

МИНЕРАЛОГИЯ, ПЕТРОГРАФИЯ, ПЕТРОЛОГИЯ

УДК 552.43 (470.323)

МИНЕРАЛОГИЯ АМФИБОЛОВ В ПОРОДАХ ПАЛЕОПРОТЕРОЗОЙСКОЙ ЖЕЛЕЗИСТОЙ ФОРМАЦИИ ЛЕБЕДИНСКОГО МЕСТОРОЖДЕНИЯ КМА И ПЕТРОГЕНЕЗИС ЩЕЛОЧНО-АМФИБОЛОВЫХ ЖЕЛЕЗИСТЫХ КВАРЦИТОВ

К.А. Савко

Воронежский государственный университет

В щелочно-амфиболовых железистых кварцитах крупнейшего в России Лебединского железорудного месторождения установлены ферривинчит, рибекит, актинолит, грюнерит и эгирин-авгит. Полученные данные по структурным взаимоотношениям и изменениям составов Са, Са-Na и Na безглиноземистых амфиболов свидетельствуют о существовании полной смесимости в изоморфных рядах актинолит – ферривинчит и ферривинчит-рибекит. Рибекит в железистых кварцитах образуется на ретроградной стадии метаморфизма при участии незначительно обогащенного Na⁺ флюида и увеличении фугитивности кислорода при спаде температуры.

Критическими факторами развития рибекита и эгирина в железистых кварцитах является активность кислорода и наличие даже небольших количеств ионов натрия во флюиде. И рибекит, и эгирин содержат в своем составе Fe³⁺, и все реакции их образования – это реакции окисления. Развитие рибекита на заключительных стадиях минералообразования обусловлено гетеровалентными изоморфными замещениями Ca²⁺Mg²⁺ → Na⁺Fe³⁺ в Ca и Ca-Na амфиболах, а также окислением грюнерита в присутствии флюида, обогащенного ионами натрия.

Введение

Железисто-кремнистые формации (ЖКФ) докембрия являются одними из самых загадочных геологических образований Земли. Несмотря на весьма продолжительное изучение их большим количеством исследователей в них устанавливаются все новые неизвестные ранее геологические феномены. Ранее считалось, что породы железисто-кремнистых формаций имеют относительно простой минералогический и химический состав, который контролируется условиями седиментации. По химическому составу и минеральным парагенезисам обычно выделяются 4 основных типа пород железисто-кремнистых формаций [1]: 1 кварц-магнетитовый (гематитовый) тип (иногда его еще называют итаберитовым), в котором присутствуют парагенезисы Qtz-Mag, Qtz-Hem и Qtz-Hem-Mag; 2 - кварц-карбонатный тип, где значительную роль играют карбонаты ферродоломит-анкеритовой и сидерит-пистомезитовой серии; 3 - кварц-силикатный, где преобладают кварц, железистые слоистые силикаты: гриналит, миннесотаит, шамозит, стильпномелан, а при увеличении степени метаморфизма – грюнерит, гиперстен и фаялит; 4 – богатые марганцем железистые формации. Изучение ЖКФ Курской магнитной аномалии показало, что существует множество переходных разностей между кварц-карбонатным и кварц-силикатным типами, минеральный состав которых контролируется соотношением концентраций калия, натрия и кальция, а также окислительно-восстановительными условиями при метаморфизме.

Наше исследование посвящено минералогии и процессам метаморфизма в породах палеопротерозойской ЖКФ Лебединского железорудного месторождения КМА. Ранее нами при изучении Михайловского, Новоялтинского и Шемраевского железорудных месторождений был установлен новый минералогический тип ЖКФ, где ведущую роль в составе железистых кварцитов играют калиевые безглиноземистые слюды селадонит и тераферрибиотит [2–4]. Объектом исследования настоящей статьи является еще один ранее неописанный в литературе тип железистых кварцитов, где в железистых кварцитах крупнейшего в России эксплуатируемого Лебединского железорудного месторождения широко распространен редкий кальциевонатровый безглиноземистый амфибол – ферривинчит. Цель настоящей статьи – интерпретировать изменения фазовых равновесий и реконструировать физико-химические условия образования щелочно-амфиболовых железистых кварцитов.

Геологическая ситуация

Железистые формации в докембрии КМА установлены на трех стратиграфических уровнях: мезоархейском, неоархейском и палеопротерозойском. Наибольшим распространением в пределах КМА пользуются палеопротерозойские железистые формации, относимые к курской серии. Слагающие их породы протягиваются в виде двух полос (Щигровско-Оскольской и Михайловско-Белгородской) северо-западной ориентировки более чем на 550 км (рис. 1). Все эксплуатируемые месторождения железных руд бассейна КМА связаны именно с палеопротерозойской железистой формацией.

Лебединское железорудное месторождение находится в пределах восточной Щигровско-Оскольской полосы в южном замыкании Тим-Ястребовской рифтогенной структуры. Докембрий в этом районе перекрыт фанерозойским осадочным чехлом мощностью до 100–200 м. В геологическом строении Лебединского месторождения принимают участие калиевые риолиты лебединской свиты неоархея (изотопный U-Pb возраст их магматических цирконов 2590±44 млн лет [6]) и осадочно-метаморфические породы курской серии палеопротерозоя, которая подразделяется на стойленскую и перекрывающую ее без видимого несогласия коробковскую свиты (рис. 1). Стойленская свита залегает в основании стратифицируемого разреза палеопротерозоя КМА на коре выветривания неоархейских риолитов и имеет повсеместное распространение в пределах месторождения. Она разделяется на верхнюю сланцевую и нижнюю метапесчаниковую подсвиты. Нижняя подсвита сложена кварцитопесчаниками с метагравелитами и метаконгломератами мощностью до 3 м в основании. Среди метапесчаников встречаются прослои высоко-глиноземистых сланцев преимущественно кварц-мусковитовых и двуслюдяных иногда с гранатом, мощностью до 15 м. Мощность нижней подсвиты - 100-250 м. Верхняя сланцевая подсвита сложена кварцево-слюдистыми сланцами иногда с гранатом и андалузитом. Ее мощность колеблется от 5 до 80 м.

Коробковская железорудная свита общей мощностью около 600 м сложена двумя подсвитами железистых кварцитов, которые разделяются двумя сланцевыми подсвитами, называемых еще внутрирудными сланцами. Она залегает на стойленской свите без следов

Рис. 1. Схема расположения пород палеопротерозойских железисто-кремнистых формаций КМА и схематическая геологическая карта Лебединского железорудного месторождения по [5]:

Неоархей: 1 – лебединская свита (AR,lb) – кварцевые порфиры, риолиты

Палеопротерозой, курская серия: 2 – стойленская свита (PR₁st) – глиноземистые сланцы, песчаники, в основании конгломераты;

3-6 – коробковская свита: 3 – нижняя железорудная подсвита (PR1kr1), 4 – нижняя сланцевая подсвита (PR1kr2),

5 – верхняя железорудная подсвита (PR_1kr_3), 6 – верхняя сланцевая подсвита (PR_1kr_4);

7 – стойло-николаевский габбро-диорит-гранодиоритовый комплекс (удРR₁sn); 8 – геологические границы;

9 – разломы; 10 – граница карьера по поверхности кристаллического фундамента

несогласия (рис. 1). Ее основание обычно проводится по появлению первых горизонтов грюнеритовых кварцитов. Нижняя железорудная подсвита мощностью от 15 до 150 м развита по периферии месторождения и сложена магнетитовыми кварцитами часто с грюнеритом, рибекитом, биотитом. Нижняя сланцевая подсвита представлена темно-серыми кварц-биотитовыми, биотит-гранатовыми и грюнерит-биотит-гранатовыми сланцами мощностью в среднем поместорождению 60м. Верхняя железорудная подсвита мощностью от 160 до 250 м сложена магнетитовыми, грюнерит-магнетитовыми, биотит-магнетитовыми и рибекит-ферривинчит-магнетитовыми кварцитами, часто с карбонатом и иногда с эгирином и эгирин-авгитом. Верхняя сланцевая подсвита присутствует только в северо-западной части месторождения и представлена кварцево-слюдистыми и биотит-гранатовыми сланцами с сильно изменчивыми мощностями.

Магматические породы представлены Стойло-Николаевским интрузивным массивом размером 4×9 км, прорывающим породы железисто-кремнистой формации в северо-западной части месторождения и имеющим зональное строение. Периферические зоны сложены габбро-диоритами и диоритами, которые постепенно через зону кварцевых диоритов переходят в гранодиориты, слагающие центральную часть массива. Изотопный U-Pb возраст цирконов из гранодиоритов составляет 2085±5 млн лет [7]. Кроме того, железистые кварциты часто секутся дайками диоритовых порфиритов и гранодиорит-порфиров мощностью до 6 м.

Методы исследования

Более 100 образцов железистых кварцитов и 10 внутрирудных сланцев были отобраны из стенок карьера Лебединского железорудного месторождения при проведении полевых работ. Шлифы, изготовленные из отобранных образцов, были изучены оптически. Локальные анализы минералов и снимки в отраженных электронах выполнены на электронном микроскопе «CamScan» с системой количественного энергодисперсионного анализа «Link» (Институт экспериментальной минералогии РАН). Условия анализа: ускоряющее напряжение 20 кв, ток зонда 1,2 mA, время набора спектра 70 сек, диаметр пучка 1-3 мкм. ZAF коррекция при расчете содержания окислов и оценка точности проводились с помощью комплекта программ математического обеспечения системы. Точность анализа систематически контролировалась по эталонным образцам природных и синтетических минералов. Кристаллохимические формулы магнетита рассчитаны на 4 атома кислорода, граната на 12, амфиболов на 23, пироксенов на 6, биотитов на 11. Расчеты температур метаморфизма производились с помощью программы TPF [8]. Номера анализов в таблицах соответствуют номерам точек микрозондовых анализов на рисунках.

Минералогия

Са-Na безглиноземистые амфиболы и взаимоотношения их с другими минеральными фазами детально были исследованы на электронном микроскопе с энергодисперсионной приставкой для количественного анализа в трех образцах железистых кварцитов, отобранных на горизонте -110 м в северной стенке карьера.

Образец Л-5

Ферривинчиты представлены удлиненно-призматическими и таблитчатыми кристаллами светло-зеленовато-голубой окраски с ясным плеохроизмом в светло-зеленых тонах. Причем, как правило, кристаллы окрашены неравномерно: в краевых частях (особенно вершинах призм) отмечается окраска более ярких насыщенных тонов и плеохроизм от голубого до синего цвета. Это является свидетельством увеличения натровости ферривинчитов и перехода их в рибекит. Большая часть амфиболов имеет небольшие размеры до 50 мкм по длинной оси, и очень редко встречаются кристаллы до 100-200 мкм. Ферривинчиты слагают нитевидные прослои мощностью 0,5-1 мм между более мощными кварцевыми и магнетитовыми слойками, а также присутствуют в магнетитовых или кварцевых слойках в тесной ассоциации с доломитом (рис. 2а).

