УДК 552.43 (470.323)

ФАЗОВЫЕ РАВНОВЕСИЯ И ФИЗИКО-ХИМИЧЕСКИЕ УСЛОВИЯ МЕТАМОРФИЗМА ПОРОД ЖЕЛЕЗИСТО-КРЕМНИСТОЙ ФОРМАЦИИ ПАНКОВСКОГО МЕСТОРОЖДЕНИЯ КУРСКОЙ МАГНИТНОЙ АНОМАЛИИ

К.А. Савко, М.В. Поскрякова, И.П. Лебедев

Воронежский государственный университет

Породы железистой формации Панковского железорудного месторождения КМА характеризуются преобладанием магнетит-карбонатных разностей, где широко распространены карбонаты сидерит-пистомезитовой и доломит-анкеритовой серий. Из слоистых силикатов присутствуют биотит, стильпномелан и шамозит. Грюнерит, наиболее обычный минерал среднетемпературных железистых формаций, встречается очень редко и только в породах без карбонатов. Широко распространен рибекит, реже эгирин. Карбонатные железистые породы содержат минеральный парагенезис Qtz+Mag+Dol++Sd+Rbk±Stp±Aeg±Bt+Shm, силикатно-магнетитовые Qtz+Mag+Gru±Bt±Grt±Hbl. Одновременное присутствие в железистых породах стильпномелана и грюнерита позволяет ограничить температурные условия метаморфизма интервалом 430-470 °C при давлениях 2-3 кбар. Метаморфические преобразования рибекитовых и эгириновых железистых кварцитов с Панковского месторождения происходили в условиях высокой активности натрия во флюиде, в интервале значений log[a(Na⁺)/a(H⁺)] = 5.0-6.5 при фугитивности кислорода близкой к гематит-магнетитовому буферу.

Введение

Полосчатые железисто-кремнистые формации известны на всех материках и являются обязательной составной частью метаморфических комплексов всех древних щитов. Общие запасы железа в них огромны. Впервые появившись в раннем архее, эти своеобразные породы, состоящие из закономерно переслаивающихся железистых и кремнистых прослоев, имели пик накопления в раннем протерозое, а затем практически исчезли. Судя по имеющимся данным, именно с этим переломным моментом связано интенсивное развитие первичных форм жизни, появление свободного кислорода в атмосфере и необратимое изменение гидросферы. Сочетание факторов, обусловивших массовое отложение чисто хемогенных железисто-кремнистых осадков, почти без примеси терригенного материала, больше никогда не повторялось.

Поэтому в течение многих лет железистые формации докембрия изучались большим количеством исследователей. Основные работы в этом направлении посвящены реконструкции обстановок седиментации и диагенеза железистых пород, их фациальному и формационному анализу, источникам вещества и т. д. Что касается метаморфизма железисто-кремнистых формаций докембрия Курской магнитной аномалии (КМА), то он изучен слабо. Для пород железисто-кремнистых формаций еще не разработана смена фаций и субфаций, как, например, для метапелитов, редки или вовсе отсутствуют примеры картирования метаморфической зональности в породах с такими специфическими парагенезисами. Попытки физико-химической интерпретации условий метаморфизма железистых формаций основаны на крайне ограниченном экспериментальном материале, особенно в низко- и среднетемпературной области, в них отсутствуют равновесия, используемые для термобарометрии.

По химическому составу и минеральным парагенезисам обычно выделяются 4 основных типа пород железисто-кремнистых формаций [1]: 1 кварц-магнетитовый (гематитовый) тип (иногда его еще называют итаберитовым), в котором присутствуют парагенезисы Qtz-Mag, Qtz-Hem и Qtz-Hem-Mag; 2 – кварц-карбонатный тип, где значительную роль играют карбонаты ферродоломит-анкеритовой и сидерит-пистомезитовой серий; 3 - кварц-силикатный, где преобладают кварц, железистые слоистые силикаты: гриналит, миннесотаит, хлориты (шамозит, клинохлор, рипидолит), слюды (биотит, стильпномелан, селадонит), а при увеличении степени метаморфизма - грюнерит, ортопироксен и фаялит; 4 – богатые марганцем железистые формации. Кроме того, встречаются железистые породы, содержащие рибекит и эгирин, широко распространенные в раннепротерозойской железистой формании КМА.

Таким образом, каждый тип железистых пород характеризуется различными минеральными парагенезисами и, следовательно, различной последовательностью их смены в результате проградного метаморфизма. Кроме того, на стабильность минеральных ассоциаций сильно влияют значения фугитивности кислорода, активности CO₂ и Na⁺ во флюиде.

При высокотемпературном метаморфизме (верхняя амфиболитовая и особенно гранулитовая фации) всех перечисленных типов (за исключением богатых марганцем) образуются магнетит-кварцфаялит-ортопироксеновые породы, которые называют эвлизитами.

Породы железистой формации Панковского железорудного месторождения [2] характеризуются преобладанием магнетит-карбонатных разностей, где широко распространены карбонаты сидеритпистомезитовой и доломит-анкеритовой серий. Из слоистых силикатов присутствуют биотит, стильп-

Рис. 1. Схематическая геологическая карта Оскольского железорудного района КМА (по "Железорудная база России" Ред. В.П.Орлов, 1998): 1 - мигматиты розовых гранитов; 2 - граниты биотитовые розовые средне- и крупнозернистые (атаманский комплекс); 3 - габбро-диориты, диориты, кварцевые диориты (стойлониколаевский комплекс); нижний протерозой: оскольская серия (PR₁os): 4 - сланцы с прослоями песчаников и мраморизованных доломитов, 5 - плагиограниты и их мигматиты (осколецкий комплекс); курская серия (PR₁ks): 6-7 – коробковская свита (PR₁kr): 6 - сланцы верхней и нижней сланцевой подсвиты, 7 - железистые кварциты, сланцы, 8 - стойленская свита (PR₁st) - кварцитопесчаники, слюдистые песчаники, гравелиты, конгломераты, сланцы мусковитовые, иногда углеродитстые; верхний архей - михайловская серия (AR₂mh): 9 - кварцевые порфиры и туфы, слюдяные сланцы, амфиболиты, амфиболовые сланцы и енейсы; нижний архей: 10 - плагиограниты и их мигматиты (салтыковский комплекс), 11 - серпентиниты; обоянская серия (Ar₁ob): 12 - плагиогнейсы роговообманковые, биотит-роговообманковые, биотитовые; 13 - месторождения: 1 - Коробковское, 2 - Лебединское, 3 - Стойло-Лебединское, 4 - Стойленское, 5 - Приоскольское, 6 - Салтыковское, 7 - Осколецкое, 8 – Панковское.

номелан и шамозит. Грюнерит, наиболее обычный минерал среднетемпературных железистых формаций, встречается очень редко и только в железистых породах без карбонатов. Весьма широко распространен рибекит, реже эгирин.

Цель настоящей статьи – проследить изменения фазовых равновесий и реконструировать физико-химические условия метаморфизма железистых кварцитов из Панковского железорудного месторождения.

Геологическая обстановка

Нами были изучены породы железистокремнистой формации Панковского железорудного месторождения с ресурсами богатых руд (Fe=50.82 %) по категории P_1 20,3 млн. т и P_2 1930 млн. т [2], которое находится в пределах Старооскольского рудного района на юго-восточном замыкании Тим-Ястребовской рифтогенной структуры в 8 км к северо-западу от разрабатываемого подземным способом Коробковского месторождения железистых кварцитов (рис. 1).

