

ПОЛЕЗНЫЕ ИСКОПАЕМЫЕ

УДК 549.2/.8:553.3/.4:553.491.8.04(47+53)

ОСОБЕННОСТИ РАСПРЕДЕЛЕНИЯ И ФОРМЫ КОНЦЕНТРИРОВАНИЯ ПЛАТИНОИДОВ И ЗОЛОТА В ЖЕЛЕЗИСТЫХ КВАРЦИТАХ ЛЕБЕДИНСКОГО МЕСТОРОЖДЕНИЯ КМА

Чл.-кор. РАН Н.М. Чернышов, Т.П. Коробкина

Воронежский государственный университет

Приводятся новые данные об особенностях распределения и формах нахождения благородных металлов в различных типах железистых кварцитов, в сопутствующих им метасоматитах и зонах повышенной сульфидизации Лебединского месторождения. Помимо собственных минеральных фаз (золото самородное) значительные количества Au и ЭПГ концентрируются в сульфидах, сульфоарсенидах и других рудных минералах вследствие полигенного и полихронного процесса благороднометалльного рудогенеза в железистых кварцитах.

Введение

Резко возросшая в начале XXI столетия потребность в благородных металлах выдвигает проблему поисков новых нетрадиционных их источников. Одним из важнейших источников в России являются железорудные месторождения КМА, ныне обеспечивающие свыше 53 % производства железных руд России. Установление особенностей распределения и форм концентрирования золота и платиноидов, выявление и оценка промышленной значимости этих металлов в железных рудах и продуктах их текущей добычи и переработки в полной мере отвечают одному из важнейших направлений критических технологий РФ - «Оценка, комплексное освоение и глубокая переработка стратегически важного сырья» в общей проблеме Решения Совета безопасности Российской Федерации от 28.04.2001 г. «О сырьевой безопасности России в XXI веке».

1. Положение месторождения в структуре КМА, строение и состав слагающих железорудных толщ

В геологическом разрезе мегаблока КМА выделены [1, 12] четыре последовательно сменяющиеся во времени железорудные формации, сформировавшиеся в условиях раннеархейских нуклеократонов (раннеархейская железисто-кремнисто-гнейсовая в составе обоянского стратифицированного комплекса), энсиалического рифтогенеза (железисто-кремнисто-метабазитовая в составе позднеархейской михайловской серии) и наложенных раннепротерозойских рифтогенных структур (железисто-кремнисто-сланцевая и железисто-кремнисто-кластогенная). Одной из ведущих в обеспечении России железной рудой является железисто-кремнисто-сланцевая формация нижнего карелия (в объеме курской серии). С этой формацией связано около 60 рудных объектов, в том числе ряд крупных и суперкрупных месторождений железистых кварцитов, а также сформировавшихся за их счет залежей богатых железных руд доверхневизейской коры выветривания с сопутствующим золото-платинометалльным оруденением [2, 10, 11]. Общий потенциал железистых кварцитов и богатых железных руд (71,8 млр т.) определяют ведущее положение в мире минерально-сырьевой базы Центральной России.

В пределах мегаблока КМА железорудные толщи курской серии образуют две протяженные (свыше 400 км), сложные по морфологии и внутреннему строению зоны северо-западного простирания (рис.1): а) западную – в северной части которой размещается Михайловский железорудный район (Курская область) и б) восточную – с известным Старооскольским рудным районом (Белгородская область).

Обе эти зоны полосовидных аномалий пространственно сопряжены с Белгородско-Михайловским и Орловско-Тимским коматиитсодержащими зеленокаменными поясами позднеархейского заложения, различающимися по характеру слагающих их CBK,

Рис. 1. Схема местоположения Михайловского и Старооскольского железорудных районов КМА:

 железистые кварциты (железисто-кремнисто-сланцевая формация нижнего карелия), 2 – Михайловское месторождение;
З – Лебединское месторождение

степени эрродированности и последующей структурно-вещественной эволюции [4, 5, 6, 8], существенно сказавшейся на составе породных и рудных ассоциаций, особенностях распределения благородных металлов в железистых кварцитах [10].

В качестве граничных признаков, определяющих особенности строения и состава железных руд месторождений Старооскольского рудного района, а также общие закономерности размещения благороднометалльной минерализации в них, выступают: 1) пространственная сопряженность железорудных рифтогенных по своей природе структур нижнего карелия с реактивизированным Орловско-Тимским позднеархейским зеленокаменным поясом [6, 8, 10], характеризующимся (в отличие от Белгородско-Михайловского) практически полным отсутствием в составе СВК вулканитов коматиитового состава при широком развитии пород бимодальной базальт-риолит-риодацитовой формации; 2) полицикличность и многостадийность развития раннепротерозойских рифтогенных структур с преобладанием на ранних стадиях терригенно-осадочных (в том числе мощных железорудных) отложений (курская серия) и возрастающей ролью углеродистых вулканогенно-осадочных и вулканогенных золото-платиноносных образований (оскольская серия) на поздних стадиях их формирования; 3) широкое проявление на последующих этапах дифференцированных пикриттолеитбазальт-трахибазальт-трахиандезитовых и бимодальных базальт-риодацитовых вулканитов (в объеме оскольской серии), ассоциирующих с субвулканическими интрузивными и дайковыми комагматами; 4) пре-

Рис. 2. Схематическая геологическая карта Старооскольского рудного узла [1] с дополнениями [10]: нижний протерозой – курская серия: 1–2 – коробковская свита: 1-верхняя сланцевая подсвита (PR₁⁻¹kr₄), 2-верхняя и нижняя железорудные подсвиты с внутрирудной (нижней) сланцевой подсвитой (PR₁⁻¹kr₄), 3 – стойленская свита (PR₁⁻¹st) – кварцитопесчаники, кварц-слюдяные сланцы; 4 – микроклиновые граниты атаманского комплекса (γPR₁²a); 5 – габбро-диориты, кварцевые диориты стойло-николаевского комплекса (γδR₁⁻¹sn); 6 – нерасчлененный гранитогнейсовый комплекс (my(AR–PR₁⁻¹)) – гранитогнейсы, мигматиты, гнейсы, прослои и линзы амфиболитов; верхний архей – 7-плагиограниты салтыковского комплекса (γAR₂sl); 8 – михайловская серия (AR₂mh); 9 – разломы; 10 – месторождения: 1 – Панковское, 2 – Коробковское,

3 – Лебединское, 4 – Стойло-Лебединское, 5 – Стойленское

имущественно низкоградиентный тип метаморфизма в условиях зеленосланцевой и эпидот-амфиболитовой фаций; 5) обогащенность пород сульфидами различных генераций с сопутствующей золото-платинометалльной минерализацией вследствие многократной тектоно-магматической активизации и длительного функционирования в пределах рудного района разноглубинных и разноориентированных глубинных разломов, сопровождавшихся объемным катаклазом и многократным проявлением наложенных гидротермальных процессов.