Кристаллы ферривинчита зональны как оптически, так и по составу (рис. 2б, в). На снимках в отраженных электронах (обр. Л-5) выделяется три зоны: внешняя кайма, внутренняя кайма и ядро. Внешняя кайма шириной 10-15 мкм более светлой окраски по составу отвечает рибекиту (т. 1, 2, 9,14, 15, 19 на рис. 2г, 3а, табл. 1). Состав амфибола внешней зоны в т. 13 отвечает ферривинчиту с содержанием натрия 1,29 ф.е. в приграничной с рибекитом области (рис. 2г). Внутренняя кайма присутствует только в относительно крупных кристаллах и развита не повсеместно. Ее ширина 10-30 мкм и состав отвечает ферривинчиту (т. 3, 4, 11, 5*, 15* на рис. 2г), отличающемуся довольно высокой натровостью (от 0,92 до 1,50 ф.е.) и низкой кальциевостью (0,46-1,08 ф.е). В пределах и внутренней и внешней кайм по направлению к ядру происходит закономерное снижение концентраций Fe³⁺ и увеличение Fe²⁺ и Mg (табл. 1). Наглядно изменения составов амфиболов в образце Л-5 показано на диаграммах $(Na+K)_{A}$ -Na_B (рис. 3a) и (Na+K+Fe³⁺+Al^{VI}) – (Ca-Mg-Fe²⁺) (рис. 4а).

Центральные части (ядра) кристаллов отличаются по составу от внутренних кайм, хотя также отвечают ферривинчиту. В них ниже содержания натрия (0,7– 0,8 ф.е.) (рис. За) и закисного железа (0,66–1,00 ф.е.) и выше кальция (1,18–1,30 ф.е.) и магния (3,0–3,3 ф.е) (табл. 1, рис. 4а).

Отдельные мелкие кристаллы амфиболов имеют или рибекитовый состав (т. 10*, 20,) или ферривинчитовый (т. 10, 12*), характерный для внутренних кайм крупных кристаллов (табл. 1).

В рибекитовых каймах крупных кристаллов ферривинчита установлены мелкие включения – реликты

Рис. 2. Минеральные парагенезисы и точки микрозондовых анализов в щелочно-амфиболовом магнетитовом кварците из обр. Л-5:

а – строение щелочно-амфиболовых прослоев; б – взаимоотношения рибекита, ферривинчита и грюнерита;

в – зональные кристаллы ферривинчита и доломита, реликты грюнерита в рибеките;

г – зональное строение кристалла ферривинчита: внешняя рибекитовая кайма (т. 1, 2), внутренняя ферривинчитовая кайма (т. 3, 4, 11, 15*), центральная часть кристалла (т. 5, 6, 17 и др.)

грюнерита с железистостью 51–63 ат. %, размером до 15 мкм, имеющие неправильную форму с нечеткими «размытыми» границами (рис. 26, в).

Карбонат представлен доломитом, также имеющим зональное строение, выраженное в снижении железистости от центральных частей кристаллов к краевым (табл. 2, рис. 2а, в).

Широко распространенным акцессорным минералом является фтор-апатит с содержаниями фтора от 1,4 до 4 мас. % (рис. 2б).

Рис. 3. Составы амфиболов из щелочно-амфиболовых магнетитовых кварцитов на диаграмме (Na + K)_A – Na_B: a – oбр. Л-5, 1 – составы центральной части кристалла на рис. 2 г, 2 – составы внутрнней каймы, 3 – составы внешней каймы; б – oбр. Л-6, 1 – составы центральных частей кристаллов, 2 – составы кайм; в – oбр. Л-2, 1 – составы центральных частей кристаллов, 2 – составы периферических частей кристаллов, 3 – составы рибекитов и рибекитовых кайм. Границы полей по [9]

Составы амфиболов из образца Л-5

Таблица 1

	Внешняя кайма		Вну	утренняя ка	йма	Край ядра	Внутрен	няя часть к	ристалла
				Рис. 2г					
	Rbk-1	Rbk-2	Win-3	Win-11	Win-4	Win-12	Win-5	Win-4*	Win-6
SiO ₂	55.80	55.78	55.41	56.06	55.58	56.04	55.76	55.82	55.83
Al ₂ O ₃	0.74	-	0.58	-	-	-	-	0.51	-
FeO	24.15	24.75	18.32	16.95	17.05	16.62	15.36	15.94	15.69
MgO	9.57	9.45	13.57	14.52	14.25	14.66	15.28	14.76	15.13
CaO	1.55	1.63	6.12	6.92	7.07	7.58	8.31	8.30	8.39
Na ₂ O	5.68	6.36	3.71	3.34	3.31	2.79	2.80	2.44	2.46
K ₂ O	-	-	-	-	0.35	-	-	0.34	-
Сумма	97.49	97.97	97.71	97.79	97.61	97.69	97.51	98.11	97.50
Si	7.96	8.01	7.86	7.94	7.94	7.94	7.94	7.91	7.94
Al ^{IV}	0.04	-	0.10	-	-	-	-	0.09	-
Fe ³⁺			0.04	0.06	0.06	0.06	0.06	-	0.06
Σ	8.00	8.01	8.00	8.00	8.00	8.00	8.00	8.00	8.00
Al ^{VI}	0.08	-	-	-	-	-	-	-	-
Fe ₃₊	1.90	1.71	1.26	1.06	0.93	0.99	0.76	0.84	0.84
ΣΜ	1.98	1.71	1.26	1.06	0.93	0.99	0.76	0.84	0.84
Fe ²⁺	0.97	1.26	0.88	0.89	1.05	0.91	1.00	1.05	0.96
Mg	2.03	2.02	2.87	3.06	3.03	3.09	3.24	3.12	3.20
ΣML	4.98	4.99	5.01	5.01	5.01	4.99	5.00	5.01	5.00
Ca	0.24	0.25	0.93	1.05	1.08	1.15	1.27	1.26	1.28
Na	1.57	1.75	1.02	0.92	0.92	0.77	0.73	0.67	0.68
ΣΒ	1.81	2.00	1.95	1.97	2.00	1.92	2.00	1.93	1.96
Na	-	0.02	-	-	-	-	0.04	-	-
K	-	-	-	-	0.06	-	-	0.06	-
ΣΑ	-	0.02	-	-	0.06	-	0.04	0.06	-
X _{Mg} *	0.676	0.616	0.766	0.775	0.743	0.772	0.764	0.748	0.769

 $*X_{Mg} = Mg/(Mg+Fe^{2+})$

Продолжение таблицы 1

	Внутрен	няя кайма		Внутренняя часть кристалла (ядро)						
				Рис. 2г.						
	Win-13	Win-14	Win-15	Win-16	Win-17	Win-18	Win-7	Win-8	Win-14*	
SiO ₂	54.94	55.50	55.30	55.66	55.85	56.56	55.96	55.15	54.96	
Al ₂ O ₃	0.65	0.55	-	-	-	-	-	0.62	0.43	
FeO	21.52	22.44	23.10	16.30	14.78	15.66	15.70	17.28	16.20	
MgO	11.15	10.99	10.55	14.40	15.50	14.85	15.52	14.27	14.83	
CaO	4.58	3.08	2.96	8.38	8.51	8.31	8.19	7.78	8.38	
Na ₂ O	4.75	5.44	5.90	2.68	2.60	2.83	2.55	2.91	2.82	
K ₂ O	-	-	-	0.28	0.26	-	0.38	-	0.30	
Сумма	97.59	98.00	97.81	97.70	97.50	98.21	98.30	98.01	97.92	
Si	7.91	7.91	7.96	7.98	7.95	8.01	7.89	7.83	7.84	
Al ^{IV}	0.09	0.09	-	-	-	-	-	0.10	0.07	
Fe ³⁺	-	-	0.04	0.02	0.05	-	0.11	0.07	0.09	
Σ	8.00	8.00	8.00	8.00	8.00	8.01	8.00	8.00	8.00	
Al ^{VI}	0.02	-	-	-	-	-	-	-	-	
Fe ³⁺	1.33	1.65	1.48	0.66	0.68	0.67	0.87	1.00	0.75	
ΣΜ	1.35	1.65	1.48	0.66	0.68	0.67	0.87	1.00	0.75	
Fe ²⁺	1.26	1.02	1.26	1.27	1.03	1.18	0.87	0.98	1.09	
Mg	2.39	2.33	2.26	3.07	3.29	3.13	3.26	3.02	3.15	
ΣML	5.00	5.00	5.00	5.00	5.00	4.98	5.00	5.00	4.99	
Ca	0.71	0.47	0.46	1.29	1.30	1.26	1.24	1.18	1.28	
Na	1.29	1.50	1.54	0.71	0.70	0.74	0.70	0.80	0.72	
ΣΒ	2.00	1.97	2.00	2.00	2.00	2.00	1.94	1.98	2.00	
Na	0.04	-	0.11	0.03	0.02	0.04	-	-	0.06	
K	-	-	-	-	-	-	-	-	-	
ΣΑ	0.04	-	0.11	0.03	0.02	0.04	-	-	0.06	
X _{Mg}	0.655	0.697	0.643	0.708	0.762	0.727	0.789	0.755	0.744	