На Панковском месторождении продуктивная толща представлена железистыми кварцитами коробковской свиты курской серии раннего протерозоя, которая образует крутопадающую (70-85°) рудную зону протяженностью 12 км при ширине 0,5-1,5 км северо-западного и субширотного простирания (рис. 2). Подстилается рудная толща кварцевыми и полевошпат-кварцевыми песчаниками, кварцсерицитовыми сланцами стойленской свиты курской серии мощностью 200-400 м. В разрезе коробковской свиты курской серии выделяются верхняя и нижняя железорудные толщи, разделяемые горизонтом преимущественно углеродистых кварц-биотит-серицитовых, кварц-биотитовых сланцев и метапесчаников мощностью от 60 до 600 м. Верхняя железорудная толща мощностью 360-500 м в центральной части месторождения сложена карбонатно-магнетитовыми и гематит-магнетитовыми кварцитами часто с рибекитом. Перекрывается она кварц-биотитовыми, гранат-биотитовыми и амфибол-гранат-биотитовыми сланцами верхней сланцевой подсвиты коробковской свиты. Нижняя железорудная толща мощностью 100-180 м сложена силикатно-магнетитовыми и карбонатно-магнетитовыми кварцитами.

Докембрийские образования полностью перекрыты фанерозойским осадочным чехлом мощностью 72-216 м.

Петрография и химический состав железистых кварцитов

Образования коробковской свиты на Панковском участке представлены серыми и зеленоватосерыми тонко- и среднезернистыми железистыми кварцитами тонко- и среднеполосчатой текстуры, обусловленной чередованием рудных (магнетитовых и гематитовых) и безрудных (кварцевых, карбонатных или силикатных) прослоев. Преобладающая мощность рудных слойков 2-4 мм, нерудных обычно меньше. Среди прослоев встречаются: а) кварцевые с магнетитом, карбонатом, иногда с гематитом (скв. 6104, 6105), б) гематитовые с кварцем, в

Рис. 2. Схема рудной залежи Панковского месторождения [2]: 1 - песчаники, 2 - сланцы подрудные, 3 - сланцы внутрирудные, 4 - сланцы надрудные, 5 - нижняя железорудная толща, 6 - верхняя железорудная толща, 7 – мигматизированные гнейсы, 8 - скважина и ее номер.

Таблица 1

			Нижняя ж	елезорудна	я толща		Верхняя	железорудна	ая толща
Основные м	мине-	Mag	Ank-Mag	Aeg-Mag	Rbk-Mag	Mag-Hem	Mag-Hem	Mag-Hem	Rbk-Mag
ралы									
Обр.		6106/212	6107/331	6105/460	6108/202	6101/403	6116/280	6129/368	6129/380
SiO ₂		60.92	30.92	50,18	29,62	26,48	37,76	43,68	33,52
TiO ₂		0.46	0.24	0,34	0,34	0,44	0,40	0,50	0,45
Al_2O_3		0.30	0.43	0,96	0,37	0,90	0,92	2,04	1,17
Fe ₂ O ₃		17.25	26.90	19,11	20,30	43,44	43,53	30,42	36,96
FeO		11.52	25.03	17,82	17,10	20,89	9,36	14,58	10,08
MnO		0.07	0.09	0,18	0,05	0,07	0,08	0,06	0,06
MgO		2.30	3.83	2,30	7,28	1,06	3,06	3,83	3,64
CaO		2.66	1.60	2,13	5,87	4,60	1,86	2,13	5,33
Na ₂ O		0.20	0.40	0,80	3,20	0,70	0,80	0,40	0,60
K ₂ O		0.10	0.10	0,20	0,20	0,20	0,30	0,90	0,80
П.п.п.		2.88	8.74	4,95	14,33	-	0,90	-	0,73
S _{общ.}		0.43	0.72	0,38	0,34	0,29	0,31	0,63	5,74
H ₂ O		0.07	0.09	0,18	0,05	0,06	-	0,05	0,06
P_2O_5		0.30	0.22	0,24	0,29	0,57	0,16	0,40	0,60
Сумма		99.46	99.31	99,77	99,34	99,70	99,52	99,62	99,74
ΣFe		21.02	38.27	27.22	27.49	46.62	37.73	32.61	33.69
$Fe^{3+}/(Fe^{3+}+F$	Fe^{2+})	0.57	0.49	0.49	0.52	0.65	0.81	0.65	0.77

Химические составы железистых кварцитов Панковского железорудного месторождения

которых также присутствуют магнетит и карбонаты (скв. 6103, 6107), в) силикатные (амфибол, биотит) в ассоциации с гематитом или магнетитом (скв. 6107, 6108, , 6116, 6127) и г) магнетитовые с присутствием кварца, карбонатов и силикатов (эгирин, рибекит, грюнерит) (скв. 6101, 6106, 6116, 6108, 6127).

Минеральный состав пород железистой формации Панковского железорудного месторождения определяется петрохимическими особенностями и физико-химическими условиями метаморфизма. Химический состав отдельных образцов зависит от относительных количеств присутствующих минералов. В целом химические составы железистых кварцитов Панковского месторождения, приведенные в табл. 1, отвечают средним составам железистых кварцитов из известных железорудных бассейнов [3], но отличаются от железистых кварцитов Михайловского месторождения [4] более высоким содержанием Al₂O₃, CaO, но меньшими значениями отношения Fe³⁺/(Fe³⁺+Fe²⁺) при пониженном общем содержании железа. В сводке по химическим составам пород пяти раннепротерозойских железистых формаций [3] средние значения Fe³⁺/(Fe³⁺+Fe²⁺) нигде не превышают 0,5 и изменяются от 0,31 в железистой формации Марра Мамба (Зап. Австралия) до

№№ образца	Минеральный парагенезис
6101/5	Otz+Mag+Gru+Grt+Bt*
6101/10	Qtz+Mag+Gru+Hb+Grt**
6101/13	Otz+Mag+Gru+Bt
6105/28	Qtz+Mag+Dol+Sid+Aeg+Rbk
6106/179	Qtz+Mag+Sid+Rbk
6106/270	Qtz+Mag+Dol+Bt+Chm
6107/337	Qtz+ Mag+Dol+Rbk
6107/349	Qtz+ Mag+Dol+Rbk
6107/356	Qtz+ Mag+Stp+Dol+Rbk
6107/400	Qtz+ Mag+Dol+Rbk
6107/442	Qtz+ Mag+Dol+Aeg+Rbk
6107/461	Qtz+ Mag+Dol+Aeg+Rbk
6107/496	Qtz+ Mag+Hem+Dol+Aeg+Rbk
6108/238,6	Qtz+ Mag+Hem+Dol+Aeg+Rbk
6108/244	Qtz+ Mag+Hem+Dol+Sid+Rbk
6108/268	Qtz+ Mag+Dol+Rbk
6108/270	Qtz+Mag+Stp+Sid+Dol+Rbk
6108/275	Qtz+ Mag+Stp+Dol+Rbk
6116/235,5	Qtz+ Mag+Sid+Aeg+Rbk
6116/249,5	Qtz+ Mag+Hem+Sid+Aeg+Rbk
6116/250	Qtz+ Mag+Hem+Sid+Rbk
6116/320	Qtz+Mag+Hem+Dol+Bt
6126/5	Qtz+Mag+Sid+Rbk
6126/8	Qtz+Mag+Stp+Sid+Rbk
6127/4	Qtz+Mag+Stp+Sid+Rbk
7671/5	Qtz+Mag+Sid+Dol+Rbk+Bt
7671/6	Otz+Mag+Dol+Bt+Rbk+Bar

* символы минералов по: Kretz R. Symbols for rock-forming minerals// Amer. Miner. 1983. V.68. p. 277-279.

** жирным шрифтом отмечены парагенезисы, минералы из которых изучены на микрозонде.

0,45-0,46 в формациях Лабрадорского трога (Канада) и Бивабик (штат Миннесота, США). Содержание суммарного железа – 30-32 мас. %. Значения $Fe^{3+}/(Fe^{3+}+Fe^{2+})$ в железистых кварцитах Панковского месторождения находятся в интервале 0,49-0,81 (среднее 0,62) при суммарном содержании 33,1 %, а Михайловского - 0,70-0,87 (среднее 0,76; $\Sigma Fe = 38,7$ мас. %).