В Старооскольском рудном районе отрабатываются карьерами Лебединское, Стойло-Лебединское и Стойленское месторождения, шахтным способом ведется добыча железных руд на Коробковском месторождении (рис. 2), переработка руд осуществляется на Стойленском и Лебединском ГОКах.

Особенности геологии, состава железных руд и распределения в них благородных металлов рассматриваются на примере типового для этого рудного района Лебединского месторождения (рис. 3), которое имеет отчетливо выраженный слоистый характер строения залежей железистых кварцитов с перемежаемостью в разрезе пластов магнетитовых, железнослюдковомагнетитовых, амфибол-магнетитовых и биотит-магнетитовых кварцитов. Характерными являются тонкозернистый состав и слоистые текстуры, обусловленные чередованием рудных, нерудных и смешанных слойков, по ширине которых выделяются тонко- (менее 2 мм), средне-(2–5 мм), широко- (5–20 мм), грубо- (более 20 мм) и разнополосчатые текстуры. Часто слоистость осложняется плойчатостью, иногда отмечается будинирование кварцевых и магнетитовых слойков.

Основными минеральными типами кварцитов являются магнетитовые, железнослюдково-магнетитовые и силикатно-магнетитовые (куммингонит-, биотит-, щелочно-амфибол- и эгирин-магнетитовые) кварциты; присутствуют слаборудные кварциты.

Магнетитовые кварциты слагают основную часть продуктивной толщи в составе нижней и верхней подсвит коробковской свиты. Иногда в небольшом количестве (до 3–5 %) встречается железная слюдка и послойные выделения и прожилки (до 2–3 мм) сульфидов (пирит, пирротин). Из нерудных минералов присутствуют кварц и в небольших количествах – актинолит, куммингтонит, тальк, щелочные амфиболы, биотит, иногда эгирин, нередко карбонат. Акцессорные минералы – апатит, пирит, пирротин, рутил, анатаз.

Железнослюдково-магнетитовые кварциты характерны в основном для верхней железорудной под-

Рис. 3. Схематическая геологическая карта Лебединского месторождения КМА и разрез по XY ([1] с дополнениями [10]):

1— осадочные породы чехла (на разрезе); **нижний протерозой** – курская серия: 2–5 – коробковская свита:

2 – верхняя сланцевая подсвита (PR₁¹kr₄), 3-верхняя железорудная подсвита (PR₁¹kr₃), 4 – нижняя сланцевая подсвита (PR₁¹kr₂),
5 – нижняя железорудная подсвита (PR₁¹kr1); 6 – стойленская сланцево-кварцитопесчаниковая свита (PR₁¹st); 7 – стойлониколаевский габбро-диорит-гранодиоритовый комплекс (yδPR₁¹sn); **верхний архей**: 8 – лебединская свита (AR₁b) михайловской серии;

9 – геологические разломы; 10 – границы карьера

свиты. Они слагают пласты и линзы мощностью до 50-100 м, часто переслаиваясь с магнетитовыми кварцитами. Текстура их тонкополосчатая, нередко плойчатая. Из рудных минералов в них преобладает магнетит. Железная слюдка слагает от 5 до 15 %, изредка встречается эпигенетическая секущая прожилковая (от 1-2 мм до 0,5-2 см) минерализация крупночешуйчатого гематита. Рудные слойки в основном магнетитовые и смешанного гематит-магнетитового состава; реже отмечаются тонкие прерывистые слойки железной слюдки. Зерна магнетита чаще всего имеют размер от 0,03 до 0,1 мм; агрегаты их достигают размера 0,15-0,3 мм. Кварцевые слойки обычно сравнительно слабораскристаллизованы; нередко они содержат тонкие включения рудного минерала, иногда эмульсионного гематита, придающего кварциту характерную краснополосчатость. Встречаются участки с перекристаллизованным и более крупнозернистым кварцем. В качестве примесей в железнослюдково-магнетитовых кварцитах присутствуют амфиболы актинолит-тремолитового ряда, щелочные амфиболы, карбонаты, иногда тальк, пирит.

Силикатно-магнетитовые кварциты представлены куммингтонит-магнетитовыми, биотит-магнетитовыми щелочноамфибол-магнетитовыми и актинолитмагнетитовыми разностями.

Куммингтонит-магнетитовые и актинолит-магнетитовые кварциты развиты преимущественно в нижней железорудной подсвите, в нижнем и среднем горизонтах верхней подсвиты. Они характеризуются средне- и широкополосчатой текстурой, ширина слойков от 1 мм до 2 см. Основной рудный минерал представлен магнетитом с размером зерен от 0,01 до 0,05 мм. Силикатные минералы слагают более 10–15 % объема, представлены куммингтонитом, актинолитом и в подчиненном значении – биотитом, тремолитом, иногда щелочным амфиболом, развивающимся по куммингтониту. Нередко присутствует карбонат; отмечаются плагиоклаз, роговая обманка.

Биотит-магнетитовые кварциты слагают верхний рудный горизонт верхней подсвиты и спорадически отмечаются в других частях разреза железорудной свиты. В этих кварцитах биотит преобладает над куммингтонитом. Из второстепенных минералов обычно присутствуют карбонаты, щелочные амфиболы, актинолит. Биотит-магнетитовые кварциты наиболее тонкозернистые, магнетит характеризуется наличием включений нерудных минералов в его зернах, размер которых колеблется от тысячных долей до 0,05 мм.

Щелочноамфибол-магнетитовые кварциты более широко развиты в верхней железорудной подсвите, но отмечаются и среди магнетитовых и куммингтонитмагнетитовых кварцитов нижней подсвиты. Текстура их от тонко- до широкополосчатых; в случае интенсивной щелочной переработки кварцитов слоистость иногда затушевывается. Сложены они кварцем, магнетитом, щелочными амфиболами, иногда эгирином, встречаются и эгирин-магнетитовые кварциты с секущими эпигенетическими жилами крупнокристаллического эгирина и сульфидов. В подчиненных количествах присутствуют актинолит, куммингтонит, несущие признаки щелочного преобразования, а также

Таблица 1

	M-25/1	M-26	M-29	M-57	M-119	M-130	Л-К-1	M-28/2	M-52	M- 127/2	M-32	M- 120/1	M-132
SiO ₂	44,28	36,36	44,48	46,77	46,55	48,84	38,53	43,81	31,91	39,92	34,78	32,53	41,17
TiO ₂	0,28	0,015	0,011	0,04	0,015	0,02	0,003	0,01	0,04	0,004	0,06	0,05	0,29
Al ₂ O ₃	0,66	0,96	0,60	1,90	0,79	0,84	0,71	0,53	0,85	0,88	1,02	0,78	1.00
Fe ₂ O ₃	34,98	38,83	42,36	33,36	32,27	30,65	40,96	37,34	50,86	32,72	42,77	36,02	40,94
FeO	10,77	13,02	8,75	13,44	13,74	15,48	10,13	12,77	8,74	14,32	13,56	15,37	11,67
MnO	0,083	0,18	0,045	0,046	0,087	0,03	0,12	0,07	0,04	0,05	0,09	0,16	0,05
MgO	2,06	3,35	1,85	2,98	1,58	2,46	3,85	3,15	2,43	3,58	3,13	4,24	1,98
CaO	0,62	2,82	0,51	0,25	2,75	0.64	1,00	1,45	1,61	3,31	2,68	3,53	2.00
Na ₂ O	6,06	0,65	0,4	0,08	0,26	0,26	4,00	0,21	0,32	0,18	0,23	4,48	0,48
K ₂ O	0,09	0,3	0,031	0,73	0,085	0,22	0,08	0,09	0,03	0,18	0,08	0,12	0,09
P_2O_5	0,067	0,078	0,12	0,124	0,13	0,08	0,11	0,09	0,23	0,24	0,28	0,16	0,40
п. п. п.	не обн.	3,26	0,68	не обн.	1,58	0,38	0,30	0,20	2,82	4,34	1,20	2,53	не обн.
Сумма	99,95	99,82	99,84	99,72	99,84	99,9	99,79	99,72	99,88	99,72	99,88	99,97	100,07

