полученной смеси, состоящей из железистого калиевого полевого шпата, тетраферрибиотита, кварца и магнетита. Растровый электронный микроском CamScan. Номера точек микрозондовых анализов соот-

ветствуют анализам в таблицах 1 и 2

жаниях Al_2O_3 от 3,65 до 9,61 мас. %. Количества альбитового и анортитового компонентов составляют 0,1—4,9 и 1,0—5,3 мол. % соответственно.

Рентгеноструктурное изучение калиевого полевого шпата (рис. 3) показало, что он представлен железистым санидином, для которого по полученной дифрактограмме были рассчитаны параметры ячейки, используя программу UnitCell [5, 6]: $a_0 = 8,634$, $b_0 = 13,276$, $c_0 = 7,194$ Å, $\beta = 116,79^\circ$, V = 736,2 Å³. Эти значения близки к параметрам элементарной ячейки для структурно уточненного синтезированного низкого санидина состава K_{0,93} (Al_{0,75}Fe_{0,22})Si_{3,01}O₈ [1]: $a_0 = 8,627$, $b_0 = 13,058$, $c_0 = 7,209$ Å, $\beta = 116,00^\circ$, V = 730,0 Å³.

Синтезированный вместе с Fe-санидином тетраферрибиотит представлен вытянутыми чешуйками размером 15—20 мкм по удлинению (рис. 2). На дифрактограмме он определяется по четкому характеристическому рефлексу 10,234 Å (рис. 3). Природные тетраферрибиотиты из железистых кварцитов бассейна Хамерсли (Зап. Австралия) характеризуются отражениями (10,159; 10,163 и 10,180 Å) [7]. Полученный в эксперименте тетраферрибиотит характеризуется низкой глиноземис-

Рис. 3. Дифрактограмма синтезированных железистого санидина, тетраферрибиотита и кварца

тостью ($Al_2O_3 = 0,59 - 0,68$ мас. %) и железистостью (0,243 - 0,339 ат. ед.) за счет значительного преобладания Fe³⁺ над Fe²⁺ в своем составе (табл. 1). Тетраферрибиотиты, синтезированные при более восстановительных условиях (буфер NiNiO) значительно более железистые (0,696 - 0,740 ат. ед.) и глиноземистые ($Al_2O_3 = 2,10 - 2,62$ мас. %) (табл. 1). По составу синтезированные тетраферрибиотиты в более окислительных условиях (Нет-Мад буфер) более близки к природным в железистых кварцитах Михайловского и Шемраевского железорудных месторождениях КМА [2, 3], отличаясь более высокими содержаниями Fe³⁺ и Mg и более низкими Fe²⁺, приближаясь к тетраферрифлогопиту (рис. 4).

Результаты экспериментов, проведенных при 650—750 °С и различных окислительно-восстановительных условиях — буферы NiNiO и Hem-Mag предполагают, что при меньших значениях fO₂ (буфер NiNiO) при разложении селадонита образуется тетраферрибиотит и кварц [4], при более высоких (Hem-Mag буфер) — продуктами распада являются тетраферрибиотит, железистый санидин и кварц. Возможные модельные реакции в системе SiO_2 —Fe₂O₃—FeO-K₂O-OH разложения селадонита для различных fO₂ — (1) и (2) для буфера NiNiO и (3) для Hem-Mag буфера приведены ниже.

Рис. 4. Составы тетраферрибиотитов на классификационной диаграмме: 1 — из железистых кварцитов Михайловского месторождения; 2 — из железистой формации Пенж (ЮАР); 3 — из железистой формации Дэйлс Жорж (Западная Австралия); 3 — синтезированные при 650 °C (буфер NiNiO); синтезированные при 750 °C (буфер NiNiO);); синтезированные при 700 °C (Hem-Mag буфер)

тита синтезированного на Mag-Hem буфере объясняется образованием вместе с ним железистого санидина, который содержит в своем составе от 3,6 до 9,6 мас. $\% \text{ Al}_2\text{O}_3$ (табл. 2). Таким образом, то небольшое количество глинозема, присутствующее в составе селадонита, при его разложении входит в структуру образующегося железистого санидина.