Нами были детально изучены с помощью микрозонда состав минералов из пород раннепротерозойской железистой формации Панковского железорудного месторождения. Их минеральные парагенезисы приведены в табл. 2, местоположение отбора образцов показано на рис. 2.

Методы исследования

Более 80 образцов железистых кварцитов, представляющие собой керн скважин, были детально описаны при проведении полевых работ. Шлифы, изготовленные из отобранных образцов, были изучены оптически. Локальные анализы минералов выполнены на микрозонде Camebax SX-50 (МГУ), ускоряющее напряжение 15 кВ, ток зонда 1-2 нА, диаметр зонда 1-2 мкм. Точность анализов систематически контролировалась по природным и синтетическим эталонам. Кристаллохимические формулы эгиринов рассчитаны на 6, амфиболов на 23, слюд на 11, хлоритов на 14, магнетита на 4 атома кислорода. Расчеты Р-Т условий метаморфизма производились с помощью компьютерной программы PTF [5].

Минералогия

<u>Магнетит</u> является главным рудным и породообразующим минералом и встречается в виде отдельных зерен разного размера, преимущественно октаэдрического габитуса, обычно концентрирующихся в слойки мощностью до нескольких мм. Он присутствует практически во всех типах пород в количестве до 50 модальных процентов. По составу это чистый магнетит, примесь MgO, MnO, SiO₂, Al₂O₃ составляет первые десятые процента (табл. 3).

<u>Гематит</u> в количественном отношении всегда уступает магнетиту и встречается в виде пластинок и чешуек различных размеров. Обычно мелкие чешуйки гематита группируются в прослои мощностью первые мм параллельные слоистости. Помимо кварца и магнетита гематит обычно находится в ассоциации с рибекитом и эгирином.

Карбонаты весьма широко распространены в породах железисто-кремнистой формации и образуют полигональные и удлиненные зерна размером от 0,2 до 0,7 мм. По составу карбонаты представлены двумя изоморфными сериями анкерит – ферродоломит и сидерит - пистомезит (рис. 3, табл. 4). В породах могут присутствовать только доломит, только сидерит, либо оба этих карбоната вместе. В сидеритах и доломитах из отдельных образцов при-

Составы шамозитов, магнетита из железистых пород .	Панковского участка КМА
--	-------------------------

№ образца	6106/179,0		6116/320,0			
Позиция	Крупное	Мелкое	Мелкое	Средне	ее зерно	Среднее
	зерно	зерно	зерно	_	_	зерно
-	rnoŭ	HOUTD	крой	крой	HOUTP	крой
	краи	Dol	краи	краи Вt	Dol	краи
B KOHTAKTE C	Siu Mar 9	Chun 12	QLZ	Dl Chun 19	Chun 10	
л⁰ анализа	Mag-8	27.05	Cnm-14	Cnm-18	Cnm-19	Hem-1
<u>S10</u> 2	0,25	27,95	28,/1	28,54	28,46	0,33
Al ₂ O ₃	0,07	14,78	14,99	12,74	12,46	0,08
TiO ₂	0,04	0,04	0,02	0,10	-	-
FeO	99,45	44,98	41,34	31,24	35,26	99,34
MnO	0,04	0,09	0,01	0,03	-	0,07
MgO	0,14	2,01	2,14	11,48	9,99	0,12
CaO	0,05	0,74	0,72	0,71	0,27	0,01
Na ₂ O	-	0,27	0,23	0,21	0,23	0,05
K ₂ O	-	0.15	0.18	0.55	1.10	0.01
F	0,02	-	0,13	0,47	0,52	-
Cl	-	0,02	0,04	0,08	0,09	0,06
сумма	100,06	91,03	88,52	86,14	88,39	100,07
Si	0,01	3,19	3,36	3,22	3,17	0,01
Al ^{VI}		0,81	0,64	0,78	0,83	
Al ^{IV}	-	1,18	1,42	0,91	0,81	-
Ti	-	0,01	-	0,01	3,07	-
Fe ²⁺	1,00	4,29	4,04	2,94	0,22	1,00
Fe ³⁺	-	-	-	-	-	1,97
Mn	-	0,01	-	0,01	-	-
Mg	0,01	0,34	0,37	1,84	1,66	0,01
Ca	-	0,09	0,09	0,08	0,03	-
Na	-	0,06	0,05	0,05	0,05	-
K	-	0,02	0,03	0,08	0,15	-
F	-	-	-	-	-	-
Cl	-	-	-	-	-	-
X(Fe)	1,00	0,93	0,92	0,60	0,65	1,00

FeCO₈

Рис. 3. Составы карбонатов из пород железисто-кремнистой формации КМА: 1 - Приоскольское месторождение; 2 - Михайловское месторождение; 3 - Панковское месторождение.

сутствует примесь MnO до 3,29 и 1,78 мас. % соответственно.

<u>Биотит</u> представлен пластинками и чешуйками размером до 2 мм, которые образуют тонкие слойки или рассеяны в породе и имеют коричневато-бурую, буровато-зеленоватую окраску. Он встречается в карбонатных разностях железистых кварцитов в парагенезисе с доломитом, сидеритом, рибекитом, кварцем, а в силикатных с гранатом и грюнеритом (рис. 4). Биотит характеризуется насыщенностью Al_2O_3 и невысокой титанистостью (содержание TiO₂ от 1,45 до 1,77 мас. %). Наиболее железистый состав имеют биотиты из магнетит - силикатных разностей железистых кварцитов, не содержа-

Рис. 4. Парагенезис граната, грюнерита и биотита в железистых породах Панковского месторождения, обр. 6101/5.

Рис 5. Фотографии шлифов пород железистокремнистой формации Панковского месторождения: а) стильпномелан в карбонатно-магнетитовом кварците, обр. 6108/270; б) рибекит и эгирин в карбонатно-магнетитовом кварците, обр. 6127/4.

щих карбонатов (Fe/(Fe+Mg) = 63-70 ат. %) (табл. 5). В карбонатно-магнетитовых кварцитах он характеризуется среднежелезистым (Fe/(Fe+Mg) = 48-55 ат. %) и даже относительно магнезиальным (Fe/(Fe++Mg) = 22-29 ат. %) составом. Обращает внимание достаточно высокие содержания фтора в биотитах из отдельных образцов карбонатно-магнетитовых кварцитов, значительно превышающие количества хлора. К примеру, в биотитах из образца 6106/270 содержания фтора 0,44-1,06 мас. %, 7671/5 – 0,87-1,11 мас. %.

Стильпномелан является обычным железистым силикатом низкотемпературных железистых формаций и имеет кристаллохимическую формулу намного более сложную чем другие силикаты - (Са, Na, K)₄(Ti_{0.1}Al_{2.3} Fe_{35.5}Mn_{0.8}Mg_{9.3})(Si₆₃Al₉) (O,OH)₂₁₆ nH₂O [6]. Позже была предложена структурная формула ферристильпномелана лля K₅Fe²⁺Si₆₃Al₉O₁₆₈(OH)₄₈12H₂O [7]. Однако отношение Si/Al в этих формулах выше чем в стильпномеланах из железисто-кремнистых формаций, поэтому Т.Мияно Н.Бойкс приводят и формулу K₅Fe²⁺Si₆₄Al₈O₁₆₈ (OH)₄₅ 12H₂O, которая лучше отвечает среднему составу стильпномелана в железистых формациях [8].

Стильпномелан до сих пор не был достоверно установлен в железисто-кремнистых формациях КМА. В публикациях не приведено ни одного анализа стильпномелана, хотя в некоторых работах стильпномелан или ферристильпномелан упоминались как присутствующие в железистых кварцитах. Учитывая, что оптически он практически не отличим от биотита, уверенности в том, что стильпномелан действительно присутствует в железистых породах КМА не было.