Химические анализы железистых кварцитов (мас.%) Лебединского месторождения

Примечание: M-25/1 – эгириновый железистый кварцит; M-26 – куммингтонитовый железистый кварцит; M-29 – биотит-щелочноамфибол-карбонатный железистый кварцит; M-57 – актинолит-тремолитовый железистый кварцит; M-119 – тремолит-актинолитовый железистый кварцит; M-130 – карбонат-актинолит-куммингтонитовый кварцит; Л-К-1 – железистый кварцит; M-28/2 – биотит-актинолитовый железистый кварцит; M-52 – карбонатсодержащий железистый кварцит; M-127/2 – актинолит-карбонатный железистый кварцит; M-32 – биотит-актинолит-карбонатный железистый кварцит; M-120/1 – карбонат-тремолит-щелочноамфиболовый железистый кварцит; M-132 – карбонат-щелочноамфиболовый железистый кварцит. Анализы выполнены в лаборатории ИМГРЭ карбонаты, гематит. Размер зерен магнетита 0,03–0,08 мм, иногда до 0,2 мм, размер агрегатов его 0,15–0,5 мм. Щелочные амфиболы представлены голубовато-синим родуситом, развивающимся за счет амфибола актинолит-тремолитового ряда, и темно-синим рибекитом, развивающимся за счет куммингтонита. Эгирин обычно ассоциирует со щелочными амфиболами, иногда развивается обособленно, корродируя или полностью замещая зерна кварца. Природа щелочей представляется двоякой: сингенетической с последующим их перераспределением и эпигенетической, обеспечивающей в железистых кварцитах явления щелочного метасоматоза [1, 3, 12, 7].

Слаборудные кварциты в отличие от описанных выше рудных кварцитов содержат небольшое количество магнетита (менее 12–16 % объема). Они обычно широкополосчатые, рудные магнетитовые слойки имеют подчиненное значение среди кварцевых и силикатно-кварцевых слойков мощностью до 2 см и иногда более. Главными минералами их являются кварц, куммингтонит, иногда биотит; второстепенными – магнетит, карбонаты, иногда роговая обманка; акцессорными – апатит, турмалин, гранат. Слаборудные кварциты, как правило, обогащены сульфидами.

Среди пачки слаборудных кварцитов в основании верхней железорудной подсвиты присутствуют прослои и линзы мощностью от нескольких сантиметров до 14 м магнетит-сульфидно-карбонатной породы, получившей название лебединита. Порода эта имеет нечетко выраженную слоистую текстуру. Главные породообразующие минералы – железистый карбонат ряда пистомезит-сидероплезита, пирит, магнетит, второстепенные – пирротин, биотит, хлорит, куммингтонит, плагиоклаз, халькопирит.

Особенности химсостава железистых кварцитов (табл.1) отражают разнообразие их минеральных типов.

Разнотипные по составу железорудные породы помимо магнетита и гематита в различных количествах содержат пирит, в меньшей мере пирротин и другие рудные минералы (табл. 2).

Таблица 2

Распределение сульфидов (об.%) в разнотипных железистых кварцитах и сопутствующих породах Лебединского месторождения

n	Сумма рудных минералов (в аншлифах)	Магнетит	Гематит	Сумма сульфидов	Пирит	Пирротин	Другие рудные минералы				
		I	Магнети	товые квари	циты	I					
1 (1)	37	37		0							
2 (1)	25,2	21	4	0,2	ед.		ср до 0,2				
2 (5)	<u>32-43</u>	<u>30-43</u>	<u>0-5</u>	0.07	0.04		+ ma_ on				
3 (3)	39,2	37,2	2	0-ед.	0-ед.		± ma, cp				
Железнослюдково-магнетитовые кварциты											
4(2)	<u>32-56</u>	<u>21-33</u>	<u>11-23</u>	<u>0-0,2</u>	0-0.1	0-0.1	+cn				
4(2)	44	27	17	0,1	0-0,1	0-0,1	±cp				
5 (7)	<u>42-72</u>	<u>20-60</u>	<u>12-45</u>	0-ел	0-ел		+ cn				
5(1)	59,6	39,6	20	о с д.	о сд.		= •p				
6 (4)	<u>42-52</u>	<u>7-42</u>	<u>10-36</u>	<u>0-0,5</u>	<u>0-0,5</u>	0-ел.					
- (1)	46,5	28,2	18,2	0,1	0,1						
7 (1)	61,5	26	34	1,5		0,1	ср до1,4				
Силикатно-магнетитовые кварциты											
8 (2)	42-48	<u>38-42</u>	<u>0-9</u>	<u>0,2-0,4</u>	<u>0-0,3</u>		± ср до0,2				
	45	40	4,5	0,3	0,2	0105	1 ,				
9 (2)	<u>40-44</u>	26-36		<u>6-16</u>	<u>5,5-16</u>	0,1-0,5	± ср до 0,3				
	42	31		11	10,7	0,3					
10 (3)	<u>42-52</u> 45 1	<u>37-52</u>	<u>ед-5</u> 2	0-0,2	0-0,2	0-ед.	$\pm cp$				
	45,1	42	3	0,1	0,1	0.0.2					
11 (3)	$\frac{11-30}{21.5}$	$\frac{10-37}{21.1}$		0.4	0.2	$\frac{0-0.5}{0.2}$	cp, ± ma				
	29.49	26.47		0,4	0,2	0,2					
12 (3)	33.7	$\frac{20-47}{33.2}$		0,1-1	0.3	$\frac{0-0,3}{0,2}$	ma, \pm cp				
	38_72	6-35		31-38	31_36.5	0,2					
13 (2)	55	20.5		34.5	33.8	0.3	cp 0,4				
	40-68	35-65		ел-4	ел-4	0,02					
14 (3)	52.8	50.7		2.1	2	0.1	cp, ± ma				
	52,0	50,7		ел-0.3	ел-0.3	0,1					
15 (2)	58	57,8		0,2	0,2	0-ед	ср				
16(0)	36,6-37,3	36-37		0,3-0,6	ед-0,3	0-0,3					
16 (2)	37	36,5		0,4	0,2	0,2	± cp				
17 (2)	<u>32-38</u>	22-28	0.07	10	9-9,5	ед-1					
17(2)	35	25	0-ед	10	9,3	0,5	\pm ma, \pm cp do 0,3				