								IIp	одолжение	таблицы І	
	Внутрени	наа кайма			Мелкое		Внешн.	Центр м.	Матрикс	Матрикс	
	Bilyipein	inn Ruinnu			зерно		кайма	зерна	marphice	marphice	
				Рис. 2г				Продолжение таблиць Центр м. зерна Матрикс Матрик Уш10 Win-12 Rbk-1 55.25 55.79 54.62 - 0.49 0.71 20.57 18.29 24.87 12.54 13.25 9.34 6.26 6.47 1.37 3.67 3.49 6.94 - 0.27 - 98.29 98.02 97.85 7.88 7.94 7.88 - 0.06 0.12 0.12 - - 8.00 8.00 8.00 - 0.02 - 1.18 1.07 1.76 1.18 1.09 1.76 1.15 1.10 1.23 2.67 2.81 2.01 5.00 5.00 5.00 0.96 0.99 0.21 1.01 0.95 1.79 1.97 1.94 2.00 -			
	Wir	1-5*	Win-15*	Rbk-13*	Rbk-19	Rbk-20	Rbk-9	Win-10	Win-12	Rbk-10	
SiO ₂	55	.15	55.56	55.56	54.65	55.29	55.03	55.25	55.79	54.62	
Al ₂ O ₃	0.	59	0.64	0.59	0.77	0.84	-	-	0.49	0.71	
FeO	23	.07	22.45	25.01	25.09	23.71	24.51	20.57	18.29	24.87	
MgO	10	.06	10.38	8.78	8.25	9.61	9.34	12.54	13.25	9.34	
CaO	3.	21	3.38	1.14	1.06	1.60	1.67	6.26	6.47	1.37	
Na ₂ O	5.	40	5.32	6.22	6.45	6.50	6.41	3.67	3.49	6.94	
K,Ō		-	0.22	0.09	-	-	-	-	0.27	-	
Сумма	97	.48	97.95	97.39	96.27	97.55	96.96	98.29	98.02	97.85	
Si	7.	96	7.98	8.01	8.00	7.95	8.00	7.88	7.94	7.88	
Al ^{IV}	0.	04	0.02	-	-	0.05	-	-	0.06	0.12	
Fe ³⁺		_	-	-	-	-	-	0.12	-	-	
Σ	8.	00	8.00	8.01	8.00	8.00	8.00	8.00	8.00	8.00	
Al ^{VI}	0.	06	0.09	0.10	0.13	0.09	-	-	0.02	-	
Fe ³⁺	1.	48	1.37	1.78	1.70	1.65	1.67	1.18	1.07	1.76	
ΣΜ	1.	54	1.46	1.88	1.83	1.74	1.67	1.18	1.09	1.76	
Fe ²⁺	1.	30	1.32	1.23	1.36	1.20	1.30	1.15	1.10	1.23	
Mg	2	16	2.22	1.88	1.80	2.06	2.02	2.67	2.81	2.01	
ΣML	5.	00	5.00	4.99	4.99	5.00	4.99	5.00	5.00	5.00	
Ca	0.	50	0.52	0.18	0.17	0.25	0.26	0.96	0.99	0.21	
Na	1	50	1.48	1.74	1.83	1.75	1.74	1.01	0.95	1.79	
ΣΒ	2.	00	2.00	1.94	2.00	2.00	2.00	1.97	1.94	2.00	
Na	0	01	-	-	-	0.06	0.07	-	-	0.15	
K		-	0.04	_	_	-	-	_	0.05	-	
ΣΔ	0	01	0.04	-	-	0.06	0.07		0.05	0.15	
X	0.6	525	0.627	0.606	0 569	0.632	0.569	0.699	0.718	0.619	
Mg	0.0)23	0.027	0.000	0.507	0.032	0.507	0.077	0.710	0.017	
			1					Пр	одолжение	таблицы 1	
	Рис	. 2a		Рис. 2в				Рис. 2б			
	Win-6	Rbk-3	Gru-11	Gru-16	Gru-17	Gru-22	Gru-28	Gru-31	Gru-36	Gru-37	
SiO ₂	55.32	55.06	53.46	53.80	54.20	53.90	53.55	53.78	53.37	53.95	
Al_2O_3	0.34	0.77	-	-	-	-	-	-	-	-	
FeO	15.13	24.19	28.12	27.63	27.13	28.43	28.06	29.03	30.22	27.32	
MnO	-	-	0.70	0.66	0.73	0.60	0.89	0.56	0.65	0.95	
MgO	14.97	9.80	14.88	14.62	14.65	15.10	14.92	14.71	10.18	15.46	
CaO	8.34	1.54	0.52	0.88	0.98	0.45	0.38	0.49	0.33	0.49	
Na O	2.70	6.01	-	0.38	0.66	_	-	_	3.46	_	
K O	0.34	-	_	-	-	_	_	-	-	-	
	97 1 <i>1</i>	97 37	97.68	97 97	98 35	98.48	97.80	98 57	98 21	98 17	
Si	7.02	7.80	8.00	8.00	8.00	8.00	8.00	7 00	7 00	8.00	
A 1IV	0.06	0.11	0.00	0.00	0.00	0.00	0.00	1.77	1.90	0.00	
Г11 Ба ³⁺	0.00	0.11	-	-	-	-	-	-	-	-	
re	0.01	-	-	-	-	-	-	0.01	0.10	-	
	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	
Al ^{v1}	-	0.02	-	-	-	-	-	-	-	-	
Fe ³⁺	0.69	1.96	-	0.11	0.19	-	-	-	1.10	-	
ΣΜ	0.69	1.98	-	0.11	0.19	-	-	-	1.10	-	
Fe ²⁺	1.11	0.94	3.51	3.32	3.16	3.51	3.50	3.59	2.54	3.38	
Mn			0.09	0.08	0.09	0.08	0.11	0.07	0.08	0.12	
Mg	3.20	2.09	3.32	3.24	3.22	3.34	3.32	3.26	2.24	3.42	
ΣML	5.00	5.01	-	-	-	-	-	-	-	-	
Ca	1.28	0.24	0.08	0.14	0.15	0.07	0.06	0.08	0.05	0.08	
Na	0.72	1.67	-	0.11	0.19	-	-	-	0.99	-	
ΣΒ	2.00	1.91	-	-	-	-	-	-	-	-	
Na	0.03		_	0.11	0.19	_	-	_	0.99	_	
K	0.06	_	_	-	-	_	_	_	-	_	
ΣΔ	0.00	-		-	-	-	-	-	-	-	
	0.07	. –	. –		-	. –	-			-	

0.37

0.49

X

0.724

0.691

0.48

0.48

0.48

0.48

0.48

0.47

									Продолже	ние табл. 1
					Рис. 2б					
	Win-20	Rbk-21	Rbk-23	Win-24	Win-25	Win-26	Rbk-27	Rbk-32	Rbk-34	Win-35
SiO ₂	55.64	55.55	55.36	55.67	55.33	55.77	55.81	55.33	55.62	55.57
Al ₂ O ₃	0.57	0.51	0.56	0.19	0.43	0.42	0.82	0.39	0.43	0.33
FeO	16.88	23.51	23.39	15.56	16.12	16.82	24.80	24.18	24.29	16.79
MgO	14.27	10.28	10.26	14.87	14.74	13.80	9.38	10.14	9.67	14.23
CaO	7.86	2.30	2.83	8.35	8.36	7.99	1.21	2.54	2.26	8.08
Na ₂ O	3.14	5.62	5.33	2.90	2.97	2.78	5.89	5.56	5.77	2.75
K,Ō	0.27	0.14	-	0.29	0.25	0.21	-	-	-	0.31
Сумма	98.63	97.91	97.73	97.83	98.20	97.79	97.91	98.14	98.04	98.06
Si	7.89	7.93	7.92	7.95	7.88	7.98	7.93	7.90	7.96	7.92
Al ^{IV}	0.10	0.07	0.08	0.03	0.07	0.02	0.07	0.07	0.04	0.06
Fe^{3+}	0.01	-	-	0.02	0.05	-	-	0.03	-	0.02
Σ	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00
Al^{VI}	-	0.02	0.01	-	-	0.05	0.07	-	0.03	-
Fe ³⁺	0.82	1.78	1.71	0.64	0.70	0.71	2.01	1.80	1.71	0.79
ΣΜ	0.82	1.80	1.72	0.64	0.70	0.76	2.08	1.80	1.74	0.79
Fe ²⁺	1.18	1.02	1.08	1.20	1.17	1.30	0.94	1.06	1.19	1.18
Mg	3.01	2.19	2.19	3.16	3.13	2.94	1.99	2.16	2.06	3.02
ΣML	5.01	5.01	4.99	5.00	5.00	5.00	5.01	5.02	4.99	4.99
Ca	1.19	0.35	0.43	1.28	1.28	1.22	0.18	0.39	0.35	1.23
Na	0.81	1.55	1.48	0.72	0.72	0.77	1.62	1.54	1.60	0.76
ΣΒ	2.00	1.90	1.91	2.00	2.00	1.99	1.80	1.93	1.95	1.99
Na	0.05	-	-	0.08	0.10	-	-	-	-	-
K	0.05	0.03	-	0.05	0.05	0.04	-	-	-	0.06
ΣΑ	0.10	0.03	-	0.13	0.15	0.04	-	-	-	0.06
X _{Mo}	0.719	0.681	0.669	0.726	0.728	0.694	0.679	0.671	0.633	0.718

Образец Л-6

Крупные до 2–3 мм призматические кристаллы ферривинчитов из обр. Л-6 (рис. 5а) также зональны – их каймы шириной 20–50 мкм по составу отвечают рибекиту, а центральные части кристаллов наименее натровые (рис. 5б, в). В отличие от амфиболов из обр. Л-5, где отмечается постепенный переход от ферривинчита к рибекиту, в обр. Л-6 наблюдается небольшой «скачок» по содержанию натрия при переходе от ферривинчита к рибекиту в кайме крупных кристаллов (рис. 3б, 4б). Кроме того, ферривинчиты отличаются постоянной примесью калия от 0,3 до 0,7 мас. % $\rm K_2O$ (табл. 3, рис. 3б).

Эгирин-авгиты встречаются как в матриксе в виде мелких 30–40 мкм кристаллов изометричной формы (рис. 5а), так и в виде резорбированных реликтов размером в центральных частях крупных кристаллов ферривинчитов (рис. 5в, г). В их составе преобладает акмитовый компонент (Aeg₆₁₋₇₃Aug₂₇₋₃₉) (табл. 4).

Карбонат представлен только кальцитом с незначительными примесями MnO и FeO (см. табл. 2).