Стильпномелан был встречен в скважинах 6103, 6107, 6108 в ассоциации с доломитом, сидеритом, кварцем, магнетитом и рибекитом. Он имеет буровато-зеленый цвет, с плеохроизмом от светлозеленой до темно-зеленой окраски, образует тонкие, но достаточно длинные пластинки и их срастания, розетки (рис. 5а). Стильпномелан характеризуется достаточно постоянным количеством Al_2O_3 от 5,65 до 5,92 мас. %, переменными содержаниями K_2O от 0,95 до 1,91 мас. % и железистостью 77-80 ат. % (табл. 6). Упрощенная кристаллохимическая формула стильпномелана из железистых кварцитов Панковского месторождения:

 $(Ca_{0.01}Na_{0.02}K_{0.28})_{0.31}(Fe_{4.31}Mg_{1.26})_{5.57}Si_{7.81}Al_{1.09}O_{21}(OH)_{3.5} \times 2H_2O.$

<u>Хлорит</u> представлен пластинчатыми кристаллами и чешуйками неправильной формы размером до 1 мм бурого и зеленовато-бурого цвета и встречается в биотит-карбонатных прослоях (рис. 6б). По составу хлориты отвечают шамозиту с железистостью от 60 до 93 ат. % (табл. 3) в изоморфной серии клинохлор – шамозит (рис. 7).

<u>Рибекит</u> образует прослои ярко-синего цвета мощностью до 1-2 мм и широко распространен в карбонатно-магнетитовых кварцитах. Он присутствует в виде вытянутых призматических кристаллов

Представительные анализы карбонатов из железистых пород Панковского участка КМА

образец		6108/	270,0		61	106/179	,0		6127/4			61	06/270,	0		7671/5				7671/6			
позиция	Мз	Сз	Сз	Сз	C	` 3	Кз	C	3	Сз	Мз	Сз	К	3	Сз	Сз	Мз	Сз	Сз	Сз	Сз	Мз	Сз
	край	центр	край	центр	край	край	центр	край	центр	центр	центр	край	край	край	центр	центр	центр	край	край	центр	край	центр	центр
в контакте	Stn		Dol	Stn	Otz	Phk	Rhk	Mag	Phk	Δοσ	Bt	Bt	Bt	Dol	Otz	Mag	Rhk	Bt	Mag	Rbk	Bt	Mag	Bt
с	Stp		DOI	Տւբ	Qız	KUK	KUK	wiag	KUK	Acg	ы	Dt	Dt	DOI	Qız	Iviag	KUK	Dt	wiag	RUK	ы	Wiag	Dt
N⁰	Dol-7	Dol-8	Sid-2	Sid-3	Sid-6	Sid-7	Sid-1	Dol-22	Dol-23	Dol-24	Dol-8	Dol-9	Dol-11	Dol-12	Dol-22	Dol-1	Dol-5	Sid-9	Sid-10	Dol-11	Dol-13	Dol-18	Dol-20
анализа	DOI /	DOI 0	blu 2	blu 5	blu 0	bid /	bla I	DOI 22	DOI 23	D01 24	DOIO	2017	Doi 11	D01 12	DOI 22	DOIT	2013	bid)	blu 10	Doi 11	D01 13	DOI 10	D01 20
SiO ₂	0,30	0,03	0,06	0,08	0,23	0,46	-	0,02	0,05	0,02	0,18	0,23	0,03	0,03	0,43	0,04	0,01	0,06	0,16	0,01	0,10	0,19	0,38
Al_2O_3	0,03	0,01	0,02	0,04	-	-	-	-	0,01	0,01	0,01	0,06	0,01	-	0,04	-	0,02	0,05	-	-	0,01	0,06	0,01
TiO ₂	-	-	-	0,01	-	0,01	-	0,03	-	-	-	-	0,01	0,01	-	0,01	-	0,01	-	-	0,01	-	-
FeO	17,15	17,55	50,31	48,05	60,15	59,95	60,36	9,16	6,75	8,03	12,13	13,14	13,54	12,29	11,54	4,72	4,12	39,80	38,69	5,25	5,15	5,23	5,25
MnO	0,22	0,26	0,53	0,60	0,67	0,92	0,50	1,78	1,11	1,24	0,32	0,24	0,22	0,26	0,22	1,22	0,83	3,29	2,86	0,98	0,22	0,46	0,24
MgO	10,74	10,45	10,15	11,11	0,79	1,29	-	15,19	17,71	17,06	14,02	12,44	12,02	11,39	12,89	22,57	18,46	13,57	14,67	17,52	21,55	21,22	20,70
CaO	27,72	26,91	0,34	0,58	1,28	1,23	0,91	27,14	28,06	27,37	29,09	28,14	28,45	28,88	27,48	29,02	27,08	0,44	0,54	26,17	25,92	27,75	27,02
Na ₂ O	0,07	0,03	0,04	0,11	0,03	0,10	0,01	0,03	0,02	0,02	0,01	-	0,01	-	-	-	0,01	-	-	0,04	0,01	-	-
K ₂ O	0,02	0,03	0,02	0,02	-	-	-	0,01	0,02	0,01	0,01	0,04	-	-	-	-	-	0,02	0,02	-	-	0,01	0,01
F	0,14	0,08	0,08	0,03	0,18	0,07	-	-	0,09	0,31	-	-	0,11	-	0,06	0,19	-	0,12	0,08	-	-	-	-
Cl	0,01	0,01	-	0,03	-	-	0,03	-	0,02	-	-	0,02	0,01	-	-	0,02	-	0,01	-	-	-	-	-
сумма	56,40	55,36	61,55	60,66	63,33	64,08	61,86	53,36	53,84	54,07	55,77	54,30	54,41	52,86	52,66	57,79	50,53	57,36	57,02	49,98	52,98	54,94	53,60
Si	-	-	-	-	-	0,01	-	-	-	-	-	-	-	-	0,01	-	-	-	-	-	-	-	0,01
Al	0,01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Ti	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Fe ²⁺	0,24	0,25	0,72	0,69	0,93	0,91	0,97	0,13	0,09	0,11	0,16	0,18	0,19	0,18	0,16	0,06	0,06	0,58	0,56	0,07	0,07	0,07	0,07
Fe ³⁺	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Mn	-	-	0,01	0,01	0,01	0,01	-	0,03	0,02	0,02	-	-	-	-	-	-	0,01	0,04	0,04	0,01	-	0,01	-
Mg	0,26	0,26	0,26	0,28	0,02	0,04	0,01	0,37	0,42	0,41	0,33	0,31	0,30	0,29	0,32	0,50	0,45	0,36	0,38	0,44	0,49	0,48	0,47
Ca	0,49	0,48	0,01	0,01	0,03	0,02	0,02	0,47	0,48	0,47	0,49	0,50	0,51	0,53	0,50	0,49	0,48	0,01	0,01	0,47	0,42	0,45	0,44
Na	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
K	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
X(Sid)	23,81	24,75	72,52	69,43	94,17	92,58	97,30	12,58	8,95	10,74	16,23	18,35	18,90	17,59	16,50	5,66	5,68	58,63	56,54	7,39	6,69	6,61	3,04
X(Mgs)	26,58	26,27	26,08	28,62	2,20	3,55	-	37,19	41,87	40,68	33,45	30,97	29,91	29,06	32,85	48,26	45,35	35,63	38,22	43,99	49,89	47,84	49,86
X(Rdh)	0,31	0,37	0,77	0,88	1,06	1,44	0,82	2,48	1,49	1,68	0,43	0,34	0,31	0,38	0,32	1,48	1,16	4,91	4,23	1,40	0,29	0,59	0,33
X(Cal)	49,30	48,61	0,63	1,07	2,57	2,43	1,88	47,76	47,68	46,90	49,88	50,35	50,88	52,97	50,33	44,60	47,81	0,83	1,01	47,22	43,13	44,96	46,77
X(Fe)	0,48	0,49	0,73	0,71	0,98	0,96	Rbk	0,26	0,18	0,21	0,33	0,37	0,39	0,39	0,33	0,11	0,12	0,62	0,60	0,14	0,13	0,13	0,13

Примечание: Мз – мелкое зерно, Сз – среднее зерно, Кз – крупное зерно.