Окончание таблицы 2

n	Сумма рудных минералов (в аншлифах)	Магнетит	Гематит	Сумма сульфидов	Пирит	Пирротин	Другие рудные минералы
		Сили	катно-ма	гнетитовые	кварциты		
18 (3)	$\frac{42-47}{43,7}$	<u>42-47</u> 43,7	0-ед	ед-0,1	ед-0,1	Ед	± ma, cp
19 (2)	<u>38-48</u> 43	<u>22-36</u> 29		<u>2-26</u> 14	1 <u>,9-26</u> 14	ед-0,1	cp, ± ma
20 (1)	22,5	22		0,5	ед	ед	cp 0,5
21 (2)	$\frac{18-42}{30}$	<u>11-24</u> 17,5	Ед	<u>7-18</u> 12,5	<u>7-17,5</u> 12,3	<u>0,1-0,5</u> 0,2	ма, lmn, ±cp,ilm
	•	Малор	удные и	безрудные	кварциты	•	•
22 (4)	<u>2-30</u> 13,2	<u>1,5-30</u> 12,8		<u>0,2-0,8</u> 0,4	$\frac{0-0,2}{0,1}$	<u>ед-0,8</u> 0,3	± ma, cp
23 (2)	$\frac{30-50}{40}$			<u>30-50</u> 40	<u>22,5-48</u> 35,2	<u>0,8-1,3</u> 1	± ср до 0,7; ma-6,7
24 (3)	$\frac{38-52}{45,2}$	<u>13-52</u> 37	<u>0-24</u> 8	<u>ед-0,5</u> 0,2	<u>ед-0,3</u> 0,1	<u>ед-0,3</u> 0,1	± ma, cp
25 (3)	$\frac{16-28}{22}$	<u>8-26</u> 17,3	$\frac{0-1}{0,3}$	$\frac{2-8}{4,4}$	$\frac{0-7,5}{2,6}$	<u>0,2-3</u> 1,2	ср (до1); ± ma (до 0,4); (± lmn)
26 (7)	<u>30-88</u> 57,3	<u>8-29</u> 18,9	$\frac{0-4}{0,7}$	<u>9-77</u> 37,7	<u>7-74,5</u> 35,9	<u>ед-2,5</u> 1,5	ma (до 1); ± ср (до 0,6); ± lmn
27 (3)	$\frac{1,5-2}{1,7}$	<u>0,1-1</u> 0,6		<u>0,5-1,4</u> 1,1	<u>ед-0,4</u> 0,2	<u>0,4-1,4</u> 0,9	ср
				Сланцы			
28 (11)	<u>3,5-72</u> 27,5	$\frac{0-1,5}{0,5}$		<u>3-71</u> 27	<u>0-67,5</u> 23,9	<u>ед7,3</u> 2,8	± cp (до 1,5), ma ± ilm, rt
29 (5)	<u>38-58</u> 48,5	<u>8-43</u> 23,6	<u>0-9</u> 1,9	<u>ед-50</u> 23	$\frac{0-48}{22,2}$	<u>ед-1,6</u> 0,5	± ср, та (до 1,8)
			Лебедини	ты, катакла	13ИТЫ		
30 (2)	<u>52-58</u> 54,5	<u>9-16</u> 12,5		$\frac{41-43}{42}$	<u>39,5-41,5</u> 40,5	$\frac{1-1,5}{1,3}$	ma, ± ср (до0,5)
31 (2)	38-61 49,5	36-42 39	0-1 0,5	1,5-18,5 10	1,3-17 9,2	0,4-1,2 0,8	± cp, ma, lmn

Примечание: Минеральные типы руд и пород: магнетитовые кварциты: 1- магнетитовые кварциты биотитсодержащие; 2 – малосиликатные щелочноамфиболовые; 3 – карбонат-магнетитовые актинолит и биотитсодержащие; железнослюдковые кварциты: 4 – железнослюдково-магнетитовые эгиринсодержащие; 5 – железнослюдково-щелочноамфиболовые; 6 – железнослюдково-карбонатные с примесью щелочного амфибола, актинолита, биотита, эгирина; 7 – железнослюдково-карбонатные щелочноамфиболсодержащие, зона катаклаза; силикатно-магнетитовые кварциты: 8 – щелочноамфиболовые; 9 – щелочноамфиболовые сульфидизированные; 10 – карбонат-щелочноамфиболовые; 11 – куммингтонитовые с примесью карбоната и актинолита; 12 – актинолитовые; 13 – актинолитовые сульфидизированные; 14 – биотит-актинолитовые куммингтонитсодержащие; 15 – биотит-актинолитовые сульфидизированные; биотитовые актинолитсодержащие; 16 – карбонат-актинолитовые биотитсодержащие; 17 – карбонат-актинолитовые сульфидизированные; 18 – биотит-актинолит-карбонатные; 19 – актинолит-карбонатные сульфидизированные; 20 – эгиринсодержащие кварциты; 21 – эгиринсодержащие кварциты сульфидизированные; малорудные и безрудные кварциты: 22 – безрудные и малорудные куммингтонитовые, биотит-куммингтонитовые с рудными слойками; 23 – безрудные биотитовые сульфидизированные; 24 – безрудные и малорудные с рудными слойками; 25 – безрудные и малорудные с рудными слойками, послойной сульфидизацией, кварцевыми прожилками; 26 – безрудные и малорудные с рудными слойками, сульфидизированные; 27 – малорудные, безрудные; сланцы: 28 – сланцы (преимущественно биотитовые), кварцито-сланцы; 29 – сланцы, кварцито-сланцы с рудными прослоями; лебединиты, катаклазиты: 30 – лебединиты; 31 – катаклазиты.

В скобках – количество аншлифов и шлифов, в числителе – пределы колебания содержаний рудных минералов в аншлифах, в знаменателе – среднее их содержание, ед. – единичные зерна, ср – халькопирит, та – марказит, lmn – гидроокислы железа, ilm – ильменит, rt – рутил.

Рис. 4. Послойные выделения сульфидов (белое) в замке микроскладки тонкополосчатых куммингтонит-магнетитовых кварцитов

В целом наиболее обогащены ими отдельные разновидности малорудных, безрудных кварцитов и силикатно-магнетитовых кварцитов, в которых пирит и пирротин (иногда в ассоциации с другими рудными минералами того же класса) образуют послойные выделения (рис.4.) или более сложные по составу разномасштабные метасоматические жилы и прожилки (рис. 5).