Таблица 2

	1									
			Обр. Л-5					Обр. Л-2		
	Рис	e. 2a	Рис. 2в		Рис. 6а	Рис. 6д	Рис. 6а	Рис. 6д	Рис. 6г	Рис. 6д
	Dol-1	Dol-2	Dol-8	Dol-9	Dol-10	Cal-27	Dol-11	Cal-32	Dol-17	Cal-33
FeO	14.50	18.74	17.86	14.86	13.92	5.25	10.97	2.65	12.70	2.30
MnO	0.73	1.64	1.65	0.61	0.89	1.04	1.29	-	-	-
MgO	29.69	25.55	26.35	29.61	29.90	6.49	31.22	2.05	30.45	1.77
CaO	54.83	53.18	53.23	54.64	55.28	87.22	56.52	95.31	56.87	94.70
Сумма	99.75	99.11	99.09	99.72	99.99	100.00	100.00	100.01	100.02	98.77
Fe ²⁺	0.105	0,140	0.133	0.107	0.100	0.041	0.078	0.021	0.091	0.018
Mn	0.005	0,012	0.012	0.004	0.006	0.008	0.009	-	-	-
Mg	0.382	0,340	0.349	0.382	0.384	0.089	0.397	0.028	0.388	0.025
Са	0.508	0,508	0.506	0.506	0.510	0.862	0.516	0.951	0.521	0.957
X _{Fe}	0.216	0,292	0.276	0.219	0.207	0.315	0.164	0.429	0.190	0.419`

Составы карбонатов из железистых кварцитов Лебединского железорудного месторождения КМА

	Обр. Л-2										
	Рис. 6г	Рис. бд			Рис	e. 6e					
	Dol-18	Cal-35	Dol-39	Dol-40	Cal-42	Dol-43	Dol-44	Cal-45	Dol-46		
FeO	11.57	3.32	13.78	14.49	1.43	16.23	12.09	1.26	14.48		
MnO	-	-	1.10	-	-	-	-	-	1.11		
MgO	31.35	1.80	29.48	30.32	1.37	28.46	30.38	1.08	18.54		
CaO	57.07	95.90	55.62	55.17	97.18	55.31	57.52	97.68	65.86		
Сумма	99.99	100.02	99.98	99.98	99.98	100.00	99.99	100.02	99.99		
Fe ²⁺	0.082	0.018	0.099	0.104	0.011	0.118	0.086	0.010	0.109		
Mn	-	-	0.008	-	-	-	-	-	0.008		
Mg	0.398	0.025	0.379	0.388	0.019	0.368	0.387	0.015	0.248		
Са	0.520	0.957	0.514	0.508	0.970	0.514	0.527	0.975	0.634		
X _{Fe}	0.171	0.419	0.207	0.211	0.393	0.243	0.182	0.400	0.305		

		Продолже	ние таблицы 2
	Обр. Л-6		
	Рис. 5 а		
	Cal-5	Cal-30	Cal-31
FeO	1.48	1.53	1.04
MnO	1.15	2.69	-
MgO	-	-	-
CaO	97.37	95.78	98.96
Сумма	100.00	100.00	100.00
Fe ²⁺	0.012	0,012	0.008
Mn	0.009	0,012	-
Mg	-	-	-
Ca	0.979	0,966	0.992

Образец Л-2

В железистом кварците обр. Л-6 амфиболовые прослои сложены преимущественно ферривинчитом и актинолитом и в резко подчиненном количестве рибекитом (рис. 6а, в). В отличие от образцов Л-5 и Л-6, где на снимках в отраженных электронах наблюдается относительно постепенный переход от ферривинчита к рибекиту, в обр. Л-2 контакты между рибекитом и ферривинчитом четкие (рис 6г, д), причем рибекит образует и собственные мелкие кристаллы (рис. 6б). Центральные части кальций содержащих амфиболов, слагающих прослои между магнетитовыми и кварцевыми (или карбонатными) слоями, по составу отвечают актинолиту (см. табл. 4, рис. 3в, 4в). По направлению к краевым частям их состав закономерно меняется в сторону ферривинчита, причем оптически это никак не проявлено. Как видно на рис. Зв и 4в составы амфиболов образуют непрерывный изоморфный ряд ферривинчит-актинолит. Рибекит характеризуется постоянством состава и низким содержанием кальция. Карбонаты представлены кальцитом и доломитом, причем часто в непосредственном контакте (рис. 6е). В отдельных крупных кристаллах кальцита отмечаются структуры распада доломита (рис. бе).

Кроме того, в железистом кварците обр. Л-2 присутствует буровато-коричневый биотит (рис. 6е), характеризующийся пониженной глиноземистостью (содержания $Al_2O_3 = 10.8 - 11.3$ мас. %) и повышенной магнезиальностью ($X_{Fe} = 0.34 - 0.36$), приближающийся по составу к тетраферрибиотиту.

Р-Т условия метаморфизма

В железистых кварцитах обычно отсутствуют минеральные сенсоры Р-Т условий метаморфизма, однако в образце Л-2 широким развитием пользуются кальцит и доломит. Поэтому у нас есть возможность оценить температуры по составам сосуществующих кальцита и доломита, определив содержание MgCO₃ в кальците, которое является функцией температуры на кальцитдоломитовом сольвусе. В настоящее время для определения температур в метаморфических карбонатных породах существует несколько версий кальцит-доломитового геотермометра, из которых нами были выбраны учитывающие влияние дополнительных компонентов в системе (табл. 5). Однако, как отмечалось многими авторами, этот метод определения температур необходимо применять с большой осторожностью. Вариации содержания Мд в кальцитах свидетельствуют, что реакция распада твердого раствора продвинулась в породе в различной степени. Для получения температур, близких к пиковым, необходимо найти кальцит-доломитовые пары, включающие наиболее магнезиальный кальцит, предполагая, что реакции распада в этих кальцитах продвинулись незначительно.

Как видно из табл. 5, значения температур по кальцит-доломитовой термометрии составляют 379–443 °С.

Мы можем протестировать полученные значения температур метаморфизма с помощью гранат-биотитовой термометрии нижней сланцевой подсвиты (внутрирудные сланцы), которые представлены преимущественно кварц-биотит-гранатовыми, кварц-биотит-андалузитовыми, кварц-биотит-грюнерит-гранатовыми сланцами. Для оценки температур нами был выбран кварц-биотит-грюнерит гранатовый сланец (обр. Л-20) с очень тонкозернистым матриксом и крупными (3–4 мм в диаметре) порфиробластами граната (рис. 7). Гранат в центральной части содержит многочисленные мелкие включения кварца, грюнерита и

Рис. 4. Составы амфиболов из щелочно-амфиболовых магнетитовых кварцитов на диаграмме (Na + K + $+ Fe^{3+} + AI^{VI}$) – (Ca + Mg + Fe^{2+}): *a* – образец Л-5, б – образец Л-6; в – образец Л-2

в

Рис. 5. Минеральные парагенезисы и точки микрозондовых анализов в щелочно-амфиболовом магнетитовом кварците из обр. Л-6:

а – крупные призматические кристаллы рибекита, слагающие вместе с мелкими зернами эгирин-авгита прослои между кварцевых и магнетитовых слоев; б – зональное строение кристалла ферривинчита с внешней рибекитовой каймой (т. 11, 12 и 23–25); в – включение (реликт) эгирин-авгита в зональном кристалле ферривинчита; г – соотношение зон рибекитового и ферривинчитового состава в кристалле афмибола

углеродистого вещества. По составу гранат очень железистый (X_{Fe} = 0.930-0.961) и характеризуется увеличением магнезиальности от центральных частей к краевым – ростовой зональностью (табл. 6). Интересно, что в гранате не установлено значимых концентраций марганца. Биотит очень мелкозернистый, находится в тесных срастаниях с грюнеритом, насыщен глиноземом и весьма железистый (табл. 7). Как видно из табл. 8, гранат-биотитовая термометрия для внутрирудных сланцев дает более высокие оценки температур, чем

Таблица 3

	Составы амфиболов из образца Л-6											
		Рис	:. 5a				Рис. 5б					
	Rbk-1	Rbk-2	Rbk-6	Rbk-7	Rbk-11	Rbk-12	Win-13	Win-14	Win-15			
SiO ₂	56.93	56.36	53.04	56.19	55.48	56.20	56.53	55.68	56.30			
Al ₂ O ₃	-	-	-	-	0.95	-	-	-	-			
FeO	21.68	22.57	36.80	21.98	21.84	20.69	16.80	16.70	16.37			
MgO	11.85	11.78	2.80	11.23	10.85	11.99	14.36	13.97	14.41			
CaO	0.70	0.82	0.41	1.14	1.27	1.92	4.82	5.14	5.29			
Na ₂ O	6.75	6.55	6.27	6.58	6.38	6.36	5.03	5.17	4.81			
K ₂ O	-	-	-	-	0.30	0.34	0.49	0.45	0.46			
Сумма	97.91	98.08	99.32	97.12	98.50	97.50	98.03	97.11	97.64			
Si	7.99	7.90	7.84	8.00	7.93	8.00	7.99	8.00	8.00			
Al ^{IV}	-	-	-	-	0.07	-	-	-	-			
Fe ³⁺	0.01	0.10	0.16	-	-	-	0.01	-	-			
Σ	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00			
Al ^{VI}	-	-	-	-	0.09	-	-	-	-			
Fe ³⁺	1.97	2.08	2.23	1.83	1.78	1.60	1.08	0.89	0.97			
ΣΜ	1.97	2.08	2.23	1.83	1.87	1.60	1.08	0.89	0.97			
Fe ²⁺	0.55	0.46	2.15	0.78	0.83	0.86	0.89	1.12	0.97			
Mg	2.48	2.46	0.62	2.38	2.31	2.54	3.02	2.99	3.05			
ΣML	5.00	5.00	5.00	4.99	5.01	5.00	4.99	5.00	4.99			
Ca	0.11	0.12	0.06	0.17	0.19	0.29	0.73	0.79	0.81			
Na	1.83	1.78	1.80	1.82	1.77	1.71	1.27	1.21	1.19			
ΣΒ	1.94	1.90	1.86	1.99	1.96	2.00	2.00	2.00	2.00			
Na				-	-	0.04	0.11	0.23	0.13			
K	-	-	-	-	0.05	0.06	0.09	0.08	0.08			
ΣΑ	-	-	-	-	0.05	0.10	0.20	0.31	0.21			
X _{Mg}	0.817	0.841	0.223	0.752	0.736	0.748	0.772	0.728	0.758			

Продолжение таблицы 3

					Рис. 56					
	Win-16	Win-17	Win-18	Win-19	Win-20	Win-21	Rbk-22	Rbk-23	Rbk-24	Rbk-25
SiO ₂	56.65	57.20	56.70	56.69	57.82	56.95	57.07	57.35	56.85	56.65
Al ₂ O ₃	-	-	-	-	-	-	-	-	-	-
FeO	13.74	12.97	12.69	12.26	12.55	13.05	19.91	21.35	24.16	24.27
MgO	16.09	16.73	16.65	16.92	17.33	16.60	13.01	12.97	10.46	10.40
CaO	6.17	5.77	6.06	6.28	6.18	5.57	1.68	1.41	0.54	0.56
Na ₂ O	4.38	4.65	4.77	5.16	4.50	4.58	6.54	6.12	6.80	6.82
K ₂ O	0.53	0.62	0.70	0.72	0.62	0.66	0.29	-	-	-
Cl	-	-	-	0.35	-	-	-	-	-	-
Сумма	97.56	97.94	97.57	98.03	99.00	97.41	98.50	99.20	98.81	98.70
Si	8.00	8.00	8.00	8.00	7.99	8.00	7.97	7.89	7.98	7.97
Al ^{IV}	-	-	-	-	-	-	-	-	-	-
Fe ³⁺	-	-	-	-	0.01	-	0.03	0.11	0.02	0.03
Σ	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00
Al ^{VI}	-	-	-	-	-	-	-	-	-	-
Fe ³⁺	0.85	0.90	0.73	0.56	0.87	0.97	1.70	2.06	2.01	2.00
ΣΜ	0.85	0.90	0.73	0.56	0.87	0.97	1.70	2.06	2.01	2.00
Fe ²⁺	0.77	0.61	0.77	0.88	0.56	0.56	0.59	0.28	0.81	0.82
Mg	3.38	3.49	3.50	3.56	3.57	3.47	2.71	2.66	2.19	2.18
ΣML	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.01	5.00
Ca	0.93	0.86	0.92	0.95	0.91	0.84	0.25	0.21	0.08	0.08
Na	1.07	1.14	1.0.8	1.05	1.09	1.16	1.75	1.63	1.85	1.86
ΣΒ	2.00	2.00	2.00	2.00	2.00	2.00	2.00	1.84	1.93	1.94
Na	0.13	0.12	0.22	0.36	0.11	0.09	0.02	-	-	-
Κ	0.10	0.11	0.13	0.13	0.11	0.12	0.05	-	-	-
ΣΑ	0.23	0.23	0.35	0.49	0.22	0.21	0.07	-	-	-
Cl	-	-	-	0.08	-	-	-	-	-	-
X _{Mg}	0.814	0.850	0.821	0.801	0.864	0.860	0.821	0.905	0.731	0.727