Представительные анализы биотитов из железистых пород Панковского участка КМА

№ образца		610	1/5		6101	1/13			6106/	270,0			6116/320,0			7671/5			7671/6		
Позиция	C	3	Сз	C3	Мз	Сз	Мз	Мз	C	3	Сз	Мз	Сз	Сз	Сз	Мз	Сз	Сз	C	3	Мз
	край	центр	край	край	центр	край	центр	край	край	центр	край	центр	центр	край	край	край	центр	центр	центр	край	край
в кон- такте с	Grt		Qtz	Gru	Gru	Mag	Dol	Chm	Chm		Bt	Chm	Mag	Bt	Dol	Dol	Bt	Sid	Dol	Bar	Dol
№ анализа	Bt-5	Bt-6	Bt-7	Bt-9	Bt-13	Bt-15	Bt-10	Bt-15	Bt-16	Bt-17	Bt-20	Bt-21	Bt-2	Bt-3	Bt-4	Bt-6	Bt-7	Bt-8	Bt-14	Bt-17	Bt-19
SiO ₂	33,89	32,74	32,68	32,96	32,52	33,25	32,77	37,11	34,96	30,88	37,60	36,49	34,91	35,71	33,02	37,43	41,53	41,05	41,15	41,45	41,24
Al_2O_3	15,65	15,61	15,29	15,46	16,66	18,17	11,46	11,71	11,03	11,90	12,22	11,91	16,93	16,02	15,07	11,10	11,45	11,59	11,97	11,92	12,25
TiO ₂	1,45	1,71	1,77	1,59	0,27	0,32	-	0,01	0,02	0,11	-	-	0,48	0,54	0,55	0,39	0,37	0,40	0,03	0,01	0,01
FeO	26,14	26,38	26,18	27,04	27,56	22,06	25,89	23,64	21,63	30,78	21,86	23,43	23,57	28,02	28,60	13,53	12,47	11,98	12,47	11,01	11,48
MnO	0,03	0,01	-	-	0,07	0,04	-	0,03	0,01	0,03	0,03	0,01	0,12	0,03	0,07	0,04	0,06	0,11	0,03	-	0,02
MgO	7,74	7,35	8,56	7,63	6,73	6,26	11,25	11,69	11,64	11,95	13,13	11,79	7,95	7,68	8,95	18,24	18,58	18,36	19,28	19,07	18,29
CaO	0,02	0,03	0,04	0,02	0,05	0,08	0,23	0,08	0,14	0,65	0,07	0,21	0,03	0,03	0,02	0,13	-	0,07	0,14	0,05	0,13
Na ₂ O	0,19	0,17	0,18	0,18	0,14	0,57	0,15	0,07	1,09	0,28	0,05	0,69	0,07	0,07	0,09	0,19	0,05	0,08	0,04	0,06	0,04
K ₂ O	8,36	8,87	8,56	8,51	7,73	8,98	7,01	8,83	8,45	2,38	9,73	8,34	7,09	8,63	5,63	8,06	10,21	10,31	9,78	9,87	10,53
F	0,35	0,33	0,29	0,24	0,06	-	0,71	0,74	0,85	0,58	1,06	0,44	0,11	0,06	0,19	0,87	1,11	0,98	0,69	0,31	0,71
Cl	-	0,04	0,02	0,02	0,20	0,29	0,11	0,08	0,26	0,05	0,10	0,21	0,04	0,02	0,02	0,06	0,01	0,02	-	0,02	0,01
сумма	93,79	93,21	92,64	93,64	91,98	89,99	89,57	93,98	90,09	89,59	95,86	93,52	91,32	96,81	92,23	90,03	95,83	94,94	95,58	93,76	94,71
Si	2,77	2,70	2,67	2,70	2,72	2,79	2,79	2,98	2,90	2,66	2,94	2,92	2,91	2,83	2,76	2,99	3,12	3,10	3,07	3,13	3,11
Al ^{IV}	1,28	1,22	1,14	1,19	1,36	1,59	0,94	1,09	0,98	0,87	1,06	1,04	1,90	1,32	1,24	1,04	1,01	1,03	1,05	1,06	1,09
Al ^{VI}	0,23	0,30	0,33	0,30	0,28	0,21	0,21	0,02	0,10	0,34	0,06	0,08	0,09	0,17	0,24	0,01	-	-	-	-	-
Ti	0,09	0,11	0,11	0,10	0,02	0,02	-	-	-	0,01	-	-	0,03	0,03	0,03	0,02	0,02	0,02	-	-	-
Fe ²⁺	1,78	1,82	1,79	1,85	1,92	1,55	1,77	1,59	1,31	2,22	1,43	1,57	1,64	1,85	1,99	0,90	0,78	0,76	0,78	0,69	0,72
Fe ³⁺	-	-	-	-	-	-	0,07	-	0,19	-	-	-	-	-	-	-	-	-	-	-	-
Mn	-	-	-	-	-	-	-	-	-	-	-	-	0,01	-	-	-	-	0,01	-	-	-
Mg	0,94	0,90	1,04	0,93	0,84	0,78	1,42	1,40	1,44	1,53	1,53	1,41	0,99	0,91	1,11	2,17	2,08	2,07	2,14	2,15	2,05
Ca	-	-	-	-	-	0,01	0,02	0,01	0,01	0,06	0,01	0,02	-	-	-	0,01	-	0,01	0,01	-	0,01
Na	0,03	0,03	0,03	0,03	0,02	0,09	0,02	0,01	0,18	0,05	0,01	0,11	0,01	0,01	0,01	0,03	0,01	0,01	0,01	0,01	0,01
K	0,87	0,93	0,89	0,89	0,82	0,96	0,76	0,90	0,89	0,26	0,97	0,85	0,75	0,87	0,60	0,82	0,98	0,99	0,93	0,95	1,01
F	0,09	0,09	0,07	0,06	0,02	-	0,19	0,19	0,22	0,16	0,26	0,11	0,03	0,02	0,05	0,22	0,26	0,23	0,16	0,07	0,17
Cl	-	0,01	-	-	0,03	0,04	0,02	0,01	0,04	0,01	0,01	0,03	0,01	-	-	-	-	-	-	-	-
X(Fe)	0,66	0,67	0,63	0,63	0,70	0,66	0,55	0,53	0,48	0,59	0,48	0,53	0,63	0,67	0,64	0,29	0,27	0,27	0,27	0,24	0,22

Примечание: Мз – мелкое зерно, Сз – среднее зерно, Кз – крупное зерно.