Особенности распределения и формы нахождения платиноидов и золота в железистых кварцитах

Сведения о благороднометалльной минерализации в железистых кварцитах и породах курской серии Старооскольского рудного района крайне ограничены [2, 3, 10] и касаются в основном золоторудных проявлений, развитых в Западном (Панковское, Южно-Коробковское рудопроявления) и Восточном (Западно-Лебединское, Южно-Лебединское, Лебединское, Стойленское, Крамское, Лукьяновское и др.) блоках и представленных двумя типами: а) значительными по протяженности (от 650 до 2200 м) и мощности (от 26 до 45 м) зонами сульфидизации с густовкрапленными и прожилковыми выделениями преимущественно пирита (до 30 %) со средним содержанием Au = 0.3 г/т и по единичным пробам – 10,9 г/т; б) менее протяженными (до 100 м) и мощными (2,6-10,7 м) зонами брекчирования и объемного катаклаза железистых кварцитов с кварцевыми и кварц-сульфидными жилами, содержащими до 2,94-4,14 г/т, иногда до 32,3 г/т золота.

Зоны сульфидной (пирротин-пиритовой) минерализации в железистых кварцитах отчетливо фиксируются линейными аномалиями низких сопротивлений (до 200–50 Ом/м). По данным ВЭЗ, аномалии чаще конформны пластам железорудных толщ коробковской свиты, реже оси низкоомных аномалий являются секущими по отношению к слоистым толщам железистых кварцитов и сланцев курской серии (рис. 6). Эти участки, часто включающие благороднометалльные проявления, характеризуются наложенным окварцеванием, более интенсивными метасоматическими изменениями железистых кварцитов в зонах их повышенной трещиноватости и брекчевания.

Рис. 5. Актинолит-кварц-сульфидная жила в силикатномагнетитовом кварците

В пределах Лебединского месторождения широкое развитие имеют различные по протяженности (от 250–300 м до 1500–2100 м) и мощности (от 1–2 до 50 м, в отдельных случаях до 150 м) зоны повышенной сульфидизации, которыми связывается вероятность установления наиболее высоких концентраций благородных металлов. Эти зоны сульфидной минерализации отчетливо фиксируются при геолого-минералогическом картировании и данными о распределении серы в различных промышленных типах железистых кварцитов.

Примером благороднометалльного оруденения второго типа в рамках Лебединского железорудного месторождения могут служить золоторудные концентрации, расположенные в зоне тектонического контакта стойленской и коробковской свит. Повышенные содержания золота (до 3,75–32,3 г/т) отмечены в хлорит-кварцевых сланцах с прожилками кварца и сульфидов (пирит, халькопирит, пирротин, галенит, сфалерит, арсенопирит, борнит, марказит), а также в будинированных хлорит-, гранат-, биотит-, амфиболсодержащих кварц-сульфидных жилах мощностью до 0,2 м. Зоны подобного типа подчеркнуты, как правило, дайками карбонат-биотитовых пород, окварцеванием и сульфидизацией [10].

Новые аналитические данные (табл. 3) позволили установить повышенные содержания ЭПГ в интенсивно сульфидизированных породах (лебединитах)- (Pt + Pd = 0,26–4,3 г/т; Pt/Pd = 0,2–0,86; Au = 0,1–0,19 г/т), менее значимые – в сульфидсодержащих карбонат-кварцевых, силикатно-кварцевых, эгириновых жилах и прожилках (Pt + Pd до 0,61 г/т; Pt/Pd среднее 4,3; Au до 0,22 г/т), а также в эгиринизированных и сульфидизированных железистых кварцитах (Pt + Pd = 0,12 г/т; Pt/Pd = 24; Au = 0,37 г/т).

В целом, характер распределения благородных металлов, их концентрации и Pt-Pd отношение определяются, прежде всего, содержанием сульфидов, доля которых, как отмечалось, в различных типах железистых кварцитов и в их измененных в результате неоднократно повторяющихся метаморфогенно-метасоматических и гидротермально-метасоматических процессов разностях и новообразованиях неодинакова (см. табл. 3).

Рис. 6. Схема золото-платинометалльных рудопроявлений в Оскольском железорудном районе КМА (по [10]):

1 – обоянский плутоно-метаморфический комплекс (AR₂ob): плагиогнейсы-гнейсы интенсивно мигматизированные;
2 – михайловская свита нерасчлененная (AR₂mh): эффузивы основного, среднего состава, сланцы, метапесчаники, кварциты, метакоматииты (?), часто мигматизированные;
3 – стойленская свита (K₁st): сланцы различного состава, метаалевролиты, метапесчаники, кварциты, конгломераты кварцевые олигомиктовые;
4 – коробковская свита (K₁kr): железистые кварциты, сланцы;

5 – роговская свита (K₁rg): карбонатные, карбонатно-терригенные сланцы, в основании – конгломераты с обломками железистых кварцитов; 6 – тимская свита, нижняя подсвита (K₁tm₁): углеродистые терригенно-карбонатные сланцы (1); ортосланцы по ультраосновным, основным и средним эффузивам (2); 7 – атаманский комплекс (εγAR₂a): граниты умеренно-щелочные плагиоклаз-микроклиновые, биотитовые, биотит-амфиболовые;

8 – стойло-николаевский комплекс (уб,бК,sn,): гранодиориты, диориты;

 9 – малиновский комплекс (гүК₂ml): существенно калиевые, умеренно-щелочные, биотитовые, порфировидные пегматоидные; 10 – разрывные нарушения; 11 – оси аномалий проводимости (низких сопротивлений по методу ВЭЗ) менее 200 Ом/м; 12 – участки рудопроявлений золота и платиноидов:

1 – Панковский; 2 – Коробковский; 3 – Лебединский; 4 – Стойленский

Существенную роль на распределение, степень концентрирования и формы нахождения золота и платиноидов оказывает место сульфидных парагенезисов в общем длительном процессе формирования благороднометалльного оруденения в высокожелезистых рудообразующих системах.

С этим процессом связано и многообразие форм проявления преобладающих среди железистых кварцитов сульфидов – пирита и пирротина и сложные их взаимоотношения с оксидами (магнетитом, гематитом) и силикатами. Выделено четыре последовательно сформировавшихся морфотипа пирита: а) послойно расположенные мелкие ксеноморфные зерна, окаймленные магнетитом и имеющие ограниченное распространение (пирит 1); б) ксеноморфные зерна с многочисленными включениями магнетита (пирит 2); в) широко развитые вкрапленные, пятнистые, линзовидные и петельчатые разноразмерные обособления с многочисленными включениями нерудных минералов, пирита 2, пирротина, халькопирита, магнетита и иногда срастаниями с марказитом, халькопиритом, арсенопиритом-(пирит3); г) кристаллические агрегаты и индивиды в составе поздних сульфидно-кварцевых, сульфидно-кварцевокарбонатных и сульфидно-силикатно-кварцевых жил и прожилков (пирит 4). Более ограниченно развитый пирротин представлен тремя отчетливо выраженными морфотипами: а) дисперсными включениями в магнетите (пирротин 1); б) ксеноморфными и гипидиоморфными зернами в малорудных и безрудных кварцитах, сланцах и метасоматитах; иногда сростками с халькопиритом, пиритом, марказитом и магнетитом (пирротин 2); в) незакономерно распределенными включениями в пирите третьего типа (пирротин 3) – (рис. 7, 8, 9). Второстепенными рудными минералами зон сульфидизации являются халькопирит и марказит. Помимо галенита, арсенопирита и борнита, выявленных ранее на месторождении, впервые обнаружен ряд новых ми-