					Рис. 5в					
	Rbk-26	Rbk-27	Win-32	Win-33	Win-34	Win-35	Win-36	Win-37	Win-29	Win-38
SiO ₂	56.69	56.42	56.96	57.10	57.08	56.78	56.16	57.11	56.62	55.91
Al ₂ O ₃	-	-	-	-	-	-	0.21	0.14	-	-
FeO	23.05	20.63	19.09	16.46	15.76	16.74	16.38	16.58	15.18	19.11
MgO	11.25	12.08	13.18	14.84	15.11	14.41	14.11	14.59	15.23	13.18
CaO	0.66	1.58	2.10	4.47	4.61	4.33	4.87	4.49	4.91	3.67
Na ₂ O	6.75	6.68	6.49	5.07	4.70	4.69	4.77	4.86	4.97	5.60
K,Ō	-	-	0.16	0.51	0.67	0.50	0.52	0.41	0.60	0.39
CĪ	-	-	-	-	-	-	0.18	0.08	-	-
F	-	-	-	-	-	-	-	0.60	-	0.55
Сумма	98.40	97.39	97.98	98.45	97.93	97.45	97.02	98.18	97.51	97.86
Si	7.95	8.00	8.00	7.99	8.00	8.00	8.01	8.00	8.00	7.94
Al ^{IV}	-	-	-	-	-	-	-	-	-	-
Fe ³⁺	0.05	-	-	0.01	-	-	-	-	-	0.06
Σ	8.00	8.00	8.00	8.00	8.00	8.00	8.01	8.00	8.00	8.00
Al ^{VI}	-	-	-	-	-	-	0.04	0.02	-	-
Fe ³⁺	2.02	1.68	1.57	1.21	1.22	1.31	1.03	1.25	1.04	1.32
ΣΜ	2.02	1.68	1.57	1.21	1.22	1.31	1.07	1.27	1.04	1.32
Fe ²⁺	0.63	0.77	0.67	0.70	0.63	0.66	0.92	0.69	0.75	0.88
Mg	2.35	2.55	2.76	3.09	3.15	3.03	3.00	3.04	3.21	2.79
ΣML	5.00	5.00	5.00	5.00	5.00	5.00	4.99	5.00	5.00	4.99
Ca	0.10	0.24	0.32	0.67	0.69	0.65	0.74	0.67	0.74	0.56
Na	1.83	1.76	1.68	1.33	1.28	1.28	1.26	1.32	1.26	1.44
ΣΒ	1.93	2.00	2.00	2.00	1.97	1.93	2.00	1.99	2.00	2.00
Na	-	0.08	0.09	0.04	-	-	0.06	-	0.10	0.10
K	-	-	0.03	0.09	0.12	0.09	0.09	0.07	0.11	0.07
ΣΑ	-	0.08	0.12	0.13	0.12	0.09	0.15	0.07	0.21	0.17
Cl	-	-	-	-	-	-	0.04	0.02	-	-
F		-	-	-	-	-	-	0.27	-	0.25
X _{Mg}	0.788	0.769	0.804	0.816	0.834	0.822	0.766	0.815	0.810	0.759

	Продолжение таолиц									
	Рис. 5в		Рис. 5г							
	Win-40	Win-41	Win-42	Win-43						
SiO ₂	56.69	56.30	56.66	56.81						
Al ₂ O ₃	-	-	-	0.40						
FeO	17.56	16.28	17.40	21.31						
MgO	13.93	14.49	14.01	11.63						
CaO	3.95	5.01	4.30	2.26						
Na ₂ O	5.36	4.88	5.03	6.21						
K2O	0.43	0.59	0.44	0.17						
Cl	-	-	-	-						
F	-	-	-	-						
Сумма	97.92	97.55	97.84	98.79						
Si	8.00	8.00	8.00	7.99						
Al ^{IV}	-	-	-	0.01						
Fe ³⁺	-	-	-	-						
Σ	8.00	8.00	8.00	8.00						
Al ^{VI}	-	-	-	0.06						
Fe ³⁺	1.26	1.02	1.24	1.54						
ΣΜ	1.26	1.02	1.24	1.60						
Fe ²⁺	0.81	0.91	0.81	0.96						
Mg	2.93	3.07	2.95	2.44						
ΣML	5.00	5.00	5.00	5.00						
Ca	0.60	0.76	0.65	0.34						
Na	1.40	1.24	1.35	1.66						
ΣΒ	2.00	2.00	2.00	2.00						
Na	0.07	0.10	0.03	0.03						
K	0.08	0.11	0.08	0.03						
ΣΑ	0.15	0.21	0.11	0.06						
X _{Mg}	0.783	0.771	0.784	0.717						

кальцит-доломитовая для железистых кварцитов – для центральных частей граната (то есть на момент его кристаллизации) – 485–500 °С и для краевых (на момент окончания его роста) – 550 °С.

Оценок давлений для внутрирудных сланцев нам получить не удалось из-за отсутствия подходящих минеральных парагенезисов, однако присутствие в парагенезисах андалузита при температурах 500–550 °С характеризует условия давлений не более 3,5 кбар.

Обсуждение результатов

При интерпретации полученных данных мы хотим подойти к решению двух проблем: 1 – существует ли разрыв смесимости между Са, Са-Na и Na амфиболами в железистых кварцитах и 2 – петрогенезис «субщелочных» железистых кварцитов.

Смесимость в изоморфных сериях актинолит – ферривинчит и ферривинчит – рибекит

Структурные взаимоотношения, составы и зональность амфиболов дают основание утверждать о существовании полной смесимости в ряду актинолит – ферривинчит и ферривинчит – рибекит. Разрывы смесимости между Са-Na и Na амфиболами описаны для глаукофана и актинолита [20–22], глаукофана и грюнерита [23], глаукофана и роговой обманки [20], глаукофана и барруазита [21], гастингсита и феррикатафорита [24], рихтерита и магнезиорибекита [25]. В изученных Са-Na амфиболах наблюдается гетеровалентное изо-

Таблица	4
---------	---

	Составы амфиболов из образца Л-2											
		Рис	e. 6a		Рис	с. 6б		Рис. 6г				
	Win-1	Win-2	Win-6	Win-7	Rbk-8	Rbk-9	Win-12	Win-13	Act-14			
SiO ₂	56.38	56.20	56.29	56.10	54.64	54.11	57.08	57.55	57.29			
Al ₂ O ₃	-	-	0.81	-	-	-	0.62	-	-			
FeO	13.27	13.24	12.72	12.14	30.10	28.33	13.30	10.72	10.01			
MgO	16.22	16.13	16.35	16.73	6.03	6.79	16.09	18.13	18.43			
CaO	8.90	9.60	9.58	10.21	0.74	0.72	8.91	10.01	10.69			
Na ₂ O	2.83	2.68	2.34	1.90	6.62	7.10	2.50	2.09	1.48			
Сумма	97.60	97.85	98.09	97.08	98.13	97.05	98.50	98.50	97.90			
Si	8.00	8.00	7.94	8.00	8.00	8.00	7.99	8.00	8.00			
Al ^{IV}	-	-	0.06	-	-	-	0.01	-	-			
Fe ³⁺	-	-	-	-	-	-	-	-	-			
Σ	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00			
Al ^{VI}	-	-	0.07	-	-	-	0.09	-	-			
Fe^{3+}	0.52	0.32	0.46	0.36	1.88	1.73	0.57	0.45	0.40			
ΣΜ	0.52	0.32	0.53	0.36	1.88	1.73	0.66	0.45	0.40			
Fe ²⁺	1.05	1.25	1.03	1.09	1.80	1.77	0.98	0.79	0.76			
Mg	3.43	3.42	3.43	3.55	1.32	1.50	3.35	3.75	3.83			
ΣML	5.00	4.99	4.99	5.00	5.00	5.00	4.99	4.99	4.99			
Ca	1.35	1.46	1.45	1.56	0.12	0.11	1.34	1.49	1.60			
Na	0.65	0.544	0.55	0.44	1.88	1.89	0.66	0.51	0.40			
ΣΒ	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00			
Na _A	0.13	0.20	0.11	0.08	-	0.14	0.02	0.05	-			
X _{Mg}	0.765	0.732	0.767	0.765	0.422	0.458	0.773	0.826	0.833			