№ образца		6108/270,0		610	5/28	6127/4
Позиция	К	рупное зери	но	Средне	ее зерно	Среднее зерно
	край	центр	край	край	центр	край
в контакте с	Sid		Qtz	Rbk		Mag
№ анализа	Stp-1	Stp-2	Stp-3	Aeg-17	Aeg-18	Aeg-28
SiO ₂	49,39	50,65	47,89	50,99	49,64	48,05
Al ₂ O ₃	5,87	5,65	5,92	0,89	0,54	0,41
TiO ₂	-	-	-	0,04	0,01	-
FeO	32,59	31,27	33,89	31,46	31,84	32,41
MnO	-	0,06	0,04	-	0,01	0,01
MgO	5,35	5,10	4,60	0,27	0,08	0,15
CaO	0,08	0,09	0,06	0,58	0,25	0,23
Na ₂ O	0,07	0,13	0,07	12,64	13,32	13,04
K ₂ O	1,37	1,81	0,95	0,01	0,03	0,03
F	-	-	-	-	-	-
Cl	0,04	0,01	0,01	-	-	-
сумма	94,76	94,74	93,43	96,88	95,72	94,33
Si	7,81	7,96	7,75	1,96	1,93	1,90
Al	1,09	1,04	1,13	0,045	0,02	0,02
Ti	-	-	-	-	-	-
Fe ²⁺	4,31	4,11	4,58	0,04	-	-
Fe ³⁺	-	-	-	0,97	1,13	1,19
Mn	-	0,01	0,01	-	-	-
Mg	1,26	1,19	1,11	0,02	-	0,01
Ca	0,01	0,02	0,01	0,02	0,01	0,01
Na	0,02	0,04	0,02	0,94	1,00	1,00
K	0,28	0,36	0,20	-	-	-
F	-	-	-	-	-	-
Cl	0,01	-	-	-	-	-
X(Fe)	0,77	0,78	0,80	0,71	0,17	0,14
X Sdph	-	-	-	-	-	-
X East	-	-	-	-	-	-
X Ann	-	-	-	-	-	-
X Phl	-	-	-	-	-	-
Jd	-	-	-	0,42	-	-
Ac	-	-	-	93,94	97,59	97,86
Δ11σ	_	_		5.63	7.08	9.81

Представительные анализы стильпномеланов и эгиринов из железистых пород Панковского участка КМА

Примечание: прочерк – содержание компонента ниже порога чувствительности прибора

Рис. 6. Фотографии шлифов пород железисто-кремнистой формации Панковского месторождения: а) эгириновые и рибекитовые прослои в железистых кварцитах, обр.6105/28; б) шамозит в ассоциации с доломитом и биотитом, обр. 6106/270.

Рис. 7. Составы хлоритов из железистых пород Панковского (1) и Михайловского (2) месторождений.

Таблица 7

№ образца		6106/1	79		610	05/28		6127/4			7671/5	
позиция	Крупное	Среднее	Средн	ее зер-	Мелкое	Среднее	Среднее	Среднее	Мелкое	Мелкое	Мелкое	Мелкое
	зерно	зерно	Н	0	зерно	зерно	зерно	зерно	зерно	зерно	зерно	зерно
	центр	центр	край	край	край	центр	край	край	центр	Край	центр	край
в контакте с		Mag	Qtz	Sid						Dol	Dol	Dol
№ анализа	Rbk-2	Rbk-3	Rbk-4	Rbk-5	Rbk-15	Rbk-16	Rbk-19	Rbk-20	Rbk-25	Rbk-3	Rbk-4	Rbk-12
SiO ₂	56,92	56,14	57,04	56,55	53,22	53,41	49,45	52,68	54,28	51,48	54,82	54,53
Al_2O_3	0,72	0,61	0,68	0,69	0,39	0,39	0,45	0,49	0,43	0,73	0,70	0,71
TiO ₂	0,01	0,04	-	0,01	0,03	-	0,04	-	I	-	-	-
FeO	25,55	25,97	26,32	25,48	24,49	24,21	24,95	25,17	24,00	21,82	20,50	22,55
MnO	0,06	0,02	0,03	0,01	0,06	0,07	0,03	0,08	0,12	0,04	-	0,01
MgO	9,21	8,26	9,08	9,15	9,71	9,96	10,11	9,54	9,83	9,42	10,28	10,53
CaO	0,09	0,06	0,10	0,10	0,07	0,08	0,11	0,05	0,18	0,06	0,09	0,17
Na ₂ O	6,81	7,18	7,56	6,95	6,87	6,85	7,07	7,30	7,04	7,96	7,87	8,24
K ₂ O	0,13	0,05	0,15	0,16	0,09	0,14	0,09	0,08	0,08	0,15	0,05	0,05
сумма	99,50	98,33	100,96	99,10	94,93	95,11	92,30	95,39	95,96	91,66	94,31	96,79
Si	7,97	8,03	7,94	7,97	7,80	7,80	7,48	7,73	7,88	7,91	8,09	7,89
Al	0,12	0,10	0,11	0,11	0,07	0,07	0,08	0,08	0,07	0,13	0,12	0,12
Ti	-	-	-	-	-	-	-	-	-	-	-	-
Fe ²⁺	0,94	1,29	1,15	1,00	0,67	0,62	0,33	0,74	0,79	1,17	1,11	0,99
Fe ³⁺	2,05	1,81	1,91	1,99	2,33	2,34	2,82	2,34	2,12	1,63	1,14	1,74
Mn	0,01	-	-	-	0,01	0,01	-	0,01	0,01	0,01	-	-
Mg	1,92	1,76	1,88	1,92	2,12	2,17	2,28	2,09	2,13	2,16	2,26	2,27
Ca	0,01	0,01	0,01	0,02	0,01	0,01	0,02	0,01	0,03	0,01	0,01	0,03
Na	1,85	1,99	2,04	1,90	1,95	1,94	2,07	2,08	1,98	2,37	2,25	2,31
K	0,02	0,01	0,03	0,03	0,02	0,03	0,02	0,01	0,01	0,03	0,01	0,01
X(Fe)	0,33	0,43	0,38	0,65	0,24	0,23	0,13	0,27	0,28	0,36	0,33	0,31
Ca+Na	0,01	-	-	-	0,01	0,01	-	0,01	0,01	0,01	-	-
Na+K	1,98	1,99	1,98	1,98	1,98	1,98	1,98	1,98	1,96	1,98	1,99	1,97

Представительные анализы рибекитов из железистых пород Панковского участка КМА

темно-синего цвета размером 0,5-1 мм (см. рис. 5б, ба), образующих цепочки зерен. Схема плеохроизма от бесцветного до темно-синего. Рибекит встречается в парагенезисе с магнетитом, гематитом, эгирином, сидеритом, доломитом (см. рис. 5б, ба). Характерно, что в железистых кварцитах Панковского месторождения не встречается тонкоигольчатая волокнистая разновидность рибекита – крокидолит, весьма широко распространенный в железистокремнистых формациях.

По составу рибекиты из железистых кварцитов Панковского месторождения характеризуются умеренной железистостью – $X_{Fe} = 0.42$ -0.57 (табл. 7) и на классификационной диграмме Лика с соавторами [9] попадают в граничную область перехода рибекит - магнезиорибекит (рис. 8). Содержания MgO находятся в интервале от 8,2 до 12,6 мас. %, что выше, чем в рибекитах из других железистых формаций, но приблизительно столько же, как и в рибекитах Михайловского месторождения [4]. Например, по данным П. Робинсона и Ф. Спира с соавторами [10] в рибекитах из железистых формаций содержание MgO находится в интервале 1.37-7.71 мас. %, хотя в железистой формации юго-западного