Таблица 3

№п/п	1	2	3	4	5	6	7	8	12	9	10	11	13
№ пробы	MT-7	M 18/3	M 27/2	М 105 Э	M 104	M 125	M 15/2- M 17/2	M 105	M 3/2	M 131	M 127/4	M 127	M 101
Pt	0,12	0,8	0,07	0,11	0,22	0,38	0,05	0,12	0,04	0,02	0,03	0,01	0,03
Pd	0,14	3,5	0,31	0,5	0,07	0,1	<0,005	< 0,005	<0,005	0,04	0,08	0,13	0,06
Sum ЭПГ	0,26	4,3	0,38	0,61	0,29	0,48	0,05	0,12	0,04	0,06	0,11	0,14	0,09
Au	0,1	0,19	0,1	0,22	0,04	0,04	0,12	0,37	0,19	0,13	0,04	0,05	0,05
Sum ЭПГ и Au	0.36	4.49	0.48	0.83	0.33	0.52	0.17	0.49	0.23	0.19	0.15	0.19	0.14
Pt/Pd	0,86	0,23	0,23	0,22	3,14	3,80	10,00	24,00	8,00	0,50	0,38	0,08	0,50

Содержание Pt, Pd и Au в различных типах железистых кварцитов и сопутствующих им породах Лебединского месторождения

Примечание: Название пород: 1–3 – лебединит; 4 – жила крупнокристаллического эгиринина с сульфидами из магнетитовых кварцитов; 5 – сульфиды из секущих жил в магнетит-куммингтонитовом кварците; 6 – карбонат-кварцевая сульфидсодержащая жилка в магнетитовом кварците; 7 – жила кварц-полевошпатовая с сульфидами в сланцах (объединенная проба); 8 – эгиринизированный магнетитовый кварцит с сульфидами; 9 – диоритовый порфирит жильный; 10 – биотитовый магнетитовый кварцит пиритизированный; 11 – малорудный кварцит с сульфидами; 12 – малорудный биотитовый кварцит; 13 – сланец сульфидизированный. Анализы выполнены в лаборатории ИГЕМ РАН, метод количественный спектрохимический, аналитик Белоусов Г.Е.

Рис. 7. Кайма магнетита (Mgt) вокруг зерен пирита 1 (Ру). Увел. 200^x

Рис. 8. Пирит 2 (белое) с обильными включениями магнетита (светло-серое). Увел. 130^x

Рис. 9. Ксеноморфные зерна пирротина 2 (Ро) среди нерудных минералов. Увел. 115^x

нералов и изучен их состав (золото самородное, блеклые руды, теллуриды висмута).

При ограниченном (по сравнению с Михайловским месторождением [7, 9, 10]) развитии собственных минеральных фаз благородных металлов в железистых кварцитах (золото самородное пробностью 750-770 с примесью Pt = 0,15-0,40 вес. % - табл. 4), значительные концентрации ЭПГ и Аи установлены в сульфидах и их аналогах (табл. 4, 5, 6) – пирите (Pd = 0,01-0,10 вес. %, Pt = 0.02-0.38 %; Au = 0.02-0.62 %), пирротине (Pd = 0.01-0.12 Bec. %, Pt = 0.01-0.44 %; Au = 0.09-0.51 %), халькопирите (Pd = 0.01–0.11 вес. %, Pt = 0.07–0.39%; Au = 0,02-0,27 %), галените (Pd до 0,43 вес. %, Pt = 0,31-0,37 %; Au = 0,06-0,22 %), теллуриде висмута (Pt = 1,28 вес. %; Au = 0,27 %), а также в борните (Pd до 0,14 вес. %), теннантите (Pd = 0.08 вес. %) и арсенопирите (Pt = 0,18 вес. %). Анализ распределения благородных металлов выявляет наиболее высокие концентрации ЭПГ и Аи в пирите-3 и пирротине 1-3 зон сульфидной минерализации (табл. 5, 6).

Таблица 4

Химический состав благороднометалльносодержащих минералов в железистых кварцитах,
метасоматитах и рудовмещающих породах Лебединского месторождения

Элементы	Золото само- родное	Теллурид Ві	Халькопирит	Борнит	Галенит	Блеклая руда	Арсенопирит
n*	n = 2	n = 1	n = 7	n = 2	n = 4	n = 1	n = 1
S	<u>0,08-0,11</u> 0,10	1,65	<u>31,96-33,08</u> 32,68	<u>25,29-28,28</u> 26,79	<u>13,37-13,88</u> 13,52	25,72	19,89
Fe	<u>1,09-1,33</u> 1,21	0,56	<u>30,24-33,27</u> 31,32	<u>11,35-15,34</u> 13,35	<u>0,07-0,98</u> 0,64	2,38	33,72
Со		0,04	<u>0-0,06</u> 0,03	<u>0-0,02</u> 0,01	<u>0-012</u> 0,03		0,59
Ni	<u>0-0,05</u> 0,03	0,04	<u>0-0,04</u> 0,02		<u>0-0,03</u> 0,01		0,04
Cu			<u>31,68-34,35</u> 33,63	<u>51,4-60,11</u> 55,76	<u>0-0,08</u> 0,03	42,98	0,03
As		1,98	<u>0-0,04</u> 0,01	<u>0,01-1,18</u> 0,60		12,61	40,83
Pd	<u>0,01-0,15</u> 0,08		$\frac{0-0,11}{0,02}$	<u>0,01-0,14</u> 0,08	<u>0-0,43</u> 0,13	0,08	0
Ag	<u>21,44-22,55</u> 22,00	0,03	$\frac{0-0,08}{0,02}$	<u>0-0,06</u> 0,03	$\frac{0-0,42}{0,16}$	0,01	0
Sb	<u>0-0,03</u> 0,02	0,27	<u>0-0,01</u> 0,00	<u>0,04-1,3</u> 0,67	<u>0-0,01</u> 0,00	7,13	0
Те	0,07-0,08 0,08	29,74	$\frac{0-0,04}{0,02}$	<u>0-0,01</u> 0,01	<u>0,18-0,29</u> 0,22	0,01	0,07
Pt	$\frac{0-0,41}{0,21}$	1,28	<u>0-0,39</u> 0,18		<u>0-0,32</u> 0,21		0,18
Au	74,58-77,21 75,90	0,27	<u>0-0,27</u> 0,04		<u>0-0,22</u> 0,10		0
Pb		5,24			84,89-88,24 86,12		
Bi	<u>0-0,11</u> 0,06	58,92	0,08-0,13 0,10	0,2-0,24 0,22	0,51-0,99 0,70	0,14	0,02

Примечание: в числителе – пределы колебания содержаний элементов (в вес. %), в знаменателе – их среднее содержание; п – количество анализов. Анализы выполнены на микрозонде Camebax-100, аналитик Л.Н. Кононкова (ГЕОХИ РАН).