$$\frac{\text{Sld}}{2\text{KF}e^{3+}\text{F}e^{2+}[\text{Si}_{4}\text{O}_{10}](\text{OH})_{2}} = \text{K}(\text{F}e^{2+}_{2}, \text{F}e^{3+})_{3}[\text{F}e^{3+}\text{Si}_{3}\text{O}_{10}](\text{OH})_{2} + 5\text{SiO}_{2} + \text{H}_{2}\text{O} + 0.5\text{O}_{2} + \text{K}^{+}$$
(1)

$$\frac{\text{Sld}}{\text{KFe}^{3+}\text{Fe}^{2+}[\text{Si}_{4}\text{O}_{10}](\text{OH})_{2} + \text{Fe}^{2+}\text{Fe}^{3+}_{2}\text{O}_{4} = \text{K}(\text{Fe}^{2+}_{2}, \text{Fe}^{3+})_{3}[\text{Fe}^{3+}\text{Si}_{3}\text{O}_{10}](\text{OH})_{2} + \text{SiO}_{2} + \text{O}_{2} + \text{Fe}^{3+}}$$
(2)

$$\frac{\text{SId}}{2\text{KFe}^{3+}\text{Fe}^{2+}[\text{Si}_{4}\text{O}_{10}](\text{OH})_{2} + \text{Fe}^{3+} + 1.5\text{O}_{2} = \text{KFe}^{3+}[\text{Si}_{3}\text{O}_{8}] + \text{K}(\text{Fe}^{2+}_{2}, \text{Fe}^{3+})_{3}[\text{Fe}^{3+}\text{Si}_{3}\text{O}_{10}](\text{OH})_{2} + 2\text{SiO}_{2} + \text{H}_{2}\text{O}(3)$$

Реакцию (3) разложения селадонита с образованием железистого калиевого полевого шпата и тетраферрибиотита можно проиллюстрировать на диаграмме (Mg+Fe²⁺)–Si — (Al+Fe³⁺) (рис. 5).

Важно отметить, что при более окислительных условиях (Нет-Мад буфер) вместе с Fe-санидином образуется значительно более магнезиальный и менее глиноземистый тетраферрибиотит, чем при более восстановительных условиях (NiNiO буфер). Кроме того, при разложении селадонита на NiNiO буфере мы не получили железистого калишпата. Различия в железистости тетраферрибиотита обусловлены тем, что при более окислительных условиях возрастает отношение Fe³⁺/Fe²⁺ и соответственно уменьшается Fe²⁺/(Fe²⁺+Mg). Более низкая глиноземистость тетраферрибио-

Рис. 5. Разложение селадонита с образованием железистого калиевого полевого шпата и тетраферрибиотита на диаграмме (Mg+Fe²⁺) – Si – (Al+Fe³⁺)

		Γ			
	Kfs-1	Kfs-2	Kfs-3	Kfs-4	Kfs-5
SiO ₂	63,24	63,99	63,79	60,89	62,62
Al ₂ O ₃	6,4	5,47	9,61	3,65	6,21
TiO ₂	0,13	0,02	_		—
FeO	14,68	14,91	10,33	18,68	15,71
MnO	0,05	0,01	_	0,06	0,09
MgO	0,35	0,59	0,31	1,56	0,85
CaO	0,85	0,97	0,22	1,67	0,17
Na ₂ O	0,01	0,23	0,18	0,49	0,14
K ₂ O	14,30	13,74	15,51	12,93	14,09
Сумма	100,01	99,99	100,00	99,94	99,97
Si	3,063	3,093	3,055	3,003	3,042
AlIV	0,365	0,312	0,542	0,212	0,355
Fe ³⁺	0,535	0,542	0,372	0,693	0,574
Σ	3,963	3,947	3,969	3,908	3,971
Ca	0,044	0,050	0,011	0,088	0,009
Na	0,001	0,022	0,017	0,047	0,013
K	0,884	0,847	0,948	0,814	0,873
Σ	0,929	0,919	0,976	0,949	0,894
Ort	0.952	0,922	0,971	0.858	0,976
Ab	0.001	0,024	0,018	0.049	0,014
An	0,047	0,054	0,011	0,093	0.010
Fe-Fsp	0,594	0,635	0,407	0,766	0.618