	Рис. бв			Рис. 6в	Рис. 6д				
	Win-16	Act-19	Win-20	Win-21	Win-22	Act-23	Win-24	Rbk-25	Rbk-26
SiO ₂	56.85	57.11	56.99	56.70	56.77	57.05	56.50	54.49	54.90
Al ₂ O ₃	0.70	-	-	-	-	-	-	-	-
FeO	11.41	10.22	12.69	11.21	13.84	9.90	11.23	32.18	29.54
MgO	17.32	18.43	16.93	17.49	16.15	18.40	17.42	4.81	6.46
CaO	9.37	10.86	9.22	10.26	8.79	11.43	9.55	0.62	0.80
Na ₂ O	2.41	1.77	2.18	1.95	2.54	1.26	2.46	6.01	6.61
Сумма	98.06	98.39	98.01	97.61	98.09	98.04	97.16	98.11	98.31
Si	7.95	7.97	7.98	8.00	7.99	8.00	8.00	8.00	8.00
Al ^{IV}	0.05	-	-	-	-	-	-	-	-
Fe ³⁺	-	0.03	0.02	-	0.01	-	-	-	-
Σ	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00
Al ^{VI}	0.07	-	-	-	-	-	-	-	-
Fe ³⁺	0.53	0.29	0.66	0.36	0.67	0.23	0.43	2.09	1.88
ΣΜ	0.60	0.29	0.66	0.36	0.67	0.23	0.43	2.09	1.88
Fe ²⁺	0.80	0.87	0.81	0.96	0.95	0.93	0.90	1.86	1.72
Mg	3.61	3.83	3.53	3.68	3.39	3,84	3.67	1.05	1.40
ΣΜL	5.01	4.99	5.00	5.00	5.01	5.00	5.00	5.00	5.00
Ca	1.40	1.62	1.38	1.55	1.32	1,72	1.45	0.10	0.12
Na	0.60	0.38	0.59	0.45	0.68	0,28	0.55	1.71	1.87
ΣΒ	2.00	2.00	1.97	2.00	2.00	2.00	2.00	1.81	1.99
Na _A	0.05	0.10	-	0.08	0.01	0.06	0.12	-	-
X _{Mg}	0.819	0.815	0.814	0.793	0.782	0.805	0.804	0.362	0.450

Muuananona	namnoznadua	nomnonomic
типерилогия,	петрография,	петрология

	Рис. 6д									
	Win-28	Win-29	Win-34	Rbk-30	Rbk-31					
SiO ₂	56.45	57.14	56.43	54.80	54.30					
Al ₂ O ₃	-	-	0.56	-	-					
FeO	10.73	11.02	13.99	29.49	28.66					
MgO	17.66	18.10	16.11	6.45	6.70					
CaO	10.68	9.81	8.78	0.73	0.79					
Na ₂ O	2.10	2.37	2.62	6.59	6.60					
Сумма	97.62	98.44	98.49	98.06	97.05					
Si	8.00	7.96	7.91	8.00	8.00					
Al ^{IV}	-	-	0.09	-	-					
Fe ³⁺	-	0.04	-	-	-					
Σ	8.00	8.00	8.00	8.00	8.00					
Al ^{VI}	-	-	-	-	-					
Fe^{3+}	0.18	0.47	0.74	1.90	1.86					
ΣΜ	0.18	0.47	0.74	1.90	1.86					
Fe ²⁺	1.09	0.77	0.89	1.69	1.67					
Mg	3.73	3.76	3.36	1.40	1.47					
ΣML	5.00	5.00	4.99	4.99	5.00					
Ca	1.62	1.46	1.32	0.11	0.12					
Na	0.38	0.54	0.68	1.86	1.88					
ΣΒ	2.00	2.00	2.00	1.97	2.00					
Na	0.20	0.10	0.03	-	-					
X _{Mg}	0.773	0.829	0.790	0.453	0.469					

морфное замещение $Ca^{2+}Mg^{2+} \rightarrow Na^+Fe^{3+}$. На рис. За и 4а очевидно, что при переходе от ферривинчита к рибекиту нет разрыва составов в их изоморфной серии. Такая же картина наблюдается и при переходе от актинолита к ферривинчиту на рис. Зв и 4в, свидетельствующая об их полной смесимости. Именно эти аргументы являются более весомыми в ответе на вопрос о смесимости изучаемых амфиболов, нежели наблюдаемые в отдельных образцах «скачки» по содержанию натрия при переходе от ферривинчита к рибекиту, которые могут быть обусловлены кинетическими причинами.

Петрогенезис щелочно-амфиболовых железистых кварцитов КМА

Обогащенные щелочами породы докембрийских железисто-кремнистых формаций часто встречаются в докембрийских железорудных бассейнах и являются важной составляющей их геологического строения. Особенно широко они распространены в палеопротерозойских бассейнах Хамерсли (Зап. Австралия), Трансвааль (ЮАР) и Курской магнитной аномалии (КМА). Эти огромные ЖКФ содержат большие количества рибекита и крокидолита (волокнистого рибекита). В формации Брокман (бассейн Хамерсли)

Таблица 5

Оценки температур метаморфизма железистых кварцитов из образца Л-2 Лебединского месторождения по кальцит-доломитовой термометрии

Кальцит-доломитовая пара	Температура °С								
		Кальцит-доломитовые геотермометры							
	[10]	[11]	[12]	[13]	T °C cp.				
Cal(35) – Dol(10)	403	445	442	421	428				
Cal(32) – Dol(11)	422	459	454	438	443				
Cal(33) – Dol(18)	403	434	428	420	421				
Cal(42) – Dol(43)	367	396	366	388	379				

Таблица 6

Составы граната из нижней сланцевой подсвиты Лебединского месторождения (обр. Л-20, рис. 7)

	Краевая часть			Промежуточная зона без включений					Центральная часть с включениями			
	Grt-2	Grt-3	Grt-4	Grt-5	Grt-6	Grt-7	Grt-8	Grt-9	Grt-10	Grt-11	Grt-12	Grt-13
SiO ₂	36.47	36.55	36.51	36.45	36.62	36.68	36.70	36.75	36.67	36.77	36.71	36.55
Al ₂ O ₃	20.65	20.52	20.55	20.49	20.52	20.67	20.62	20.64	20.72	20.64	20.69	20.54
FeO	41.16	40.99	41.15	41.76	41.33	41.31	41.05	40.98	41.25	41.10	41.21	40.98
MnO	-	-	-	-	-	-	-	-	-	-	-	-
MgO	1.51	1.66	1.47	1.21	1.32	0.93	1.38	1.37	1.11	1.12	1.04	1.27
CaO	1.12	0.98	1.12	1.01	1.16	0.94	1.05	0.97	1.01	1.07	1.15	1.61
Σ	100.91	100.70	100.80	100.92	100.95	100.53	100.80	100.71	100.76	100.70	100.80	100.95
Si	2.971	2.980	2.977	2.977	2.983	2.998	2.988	2.993	2.989	2.997	2.992	2.978
Al	1.982	1.972	1.975	1.972	1.970	1.991	1.979	1.981	1.991	1.983	1.987	1.972
Fe	2.804	2.795	2.806	2.852	2.816	2.823	2.795	2.791	2.812	2.802	2.809	2.792
Mn	-	-	-	-	-	-	-	-	-	-	-	-
Mg	0.183	0.202	0.179	0.147	0.160	0.113	0.168	0.166	0.135	0.136	0.126	0.154
Ca	0.092	0.086	0.098	0.088	0.101	0.082	0.092	0.085	0.088	0.093	0.100	0.141
Alm	0.909	0.907	0.910	0.924	0.915	0.935	0.915	0.917	0.926	0.924	0.925	0.905
Prp	0.059	0.065	0.058	0.048	0.052	0.038	0.055	0.055	0.044	0.045	0.042	0.050
Grs	0.032	0.028	0.032	0.029	0.033	0.027	0.030	0.028	0.029	0.031	0.033	0.046
X _{Fe}	0.939	0.933	0.940	0.951	0.946	0.961	0.943	0.944	0.954	0.954	0.957	0.948

Таблица 7 Составы биотитов из нижней сланцевой подсвиты Дебезического мосторождения (обр. Ц. 20, рис. 7)

леоедин	леоединского месторождения (оор. л-20, рис. 7)									
	Bt-17	Bt-18	Bt-19	Bt-20						
SiO ₂	32.55	34.40	34.73	34.36						
Al ₂ O ₃	16.92	15.70	16.56	17.01						
TiO ₂	1.41	1.57	1.77	1.55						
FeO	31.10	28.08	26.03	26.36						
MnO	-	-	-	-						
MgO	7.89	7.44	7.55	7.41						
CaO	-	-	0.13	-						
Na ₂ O	0.08	0.08	0.28	-						
K ₂ O	6.54	9.04	9.11	9.49						
F	0.33	-	-	-						
Cl	0.16	0.13	0.10	0.10						
Сумма	96.98	96.44	96.26	96.28						
Si	2.573	2.716	2.716	2.695						
Al ^{IV}	1.427	1.284	1.284	1.305						
Al ^{vi}	0.149	0.177	0.243	0.267						
Ti	0.084	0.093	0.104	0.091						
Fe ²⁺	2.056	1.854	1.703	1.729						
Mn	-	-	-	-						
Mg	0.930	0.876	0.880	0.866						
Ca	-	-	0.011	-						
Na	0.012	0.012	0.042	-						
Κ	0.660	0.910	0.909	0.949						
F	0.082	-	-	-						
Cl	0.021	0.017	0.013	0.13						
X _{Fe}	0.689	0.679	0.659	0.666						

сконцентрированы самые крупные объемы щелочного амфибола на Земле. Оцененные ресурсы крокидолита (исключая неволокнистый рибекит) составляют около 2410000 тонн [26]. Также огромные объемы пород с рибекитом установлены в формациях Крикватаун, Куруман и Пенж в составе супергруппы Трансвааль [27].

В настоящее время существует две точки зрения на образование рибекитовых и эгириновых железистых кварцитов. Некоторые исследователи [26, 28] связывают образование эгирина и рибекита с щелочным (натровым) метасоматозом, в результате которого натрий был привнесен флюидами в систему изначально бедную щелочами. В низкотемпературных железистых формациях не установлены минеральные фазы, обогащенные натрием, которые могли бы служить «предшественниками» рибекита и эгирина. Однако, существует ряд наблюдений, противоречащих этой точке зрения. В железистых кварцитах с эгирином и рибекитом полностью сохраняются все характерные для них текстуры (тонкая полосчатость, плойчатость), и отсутствуют метасоматические тела с массивной или вкрапленной текстурой. В парагенезисе с рибекитом и эгирином присутствуют кварц, магнетит, гематит, стильпномелан, карбонаты, тетриферрибиотит, селадонит - то есть полностью отсутствуют моно- и биминеральные ассоциации. Именно эти обстоятельства заставили ввести ограничения в метасоматическую модель [26-28]: щелочной метасоматоз имел распространение только в пределах зон повышенной проницаемости для флюида (зоны трещиноватости, интенсивных дислокаций и пр.), его интенсивность была невелика. По этой причине ограниченный щелочной метасоматоз железистых кварцитов А.А. Глаголев [28] предложил называть щелочным метаморфизмом.