Таблица 5

Распределение благородных металлов и других элементов-примесей (вес. %) в пиритах Лебединского железорудного месторождения

№ обр.	S	Fe	Co	Ni	Cu	As	Ag	Te	Pt	Pd	Au	Другие элементы	Сумма
	Пирит 1												
T 105/1	50,09	47,53	-	-	0,04	0,16	0,02	-	-	-	0,05	0,13	98,02
	Пирит 2												
ХV 12в	50,03	47,87	0,04	0,09	0,03	0,08	-	0,01	-	0,05	0,03	0,17	98,42
	Пирит 3												
M 7/4	52,47	46,49	0,09	0,02	0,05	0,06	-	0,01	0,14	0,01	-	0,19	99,53
M 7/4	51,48	47,17	0,05	0,03	-	-	-	0,01	0,14	-	0,13	0,09	99,12
M 113	49,4	47,85	0,03	0,03	0,11	0,2	-	0,03	0,03	0,09	-	0,18	97,94
M 113	49,32	48,04	0,09	-	0,03	-	-	0,04	0,22	-	0,07	0,25	98,07
M 113	50,24	47,51	0,01	0,01	0,02	-	0,07	-	-	0,01	0,62	0,24	98,73
M 113	49,95	48,31	-	0,05	-	-	-	0,01	-	0,02	-	0,17	98,51

Окончание таблицы 5

M 113	50,23	48,12	0,02	0,01	0,08	0,19	0,03	0,03	0,38	0,10	-	0,12	99,31
M 12	50,71	47,3	0,04	0,05	0,06	0,11	0,03	-	-	-	0,01	0,27	98,56
М 104б	50,2	48,94	0,09	0,02	-	0,2	-	0,04	0,11	-	-	0,24	99,86
46 п. шл.	50,93	49,02	0,04	-	0,02	-	0,05	0,08	-	0,03	0,05	0,15	100,37
46 п. шл.	51,31	48,75	0,01	0,07	0,06	0,04	-	0,03	-	0,03	-	0,20	100,5
М 127 э п.ш.	50,92	48,68	0,05	-	0,04	-	-	-	-	0,10	0,61	0,18	100,59
Т бб	50,46	47,63	0,06	-	0,02	-	-	-	0,31	0,02	0,32	0,18	99,01
T 105/1	50,07	48,08	0,1	-	-	0,1	0,05	-	0,23	-	0,31	0,20	99,14
M 16a	50,1	48,05	0,03	-	0,02	0,06	-	0,04	-	0,05	-	0,15	98,5
M 17/2	49,72	48,3	0,06	0,16	0,03	0,08	-	0,02	0,33	0,03	-	0,24	98,98
M 17/2	49,56	47,93	0,07	-	0,03	0,13	0,09	0,05	0,15	-	-	0,18	98,19
ХV 12в	50,1	47,61	0,01	0,02	0,06	0,07	-	0,06	0,22	0,04	-	0,20	98,4
M 110	51,58	48,77	0,01	0,02	-	-	0,01	0,04	0,16	0,02	0,02	0,16	100,79
M 110	51,29	48,4	0,07	0,07	0,01	-	-	0,03	-	-	0,15	0,17	102,19
M 110	51,97	48,16	0,06	0,03	-	0,09	0,03	0,02	0,07	-	-	0,16	100,59
						Пири	ım 4						
T 15/2	50,02	47,7	0,06	0,1	-	0,24	-	0,02	-	0,04	-	0,20	98,37
XV 4a	49,75	47,67	-	_	-	0,03	0,05	0,01	0,06	-	0,05	0,17	97,79
M 125	48,5	48,17	0,08	_	0,07	-	0,03	0,05	-	0,04	0,07	0,16	97,18

Примечание: Анализы выполнены на микрозонде Camebax-100, аналитик Л.Н.Кононкова (ГЕОХИ РАН).

Таблица 6

Распределение благородных металлов и других элементов-примесей (вес.%) в пирротинах Лебединского железорудного месторождения

№ обр.	S	Fe	Со	Ni	Cu	As	Pd	Ag	Те	Pt	Au	Другие элементы	сумма
	Пирротин 1												
M 12	36,00	62,12	0,09	0,10	0,12	0,28	-	-	0,01	0,34	0,23	0,16	99,45
M 110	37,97	62,06	0,05	-	-	-	0,02	-	0,10	-	-	0,13	100,33
T 105/1	36,34	62,12	-	0,01	-	-	0,05	0,06	-	-	0,15	0,13	98,86
XV-12	37,05	61,42	-	0,03	-	0,08	-	0,02	0,06	0,23	0,15	0,10	99,14
Пирротин 2													
XV-23a	36,33	62,05	0,03	0,04	0,04	-	0,01	-	0,02	0,32	0,51	0,14	99,49
XV-23a	36,85	60,95	0,10	0,08	-	0,06	-	0,02	0,03	0,15	0,57	0,18	99,99
M 3/2	36,06	61,48	0,06	0,04	0,10	0,07	0,06	0,05	0,05	0,31	-	0,09	98,37
M 7/2	37,00	59,79	0,03	0,15	-	0,22	0,09	0,08	0,05	-	-	0,10	97,51
M 144	37,05	60,53	0,03	0,08	0,04	0,20	-	-	0,06	0,36	0,41	0,15	98,91
M 144/3	37,24	61,33	0,08	0,09	0,09	-	-	-	0,03	-	0,32	0,16	99,34
М 127–э	37,38	60,73	0,08	0,10	-	-	-	0,11	-	0,07	0,15	0,13	98,74
T 105/1	37,22	60,83	-	0,04	-	-	-	0,01	-	0,44	0,27	0,12	98,92
XV-14/2	36,56	60,94	0,06	0,03	0,02	0,14	0,03	0,03	0,06	-	0,43	0,13	98,45
						Пирр	ротин 3						
M 110	37,69	61,32	0,01	-	0,03	0,22	-	-	0,04	-	0,09	0,22	99,62
T 105/1	35,15	59,60	0,02	-	2,96	0,08	0,04	0,01	0,03	0,11	0,08	0,17	98,26
XV-12	36,40	61,26	0,04	-	0,02	0,06	-	-	0,01	-	0,29	0,16	98,24
XV-15/2	37,56	60,35	0,01	-	-	0,02	-	0,03	0,02	-	0,37	0,18	98,56

Примечание: анализы выполнены на микрозонде Camebax-100, аналитик Л.Н.Кононкова (ГЕОХИ РАН).

Рис. 10. Расположение ЭПГ- и золотосодержащих пиритов на диаграмме Fe-S

Рис. 11. Расположение ЭПГ- и золотосодержащих пирротинов на диаграмме Fe-S

На диаграмме Fe-S пириты и пирротины, обогащенные ЭПГ и Au (>0,1–0,84 вес. %), располагаются в поле I, обедненные ими – в поле II (рис. 10, 11).