Составы синтезированных железистых санидинов

Подобные результаты были получены ранее при термальном разложении синтетических селадонитов в различных окислительно-восстановительных условиях (буферы QFM, NiNiO, Mag-Hem) [8] при давлениях 1-3 кбар. Однако, как отмечают сами авторы, экспериментально полученный ими верхний предел стабильности селадонита около 410 °С не соответствует температурам разложения селадонита в природных системах. Причем они полагали, что в природных условиях селадонит разлагается при температурах значительно ниже 400 °С на границе цеолитовой и зеленосланцевой фаций. Результаты изучения условий метаморфизма пород палеопротерозойской железисто-кремнистой формации Воронежского кристаллического массива показали, что селадонит из парагенезисов в железистых кварцитах устойчив при метаморфизме выше 520 °С [2].

выводы

При проведении опыта природная диоктаэдрическая железистая безглиноземистая слюда селадонит при температуре 700 °C давлении 1 кба и Нет-Мад буфере была полностью разложена с образованием железистого санидина (Fe–Fsp = 0.407— 0766 ат. ед.) и триоктаэдрической железистой слюды — тетраферрибиотита. Таким образом, принимая во внимание ранее проведенные эксперименты при температрах 650 и 750 °C и буфере NiNiO [4] следующие выводы:

1) Железистый санидин, тетраферрибиотит и кварц образуются при термальном разложении селадонита при относительно высоких значения fO_2 — на гематит-магнетитовом буфере. При более восстановительных условиях — на буфере NiNiO — железистый калиевый полевой шпат не образуется, и продуктами разложения селадонита являются тетраферрибиотит и кварц.

 При разложении селадонита в более окислительных условиях (Нет-Мад буфер) вместе с Feсанидином образуется значительно более магнезиальный и менее глиноземистый тетраферрибиотит, чем при более восстановительных условиях (NiNiO буфер).

Работа выполнена при финансовой поддержке грантов РФФИ (проекты № 06-05-64088, 05-05-79096).

Таблица 2

К. А. Савко, В. И. Фонарев, А. Н. Конилов, А. Г. Чигарев, С. М. Пилюгин

ЛИТЕРАТУРА

1. Надежина Т.Н., Пущаровский Д.Ю., Тароев В.К., Таусон В.И., Бычков А.М. Кристаллическая структура ферриалюмосиликатного низкого санидина// Кристаллография. 1993. Т. 38, № 6. С. 77—82.

2. Савко К.А., Поскрякова М.В. Рибекит-эгиринселадонитовые железистые кварциты Михайловского железорудного месторождения Курской магнитной аномалии: фазовые равновесия и условия метаморфизма // Петрология, 2003, Т. 11, № 5, С. 471—490.

3. Савко К.А., Поскрякова М.В. Минералогия, фазовые равновесия и условия метаморфизма пород Шемраевского железорудного месторождения Курской магнитной аномалии // Вестн. Воронежского ун-та, сер. геол., 2004, № 1, С. 68—84.

4. Савко К.А., Фонарев В.И., Конилов А.Н., Чигарев А.Г., Пилюгин С.М. Тетраферрибиотит — продукт термального разложения селадонита (экспериментальные данные) // Вестн. Воронежского ун-та, сер. геол., 2005, № 2, С. 60—65.

5. *Holland T.J.B., Redfern S.A.T.* UNITCELL: a nonlinear least-squares program for cell-parameter refinement implementing regression and deletion diagnostics// J. Appl. Cryst. 1997. V. 30. P. 84.

6. *Holland T.J.B., Redfern S.A.T.* Unit cell refinement from powder diffraction data: the use of regression diagnostics // Mineralogical Magazine, 1997. V. 61, P. 65–77.

7. Miyano T., Miyano S. Ferri-annite from the Dales George Member iron-formations, Wittenoom area, Western Australia // Amer. Mineral. 1982. V. 67. P. 1179—1194.

8. *Wise W.S., Eugster H.P.* Celadonite: synthesis, thermal stability and occurrence // Amer. Mineral. 1964. V. 49. P. 1031—1083.