Вторая точка зрения предполагает, что рибекитовые и эгириновые железистые кварциты образовались при изохимическом метаморфизме осадочного протолита, представлявшего собой результат седиментации и диагенеза водных железо-силикатных гелей, обогащенных Na и K [29, 30]. Когда при диагенезе начинается кристаллизация этого материала, активизируется диффузия катионов, натрий и калий могут входить в структуру слюд и рибекита. Х. Ойгстер [31] предположил по аналогии с кремнистыми озерными отложениями плейстоцена, что в кремнистых отложениях железистой формации сначала образовался магадиит, натровый силикат – NaSi₇O₁₃x3H₂O. Натрий в результате реакций с железистыми смешанослойными силикатами высвобождался с образованием рибекита [32]. Подтверждением этой точки зрения являются данные о рибеките как аутигенном и/или очень низкотемпературном минерале во многих железистых формациях [33-35]. В эоценовых озерных отложениях формации Грин Ривер рибекит, крокидолит и эгирин являются ранними диагенетическими минералами и образовались при температурах менее 100 °С, причем рибекит обрастает детритовые зерна коричневой роговой обманки вулканического генезиса [31]. Рибекит был установлен вместе с кварцем, магнезиальным кальцитом, палыгорскитом, иллитом и микроклином в керне скважины на глубиной 1,8 м, пробуренной в современных осадках глубоководной части (668 м) озера Иссык-Куль [36].

Очевидным противоречием этой модели являются явные реакционные структуры замещения в железистых

Таблица 8

Оценки температур метаморфизма внутрирудных сланцев из обр. Л-20 Лебединского месторождения КМА по гранат-биотитовой термометрии

Гранат-биотитовая пара		Геотермометры						
(номера анализов в табл. 6, 7, рис. 7)	Р, кбар	[14]	[15]	[16]	[17]	[18]	[19]	T _{cp.} °C
Grt(13) -Bt(20)	3	473	476	518	491	495	453	484
Grt(3)-Bt(18)	3	544	539	576	548	568	534	552
Grt(6)-Bt(17)	3	501	500	540	513	528	482	511
Grt(2)-Bt(19)	3	502	501	520	514	520	482	507

Рис. 7. Порфиробласт граната в тонкозернистом кварцгрюнерит-биотитовом сланце из нижней сланцевой подсвиты (обр. Л-20)

кварцитах рибекитом грюнерита [27, 37], ферривинчита и актинолита (настоящая статья), который является более поздним по отношению к другим амфиболам.

На основании полученных новых данных нам представляется более вероятным, что рибекит в железистых кварцитах образуется на ретроградной стадии метаморфизма при участии незначительно обогащенного Na⁺ флюида и увеличении фугитивности кислорода при спаде температуры. Повышенные концентрации Na⁺ во флюиде были унаследованы от поровых соленых морских вод, которые свободно циркулировали в осадке.

На прогрессивной стадии метаморфизма в породах были устойчивы обычные для железистых формаций амфиболы – грюнерит и актинолит. Так как грюнерит и рибекит не имеют непрерывного ряда твердых растворов [38], то грюнерит замещался рибекитом при его окислении сразу без промежуточных продуктов (сохраняются только его реликты в рибеките): 2Gru + 2O₂ + $2Na^+ \rightarrow Rbk + 3 Mag + 8Qtz + 2H^+$ [27]. Актинолит при окислении и в присутствии обогащенного Na⁺ флюида переходил в ферривинчит: $Ca_2(Mg_{35}Fe_{15})[Si_8O_{22}] +$ $Ca(Mg_{0.7}Fe_{0.3})[CO_3]_2 + Na^+ + O_2 \rightarrow CaNa(Fe_{1.0}^{3+}Mg_{3.5}Fe_{0.5})$ $[Si_8O_{22}] + 2CaCO_3 + Fe^{3+}_2Fe^{2+}O_4 (Act + Dol + Na^+ + O_2 \rightarrow O_3 + Fe^{3+}_2Fe^{2+}O_4 (Act + Dol + Na^+ + O_2 \rightarrow O_3 + Fe^{3+}_2Fe^{2+}O_4 (Act + Dol + Na^+ + O_2 \rightarrow O_3 + Fe^{3+}_2Fe^{2+}O_4 (Act + Dol + Na^+ + O_2 \rightarrow O_3 + Fe^{3+}_2Fe^{2+}O_4 (Act + Dol + Na^+ + O_2 \rightarrow O_3 + Fe^{3+}_2Fe^{2+}O_4 (Act + Dol + Na^+ + O_2 \rightarrow O_3 + Fe^{3+}_2Fe^{2+}O_4 (Act + Dol + Na^+ + O_2 \rightarrow O_3 + Fe^{3+}_2Fe^{2+}O_4 (Act + Dol + Na^+ + O_2 \rightarrow O_3 + Fe^{3+}_2Fe^{2+}O_4 (Act + Dol + Na^+ + O_2 \rightarrow O_3 + Fe^{3+}_2Fe^{2+}O_4 (Act + Dol + Na^+ + O_2 \rightarrow O_3 + Fe^{3+}_2Fe^{2+}O_4 (Act + Dol + Na^+ + O_2 \rightarrow O_3 + Fe^{3+}_2Fe^{2+}O_4 (Act + Dol + Na^+ + O_2 \rightarrow O_3 + Fe^{3+}_2Fe^{2+}O_4 (Act + Dol + Na^+ + O_2 \rightarrow O_3 + Fe^{3+}_2Fe^{2+}O_4 (Act + Dol + Na^+ + O_2 \rightarrow O_3 + Fe^{3+}_2Fe^{$ Win + 2Cal + Mag), а ферривинчит уже замещался рибекитом: $CaNa(Fe^{3_{+}}Mg_{35}Fe_{05})[Si_8O_{22}](OH)_2 + 2CO_2 +$ $0.5Fe_2O_3 + Na^+ + 0.25O_2 \xrightarrow{oo} Na_2(Fe^{3+}Mg_2 Fe^{2+}O_2)[Si_8O_{22}]$ $(OH)_2 + CaMg[CO_2]_2 (Win + 0.5Hem + Na^+ + CO_2 + O_2 \rightarrow$ Rbk + Dol), что подтверждается зональностью амфиболов и широким развитием карбонатов, которые являются «побочными» продуктами этих замещений. Причем метаморфические температуры, определенные кальцит-доломитовой термометрией в железистых кварцитах (380–440 °C) отражают именно ретроградную стадию, так как на прогрессивной они достигали 550 °C по данным гранат-биотитовой термометрии внутрирудных сланцев.

Сложнее объяснить реликты эгирин-авгита, замещаемые ферривинчитом, который имеет рибекитовые каймы. Мы полагаем, что в карбонатсодержащих породах на пике метаморфизма был устойчив диопсид, который на ретроградной стадии в присутствии обогащенного Na⁺ флюида был замещен эгирин-авгитом. Между диопсидом и Ca-Na пироксеном существует полный изоморфный ряд твердых растворов [39, 40]. После этого эгирин-авгит замещается ферривинчитом, имеющим аналогичный компонентный состав, и далее схема замещений аналогична описанной.

Выводы

Полученные данные по структурным взаимоотношениям и изменениям составов Са, Са-Na и Na безглиноземистых амфиболов свидетельствуют о существовании полной смесимости в изоморфных рядах актинолит – ферривинчит и ферривинчит – рибекит.

Критическими факторами развития рибекита и эгирина в железистых кварцитах является активность кислорода и наличие даже небольших количеств ионов натрия во флюиде. И рибекит, и эгирин содержат в своем составе Fe³⁺, и все реакции их образования – это реакции окисления. Развитие рибекита на заключительных стадиях минералообразования обусловлено гетеровалентными изоморфными замещениями Ca²⁺Mg²⁺ → Na+Fe³⁺ в Ca и Ca-Na амфиболах, а также окислением грюнерита в присутствии флюида, обогащенного ионами натрия. Na имеет «сродство» к Fe³⁺, ведь не случайно в природе широко распространены рибекит и эгирин, хотя неизвестны калиевые безглиноземистые амфиболы и пироксены. В окислительной обстановке он легко входит в состав безглиноземистых амфиболов и пироксенов вместе с Fe³⁺.

Авторы благодарят зам. главного геолога рудоуправления ОАО «Лебединский ГОК» Д.И. Косарева за помощь при проведении полевых работ.

Работа выполнена при финансовой поддержке грантов РФФИ (проект № 03-05-64071), Президента РФ (проект МД-248.2003.05), Минобразования России (№ 403-2.13-3350).

ЛИТЕРАТУРА

1. James, H.L. Sedimentary facies of iron formation // Econ. Geol. – 1954. – V. 49. – P. 235–285.

2. Савко, К.А. Рибекит-эгирин-селадонитовые железистые кварциты Михайловского железорудного месторождения Курской магнитной аномалии: фазовые равновесия и условия метаморфизма / К.А. Савко, М.В. Поскрякова // Петрология. – 2003. – Т. 11. – № 5. – С. 471–490.

3. Савко, К.А. Минералогия, фазовые равновесия и условия метаморфизма пород Новоялтинского железорудного месторождения КМА / К.А. Савко, М.В. Поскрякова // Вестник Воронеж. гос. ун-та. Сер. Геология. – 2003. – № 2. – С. 113–130.

4. Савко, К.А. Минералогия, фазовые равновесия и условия метаморфизма пород Шемраевского железорудного месторождения Курской магнитной аномалии / К.А. Савко, М.В. Поскрякова // Вестник Воронеж. гос. ун-та. Сер. Геология. – 2004. – № 1. – С. 68–84.

5. Железные руды КМА / под ред. В.П. Орлова и др. – М. : ЗАО «Геоинформмарк», 2001. – 616 с.

6. Щербак, Н.П. Возраст кислых метавулканитов Александровского и Коробковского участков КМА / Н.П. Щербак, Г.В. Артеменко, Е.Н. Бартницкий и др. // Доклады АН Украины. – 1992. – № 6. – С. 120–123.

7. Артеменко, Г.В. Геохронология Среднеприднепровской, Приазовской и Курской гранит-зеленокаменных областей : автореф. дис. на соискание уч. степ. д-ра геол. наук. – Киев : Институт геохимии, минералогии и рудообразования НАН Украины, 1998. – 31 с.

8. *Fonarev, V.I.* A consistent system of geothermometers for metamorphic complexes / V.I. Fonarev, A.A. Graphchikov, A.N. Konilov // Int. Geol. Review. – 1991. – V. 33. – № 8. – P. 743–783.

9. *Leake, B.E., Woolley, A.R.*, and 20 members of the Subcommittee on Amphiboles. Nomenclature of amphiboles. Report of the Subcommittee on Amphiboles of the International Mineralogical Association Commission on New Minerals and Mineral Names // Eur. J. Mineral. – 1997. – V. 9. – P. 623–651.

10. *Puhan, D.* Petrographie und geothermometrische Untersuchungen an silicat fuhrenden Dolomit-Calcit-Marmoren zur Ermittlung den Metamorphose bedingungen im Zentral-Damara-Orogen (SW-Africa) / D. Puhan // Habil. Univ. Gottingen, 1979.