№ образца		6101/1	0		610	1/5			6101/10		610	1/13
позиция	Средн	ее зер-	Среднее	Среднее	Среднее	Мелкое	Среднее	Средне	е зерно	Среднее	Среднее	Мелкое
	Н	0	зерно	зерно	зерно	зерно	зерно			зерно	зерно	зерно
	край	центр	край	край	центр	край	центр	край	край	край	центр	центр
в контакте с	Qtz		Hb	Grt	Gru	Bt	Bt	Grt	Gru	Bt	Bt	Bt
№ анализа	Gru-2	Gru-3	Gru-4	Gru-3	Gru-11	Gru-12	Gru-13	Hb-5	Hb-6	Hb-7	Gru-12	Gru-14
SiO ₂	49,50	49,80	49,60	50,15	49,15	49,54	50,75	41,95	41,07	42,93	50,74	49,73
Al_2O_3	0,42	0,25	0,31	0,33	0,32	0,65	0,21	13,23	13,50	13,91	0,33	0,26
TiO ₂	-	-	-	0,02	-	0,02	0,02	0,48	0,44	0,07	-	0,02
FeO	36,78	36,98	37,05	36,86	36,91	36,27	34,20	25,73	26,20	27,24	36,11	34,82
MnO	0,10	0,13	0,20	-	0,09	0,11	0,06	0,06	-	0,80	0,22	0,16
MgO	9,73	9,69	9,64	10,85	10,73	10,62	10,63	3,46	3,31	3,42	8,55	8,38
CaO	0,40	0,23	0,27	0,29	0,24	0,32	0,28	11,12	10,65	11,68	0,31	0,25
Na ₂ O	0,07	0,06	0,02	0,05	0,04	0,10	0,06	1,44	1,10	0,04	0,06	0,03
K ₂ O	0,04	0,01	0,01	0,03	0,01	0,01	0,02	0,58	0,58	0,01	0,02	0,02
сумма	97,04	97,15	97,10	98,58	97,49	97,66	96,23	98,05	97,85	99,10	96,34	93,67
Si	7,88	7,91	7,90	7,87	7,85	7,83	7,96	6,47	6,39	6,44	8,05	8,11
Al	0,13	0,10	0,11	0,14	0,16	0,18	0,04	2,14	2,48	2,52	0,11	0,16
Ti	-	-	-	-	-	-	-	0,06	0,05	0,01	-	-
Fe ²⁺	4,88	4,90	4,92	4,82	4,92	4,78	4,58	3,04	3,19	3,05	4,78	4,74
Fe ³⁺	-	-	-	-	-	-	-	0,27	0,22	0,44	-	-
Mn	0,01	0,02	0,03	-	0,01	2,50	0,01	-	-	0,10	0,03	0,02
Mg	2,68	2,29	2,29	2,54	2,55	-	2,48	0,79	0,77	0,78	2,02	2,04
Ca	0,07	0,04	0,05	0,05	0,04	0,05	0,05	1,84	1,94	1,92	0,05	0,04
Na	0,02	0,02	0,01	0,02	0,01	0,03	0,02	0,43	0,34	0,01	-	-
K	0,01	-	-	0,01	-	-	-	0,11	0,12	-	-	-
X(Fe)	0,68	0,68	0,68	0,66	0,66	0,66	0,64	0,79	0,81	0,80	0,70	0,70
Ca+Na	0,07	0,04	0,05	0,05	0,04	0,05	0,05	1,94	1,98	1,93	0,05	0,05
Na+K	0,03	0,02	0,01	0,02	0,01	0,03	0,02	0,44	0,41	0,01	-	0,01

Таблица 8 Представительные анализы амфиболов из железистых пород Панковского участка КМА

 $(Na+K) \leq 0.50; (Mg+Fe^{2e}+Mn^{2e}) > 2.5; Na \geq 1.50$

Рис. 8. Составы рибекитов из железистых пород КМА: 1 - Приоскольское месторождение [11]; 2 -Панковское месторождение; 3 - Михайловское месторождение [4].

Лабрадора и на Приоскольском месторождении КМА установлены магнезиорибекиты с содержаниями MgO 17,0 и 12,70-13,15 мас. % соответственно [11, 12].

<u>Грюнерит</u> присутствует преимущественно в силикатно-магнетиовых кварцитах, редко в карбо-

натно-магнетитовых в виде удлиненных призм, в основном бесцветных или желтоватых, но иногда синевато-зеленого цвета. Размер призм грюнерита 0,3-0,7 мм по удлинению (рис. 4). Грюнерит находится в тесной ассоциации с магнетитом, биотитом, роговой обманкой, иногда с гранатом. По составу грюнериты Панковского участка умеренно железистые 64-70 ат. % (табл. 8) с незначительной примесью алюминия (0,25-0,65 мас. % Al₂O₃).

Роговая обманка иногда встречается в силикатно-магнетитовых кварцитах в виде призматических кристаллов размером 0,05-0,07 мм в ассоциации с грюнеритом, гранатом (обр. 6101/10). По составу роговая обманка весьма железистая (Fe/(Fe+Mg) = 79-83 ат. %), насыщена Al_2O_3 (более 15 мас. %) (табл. 8) и отвечает промежуточному члену ряда феррогастингсит-ферропаргасит. Роговая обманка более железистая, чем сосуществующий с ней грюнерит.

Эгирин в железистых кварцитах Панковского участка встречается намного реже чем рибекит в карбонатно-магнетитовых кварцитах и представлен крупными призматическими кристаллами размером до 3-4 мм по длинной оси, слагающими прослои травяно-зеленого цвета мощностью до 1 см. Эгирин кристаллизуется в магнетит-гематитовых или карбонатных прослоях и находится в тесной ассоциации с рибекитом, магнетитом и карбонатами (рис. 5 б, 6 а). Эгирин в своем составе содержит примеси Al_2O_3 (0,54 - 0,89 мас. %), CaO (0,25 -0,58 мас. %),

Образен			6101/5		6101/10	Qtz центр Grt-9 37,11 20,08 0,15 34,52 0,78 1,11 4,37 99,12 3,03 2,03 0,01 2,36 - 0,05			
Позиция	C	реднее зерн	10	Средне	е зерно	Мелкое	Средне	е зерно	
				1	1	зерно			
в контакте	Bt		Bt	Bt	Bt		Hb	Qtz	
	край	центр	край	край	край	центр	центр	центр	
№ анализа	Grt-1	Grt-2	Grt-4	Grt-9	Grt-10	Grt-10	Grt-8	Grt-9	
SiO ₂	35,83	34,87	35,40	35,40	35,53	36,93	37,50	37,11	
Al_2O_3	19,85	20,55	21,20	20,11	20,04	21,92	21,05	20,08	
TiO ₂	0,02	0,03	0,04	0,02	0,04	0,11	0,07	0,15	
FeO	41,10	40,35	40,52	40,10	39,75	32,82	33,73	34,52	
MnO	0,42	0,41	0,48	0,41	0,33	0,78	0,73	0,78	
MgO	1,45	1,44	2,36	1,34	1,40	1,07	1,09	1,11	
CaO	2,33	2,36	2,44	2,58	2,91	5,41	5,25	4,37	
Сумма	100,00	100,01	100,00	99,96	100,00	99,04	99,42	99,12	
Si	2,93	2,85	2,89	2,90	2,91	3,01	3,05	3,03	
Al	1,91	1,98	2,04	1,94	1,93	2,10	2,02	2,03	
Ti	-	-	-	-	-	0,01	-	0,01	
Fe ²⁺	2,52	2,44	2,57	2,48	2,46	2,23	2,29	2,36	
Fe ³⁺	0,22	0,31	0,19	0,26	0,25	-	-	-	
Mn	0,03	0,03	0,03	0,03	0,02	0,05	0,05	0,05	
Mg	0,18	0,18	0,29	0,16	0,17	0,13	0,13	0,14	
Ca	0,20	0,21	-	0,23	0,25	0,47	0,46	0,38	
X _{Fe}	0,94	0,94	0,90	0,94	0,94	0,96	0,95	0,95	
Alm	1,04	1,00	1,09	1,01	0,99	0,83	0,86	0,91	
Sps	0,01	0,01	0,01	0,01	0,01	0,02	0,02	0,02	
Prp	0,06	0,06	0,10	0,06	0,06	0,04	0,05	0,05	
Grs	0,06	0,06	0,06	0,07	0,08	0,16	0,16	0,13	

MgO (до 0,27 мас. %) (табл. 6) отвечает конечному члену ряда эгирин - авгит.

<u>Гранат</u> встречается очень редко в низкоглиноземистых железистых метапелитах и роговообманково-грюнеритовых амфиболитах, образующих прослои вблизи контакта железистых кварцитов с внутрирудными сланцами. Гранат представлен мелкими додекаэдрическими кристаллами размером от 0.2 до 1 мм в поперечнике (см. рис. 4). В гранате отмечаются включения кварца и магнетита, причем включения магнетита ориентированы перпендикулярно граням роста. Гранат из железистых метапелитов представлен почти чистым альмандином (X_{Alm} =97-99%) с незначительными примесями спессартина (1%), пиропа и гроссуляра (по 6-8%) (табл. 9). Четко выраженной химической зональности в кристаллах граната не установлено.