Выявленные в железистых кварцитах Лебединского месторождения проявления благороднометалльного оруденения, способные в совокупности создать от среднего до крупного по масштабам золотоплатинометалльные месторождения с разнообразными формами концентрации ЭПГ и Au (собственные минеральные фазы, высокие содержания в сульфидах и их аналогах), позволяют рассматривать их в качестве крупнообъемного источника потенциально-промышленных «россыпных» техногенных месторождений в накопленных и формирующихся хвостоотвалах и промпродуктах обогащения железных руд на предприятиях действующих ГОКов КМА.

Работы выполнены при финансовой поддержке РФФИ (грант № 04-05-6488), Университеты России (грант № 324-05), МПР РФ (Госконтракт № АТ-03-28/818).

ЛИТЕРАТУРА

1. Голивкин, Н.И. Железные руды КМА / Н.И. Голивкин, Н.Д. Кононов, В.П. Орлов и др.; под ред. В.П. Орлова, И.А. Шевырева, Н.А. Соколова. – М. : Геоинформмарк, 2001. – 616 с.

2. Додин, Д.А. Металлогения платиноидов крупных регионов России / Д.А. Додин, Н.М. Чернышов, О.И. Чередникова. – М. : Геоинформмарк, 2001. – 302 с.

3. *Лючкин, В.А.* Предпосылки промышленных месторождений золота на территории Курской магнитной аномалии / В.А. Лючкин, В.А. Казанцев // Вестник Воронеж. гос. ун-та. Сер. Геология. – 1997. – № 3. – С. 95–99.

4. *Чернышов, Н.М.* Гипербазиты КМА / Н.М. Чернышов, В.Л. Бочаров, С.М. Фролов. – Воронеж, 1981. – 252 с.

5. *Чернышов, Н.М.* Металлогеническое районирование Воронежского кристаллического массива в связи с его никеленосностью / Н.М. Чернышов // Геология рудных месторождений, 1990. – № 3. – С. 3–16.

6. Чернышов, Н.М. Металлогения раннего докембрия Воронежского кристаллического массива / Н.М. Чернышов // Вестн. Воронеж. гос. ун-та. Сер. Геология, 1996. –№ 1. – С. 5–20.

7. Чернышов, Н.М. Особенности распределения и формы нахождения благородных металлов в железистых кварцитах Михайловского месторождения КМА и их техногенных продуктах (Центральная Россия) / Н.М. Чернышов, С.В. Петров, С.П. Молотков // Вестник Воронеж. гос. ун-та. Сер. Геология. – 2003. – № 1. – С. 93–104.

8. Чернышов, Н.М. Минерально-сырьевой потенциал цветных и благородных металлов Центрально-Черноземного региона: Состояние и перспективы освоения / Н.М. Чернышов // Стратегия социально-экономического развития регионов : сб. ст. науч.-практ. конф. – Воронеж, 2002. – С. 38–46.

9. *Чернышов, Н.М.* Первые находки минеральных форм элементов платиновой группы в железистых кварцитах КМА

(Центральная Россия) / Н.М. Чернышов, В.М. Изоитко, С.В. Петров и др. // Доклады РАН. – 2003. – Т. 391. – № 1. – С. 104–107.

10. *Чернышов, Н.М.* Платиноносные формации Курско-Воронежского региона (Центральная Россия) / Н.М. Чернышов. – Воронеж : Изд-во Воронеж. гос. ун-та, 2004. – 448 с.

11. Шелехов, А.Н. Месторождения железистых кварцитов и продукты их передела – новый перспективный источник золото-платиносодержащего сырья в XXI в. (на примере Центральной России) / А.Н. Шелехов, В.А. Лючкин, Ю.С. Ляховкин // Платина России. – Т. III: в 2 кн. – М. : Геоинформмарк, 1999. – С. 289–294.

12. *Щеголев, И.Н.* Железорудные формации докембрия Курской магнитной аномалии и Украинского щита / И.Н. Щеголев // Геол. журн. – 1981. – Т. 41. – № 5. – С.41–49.

УДК 553.6.078

СТЕКОЛЬНЫЕ ПЕСКИ В АПТСКИХ ОТЛОЖЕНИЯХ МЕЖДУРЕЧЬЯ ДОН-ВЕДУГА

А.Д. Савко*, В.П. Михин**

*Воронежский государственный университет, **Воронежское рудоуправление

Рассматриваются особенности распространения, гранулометрия, минеральный, гранулометрический составы и генезис стекольных песков Богдановского и вскрыши Латненского месторождений. Образование кварцевых песков, ассоциирующихся с каолиновыми глинами, происходило за счет размыва и переотложения вещества кор выветривания.

Формирование песчаных пород апта происходило за счет переотложения зрелого материала из кор выветривания [1], что обусловило образование континентальных олигомиктовых россыпей кварцевых песков по терминологии [2]. Кварцевые пески в России и остальном мире широко используются для производства формовочных смесей в металлургической промышленности (до 50 %), в стекольном производстве (30–35 %), строительной, химической, керамической и других отраслях. В последнее время разработана технология получения оптического кварцевого сырья из россыпей особо чистого кварца [2]. Это сырье отнесено к четвертой группе по дефицитности и признано остродефицитным [3]. Наиболее полная характеристика по генезису кварцевых песков, песчаников и кварцитов бывшего СССР приведена в работе [4].

Во всем мире кварцевых песков сейчас добывается порядка 100–120, в США – 28,5, в России – 6 млн тонн в год. В СССР добыча была 30–40, в России – около десяти млн тонн в год. На мировых рынках кварцевый песок является дефицитным сырьем и стоит от 15 до 30 долларов США за тонну. В России в настоящее время имеется ряд месторождений. Основные из них расположены в Центральном и Северо-Западном районах Европейской части России. Большую часть продукции (64 %) дают Раменский и Ташлинский ГОКи, поставляющие ее на более чем 250 заводов России. Особый дефицит представляют качественные стекольные пески. До настоящего времени их месторождений в Центрально-Черноземном регионе не было.

1. Распространение, условия залегания и генезис

Стекольные пески аптских аллювиальных отложений залегают на разных уровнях разреза как в подглиняной, так и надглиняной толщах. Наиболее полно они вскрыты на участке Средний Латненского месторождения (рис. 1).

В подглиняной толще стекольные пески залегают среди грубозернистых песков в виде линз мощностью до 5,0 м и протяженностью до 500 м. Они представляют собой образования отмелей прирусловых валов с характерным чередованием косых и полого-горизонтальных серий. Качество песков довольно высокое, о чем свидетельствуют данные химических анализов: SiO₂ – от 98,8 до 99 %, Al₂O₃ – от 0,52 до 0,62 %, Fe₂O₃ – от 0,04 до 0,08 %, TiO₂ – от 0,07 до 0,13 %. Остаток на сите 0,8 мм колеблется от 0,23 до 2,47 %, проход через сито 0,1 мм составляет от 1,27 до 3,67 %.

Аналогичные по размерности и качеству пески могут находиться и в надглиняной толще. Однако