11. *Таланцев, А.С.* Геотермобарометрия по доломиткальцитовым парагенезисам / А.С. Таланцев. – М. : Наука, 1981. – 160 с.

12. Anovitz, L.M. Phase equilibria in the system $CaCO_3$ -MgCO_3-FeCO_3 / L.M. Anovitz, E.J. Essene // J. Petrol. – 1987. – V. 28. – Pt. 2. – P. 389–414.

13. *Patric, B.E.* Metamorphic evolution of the Seward Peninsula Blueschist Terrane / B.E. Patric, B.E. Evans // J. Petrol. $-1989. - V. 30. - N_{2} 3. - P. 531-555.$

14. *Thompson, A.B.* Mineral reactions in pelitic rocks: 1 Prediction of P-T-X (Fe-Mg) relations / A.B. Thompson // Amer. J. of Science, 1976. – V. 276. – N $_{2}$ 4. – P. 401–424.

15. *Holdaway, M.J.* Fe-Mg cordierite stability in high grade pelitic rocks, based on experimental, theoretical and natural observations / M.J. Holdaway, S.M. Lee // Contrib. Mineral. Petrol. $-1977. - V. 63. - N \ge 2. - P. 175-198.$

16. *Лаврентьева*, *И.В.* Фазовое соответствие в системе биотит-гранат. Экспериментальные данные / И.В. Лаврентьева, Л.Л. Перчук // Докл. АН СССР. – 1981. – Т. 260. – № 3. – С. 731–734.

17. *Перчук, Л.Л.* Взаимосогласование некоторых Fe-Mg геотермометров на основе закона Нернста: ревизия / Л.Л. Перчук // Геохимия. – 1989. – № 5. – С. 611–622.

18. *Ganguly, J.* Mixing properties of alumosilicate garnets: constraints from natural and experimental data, and applications to geothermobarometry / J. Ganguly, S.K. Saxena // Amer. Mineral. – 1984. – V. 69. – N 1/2. – P. 88–97.

19. Hodges, K.V. Geothermometry, geobarometry and the

 Al_2SiO_5 triple point at Mt. Moosilauke, New Hampshire / K.V. Hodges, F.S. Spear // Amer. Mineral. – 1982. – V. 67. – Nº 11/12. – P. 1118–1134.

20. *Klein, C.* Two-amphibole assemblages in the system actinolite-hornblende-Gln / C. Klein // Amer. Mineral. – 1969. – V. 54. – P. 212–237.

21. *Robinson, P.* Phase relations of metamorphic amphiboles: natural occurrence and theory / P. Robinson, F.S. Spear, J.C. Schumacher // Rev. Mineral. – 1982. – 9B. – P. 1–201.

22. *Reynard, B.* Coexisting amphiboles in an eclogite from the Western Alps: new constraints on the miscibility gap between sodic and calcic amphiboles / B. Reynard, M. Ballevre // J. Metamorph. Geol. – 1988. – V. 6. – P. 333–350.

23. *Smelik, E.A.* Exsolution of Ca-amphibole from Gln and the miscibility gap between sodic and calcic amphiboles / E.A. Smelik, D.R. Veblen // Contrib. Mineral. Petrol. – 1992. – V. 112. – P. 178–195.

24. *Shearer, C.K.* Zoned hastingsite–ferri-katophorite – taramite phenocrysts, an amphibole + orthoclase = aegirine-augite + biotite reaction, and a new sodic amphibole in nepheline-sodalite syenite, Red Hill, New Hampshire / C.K. Shearer, J.C. Schumacher, P. Robinson // Geol. Soc. Am. Abstr. – 1981. – V. 13. – P. 552.

25. *Ghose, S.* Unmixing of an alkali amphibole (tirodite) into magnesio-richerite and magnesio-riebeckite / S. Ghose, W.C. Forbes, P.P. Phakey // Indian J. Earth Sci. – 1974. – N_{2} 1. – P. 37–42.

26. *Trendall, A.F.* The iron formation of the Precambrian Hamersley Group, Western Australia with special reference to the associated crocidolite / A.F. Trendall, J.G. Blockley // Western Australia Geol. Surv. Bull. – 1970. – 119 p.

27. *Miyano, T.* Mineralogy and petrology of the contact metamorphosed amphibole asbestos-bearing Penge iron formation, Eastern Transvaal, South Africa / T. Miyano, N. J. Beukes // J. Petrol. – 1997. – V. 38. – N_{2} 5. – P. 651–676.

28. Глаголев, А.А. Метаморфизм докембрийских пород КМА / А.А. Глаголев. – М. : Наука, 1966. – 157 с.

29. *French, B.M.* Mineral assemblages in diagenetic and low-grade metamorphic iron formations / B.M. French // Econ. Geol. – 1973. – V. 68. – P. 1063–1074.

30. *Klein, C.* Greenalite, minnesotaite, crocidolite and carbonates in a very low-grade metamorphic Precambrian iron formation / C. Klein // Canad. Miner. – 1974. – V. 12. – P. 475–498.

31. *Eugster, H.P.* Inorganic bedded cherts from the Magadi area, Kenya / H.P. Eugster // Contrib. Miner. Petrol. – 1969. – V. 22. – P. 1–31.

32. *Miyano, T.* Stilpnomelane, Fe-rich mica, K-feldspar and hornblende in banded iron formation assemblages of the Dales Gorge Member, Hammersley Group, Western Australia / T. Miyano // Canad. Miner. – 1982. – V. 20. – P. 189–202.

33. Lesher, C.M. Mineralogy and petrology of the Sokoman Iron Formation near Ardua Lake, Quebec / C.M. Lesher // Canad. J. Earth Sci. -1978. - V. 15. - P. 480-500.

34. *Klein, C.* Diagenesis and metamorphism of Precambrian iron formations. In Trendall A.F., Morris R.C. (eds.) «Iron formations: facts and problems». – 1983. – Elsevier, Amsterdam. – P. 417–469.

35. *Miyano, T.* Conditions of riebeckite formation in the iron-formation of the Dales Gorge Member, Hamersley Group, Western Australia/T. Miyano, C. Klein// Amer. Mineral. – 1983. – V. 68. – P. 517–529.

36. *Giralt, S.* Lake Issyk-Kul: an example of recent evolution in a continental environment / S. Giralt, S. Riera, J. Klerkx et al. // Terra Nostra 2001/2. Girona, Spain. 3rd Workshop Southern European Working Group of the European lake Drilling program.

37. Савко, К.А. Физико-химические условия метаморфизма магнетит-грюнерит-рибекитовых пород Приоскольского железорудного месторождения Курской магнитной аномалии / К.А. Савко, Н.Ю. Кальмуцкая // Вестник Воронеж. гос. ун-та. Сер. Геология. – 2002. – № 1. – С. 95–103.

38. *Oba, T.* Experimental study of cummingtonite and Ca-Na amphibole relations in the system Gru-Act-Pl-Qtz-H₂O / T. Oba, I.A. Nicholls // Amer. Mineral. – 1986. – V. 71. – P. 1354–1365.

39. Cameron, M. Structural and chemical variations in pyroxenes / M. Cameron, J.J. Papike // Amer. Mineral. – 1981. – V. $66. - N_{\rm D} 1/2. - P. 1-50.$

40. *Morimoto, N.* Nomenclature of pyroxenes. Report of the Subcommittee on Pyroxenes of the International Mineralogical Associations on New Minerals and Mineral Names / N. Morimoto // Canad. Mineral. – 1989. – V. 27. – P. 143–156.

УДК 552.42:551.71(470.21)

ПРОТОЛИТЫ ПОЗДНЕАРХЕЙСКИХ ГНЕЙСОВ КОЛЬСКО-БЕЛОМОРСКОГО НЕРАСЧЛЕНЕННОГО КОМПЛЕКСА СЕВЕРО-ВОСТОЧНОЙ ЧАСТИ БАЛТИЙСКОГО ЩИТА (УЧАСТОК «ГУБА ПЕЧЕНГА»)

В.И. Сиротин, Г.В. Войцеховский, С.В. Бондаренко

Воронежский государственный университет

Целью изучения состава гнейсов, развитых в пределах нерасчлененного кольско-беломорского комплекса северо-восточной части Балтийского щита, является определение их первоначального состава и условий образования. Для пород характерно высокое содержание Al₂O₃(13–21%), постоянное преобладание FeO (4–5%) над MgO (1–2%), умеренное количество CaO (2,36%), что обуславливает кислый характер плагиоклаза; среднее содержание K₂O и преобладающее превышение Na₂O (около 3%) над K₂O (около 2%). Содержание REE и Y в гнейсах варьируется в широких пределах от 58 до 190 г/т. На основании распределения главных элементов, микроэлементов (в том числе и редких земель), а также минералогического состава исследуемые гнейсы представляют собой преобразованные осадочные породы, главным образом, граувакки, аркозы, полимиктовые песчаники. Они характеризуются невысокой степенью химического выветривания и непосредственным переотложением продуктов разрушения вблизи источника сноса. Протолиты парагнейсов могли формироваться одновременно с протолитами собственно ортопород и выступали в роли их терригенной фации. Об этом может свидетельствовать и то, что на данной территории не существовало более древних образований сиалической коры (раннеархейской).

Введение

Происхождение и эволюция архейской континентальной коры - один из наиболее актуальных вопросов в современной геологической науке. Познание физико-химических условий на поверхности планеты в древнейшие эпохи, воссоздание полной картины формирования литосферы Земли через седиментацию, вулканизм, метаморфизм есть путь к познанию закономерностей формирования полезных ископаемых, количество которых столь велико в пределах докембрийских щитов. В этом плане исключительный интерес представляют данные о строении и соотношении главных типов структур архейской земной коры - гранит-зеленокаменных и гранулито-гнейсовых областей, слагающих значительную часть известных выходов раннего докембрия на континентах. В настоящее время гранит-зеленокаменные системы изучены довольно хорошо, тогда как происхождение и эволюция гранулито-гнейсовых областей во многом остаются неясными. Вопрос о первичной генетической природе измененных образований является одним из основных элементов исследования докембрийских отложений.

Целью работы является определение исходного вещества гнейсов – их протолита. В силу того, что в интенсивно метаморфизованных и дислоцированных толщах гранулито-гнейсовых областей первичные признаки пород, как правило, во многом утрачены, более того, тектонические явления приводят здесь зачастую к образованиям ложных текстур и структур, выявление первичной природы дометаморфического состава гнейсов (их протолитов) проводилось с помощью петрографических и петрохимических методов.

Гнейсы отобраны в пределах кольской серии Кольского полуострова (участок «Губа Печенга» – площадь от Печенгской структуры в районе г. Заполярный до побережья Баренцева моря в районе Немецкой бухты). Этот регион исследования является, в силу своей