Гранат из амфиболитов (см. рис. 4б) имеет более кальциевый состав (X_{Grs} = 13-16%) при такой же высокой железистости (табл. 9).

Фазовые равновесия и условия метаморфизма

Особенностью Панковского месторождения является преобладание карбонатно-магнетитовых кварцитов (карбонатная фация по Х. Джеймсу [1]), в которых присутствуют силикаты - биотит, шамозит, стильпномелан, рибекит и эгирин. Карбонаты анкерит-доломитовой и сидерит-пистомезитовой серий, имеющие первично-осадочное происхождение [13 и многие другие авторы], были перекристаллизованы с увеличением размера зерен (рис. 6 б) при диагенезе и последующем метаморфизме. Карбонаты присутствуют во многих железистокремнистых формациях, претерпевших метаморфизм в широком интервале Р-Т условий, – от низов зеленосланцевой до амфиболитовой фации. Часть первичных карбонатов разлагается с образованием силикатов, таких как грюнерит и кальциевый амфибол. Обобщенная реакция разложения карбонатов выглядит как:

карбонат + кварц \rightarrow силикат + CO₂

Высвобождение CO_2 в результате приведенной реакции в случае замкнутой системы повышает активность его во флюидной фазе и соответственно растет стабильность присутствующих карбонатов, которые могут существовать вплоть до появления ортопироксена.

Если количество первичных карбонатов в породе было не велико, то уже в низкотемпературной части зеленосланцевой фации карбонаты, реагируя с кварцем, гематитом и магнетитом, вытесняются силикатами – миннесотаитом и стильпномеланом, которые при дальнейшем увеличении температуры замещаются грюнеритом.

Среди Al-содержащих силикатов стильпномелан стабилен при более высокотемпературных условиях, чем гриналит, шамозит и миннесотаит. Характерно, что почти все низкотемпературные железистые формации, содержат этот минерал.

Рис. 9. Р-Т условия метаморфизма железистых пород Панковского месторождения линии реакций на рисунке по [22].

Таблица 10 Температурные условия метаморфизма железистых пород Панковского участка КМА при давлении 2,5 кбр

NºNº	Tenmowern	Температура,
образца	термометр	°C
6101/5	Grt(1) Bt (5)	
	Thompson, 1976	490
	Holdaway, Lee, 1977	493
	Ferry, Spear, 1977	470
	Lavrent'eva, Perchuk, 1981	538
	Hodges, Spear, 1982	485
	Pigage, Greenwood, 1982	500
	Grt(2) Bt (6)	
	Thompson, 1976	500
	Holdaway, Lee, 1977	502
	Ferry, Spear, 1977	480
	Ferry, Spear, 1978	472
	Lavrent'eva, Perchuk, 1981	546
	Hodges, Spear, 1982	497
	Pigage, Greenwood, 1982	513
	Indares, Martignole, 1985	451
	Indares, Martignole, 1985	452
	Grt(4) Bt (7)	
	Thompson, 1976	474
	Holdaway, Lee, 1977	477
	Ferry, Spear, 1977	448
	Ferry, Spear, 1978	438
	Lavrent'eva, Perchuk, 1981	523
	Hodges, Spear, 1982	463
	Pigage, Greenwood, 1982	478
	Ganguly, Saxena, 1984	493
	Indares, Martignole, 1985	421
	Indares, Martignole, 1985	428
	Grt(10) Bt (9)	
	Thompson, 1976	496
	Holdaway, Lee, 1977	497
	Ferry, Spear, 1977	474
	Ferry, Spear, 1978	465
	Lavrent'eva, Perchuk, 1981	542
	Hodges, Spear, 1982	496
	Pigage, Greenwood, 1982	513
	Ganguly, Saxena, 1984	526
	Indares, Martignole, 1985	455
	Indares, Martignole, 1985	460

При определении стабильности стильпномелана можно ориентироваться на температуру разложения хлорита с образованием альмандина в метапелитах. Высокотемпературная граница стабильности сильпномелана (X_{Fe}=0,8-0,9) в регионально метаморфизованных железистых формациях определяется реакцией Stp=Gru+Bt+Alm+Qtz+H2O и находится приблизительно при 460-470 °C и 2-3 кбар [14]. Поле стабильности стильпномелана сужается при увеличении X_{CO2}, X_{Mg} и давления (выше 5 кбар оно выклинивается). Высокая железистость стильпномелана (Х_{Fe} = 0,77-0,80, табл. 6) предполагает, что он устойчив в высокотемпературной области стабильности вблизи кривой реакции его разложения: Stp=Gru+Alm+Bt+Qtz+H₂O. Этим, по-видимому, и объясняется то, что стильпномелан редко встречается в парагенезисах железистых пород Панковского месторождения, так как температурные условия метаморфизма близки к верхнему пределу его устойчивости.

Хотя сосуществующие стильпномелан и биотит редко встречаются в породах железистокремнистых формаций (возможно из-за того, что они оптически почти не отличаются), тем не менее существует дивариантное поле их устойчивости (рис. 9)

В силикатно-магнетитовых кварцитах без карбонатов устойчивы парагенезисы с грюнеритом, биотит и роговая обманка. Первое появление грюнерита происходит в области изограды биотита в метапелитах [15, 16, 17] и он остается устойчивым в широком диапазоне Р-Т условий. Хотя железомагнезиальные и кальциевые амфиболы широко распространены в среднетемпературных железистокремнистых формациях, стильпномелан может оставаться устойчивым в пределах биотитовой и гранатовой зон метаморфизма в метапелитах.

В добиотитовой субфации широко развиты анкерит и сидерит, характеризующие режим CO₂ при низкотемпературном метаморфизме. Низкотемпературная граница биотитовой субфации определяется по появлению первых биотитов в низкоглиноземистых породах, таких как метаграувакки или железистые кварциты, в парагенезисе с стильпномеланом, кварцем и микроклином [18].

Таким образом, присутствие в железистых породах Панковского месторождения и грюнерита и стильпномелана дает нам возможность достаточно точно оценить температурные условия метаморфизма. Низкотемпературная граница определяется появлением грюнерита при 430-450 °C, а высокотемпературная – устойчивостью стильпномелана 460-470 °C при 2-3 кбар. Эти результаты согласуются с оценками температур по биотит-гранатовой термометрии (табл. 10). Полученные значения попадают в температурный интервал 450-500 °C, то есть соответствуют высокотемпературной части гранатовой субфации в метапелитах.

Режим кислорода и щелочей при метаморфизме

Широкое распространение минералов, содержащих калий и натрий в породах железистой формации предполагает, что их протолитами были продукты седиментации и диагенеза водных железосиликатных гелей, обогащенных Na, К [19, 20]. Когда при диагенезе начинается кристаллизация этого материала, активизируется диффузия катионов, натрий и калий могут входить в структуру слюд и рибекита. Х. Ойгстер [21] предположил по аналогии с кремнистыми озерными отложениями плейстоцена, что в кремнистых отложениях железистой формации сначала образовался магадиит, натровый силикат – NaSi₇O₁₃x3H₂O. Натрий в результате реакций с железистыми смешанослойными силикатами высвобождался с образованием рибекита [22]. Это подтверждается недавними находками рибекита вместе с кварцем, магнезиальным кальцитом, палыгорскитом, иллитом и микроклином в керне скважины на глубине 1.8 м. пробуренной в современных осадках глубоководной части (668 м) озера Иссык-Куль [23].

Возможно, кристаллизация части рибекита и эгирина могла быть связана с содержащими щелочи растворами, проникавшими при деформациях. В раннепротерозойской железистой формации КМА ограниченный щелочной метасоматоз имел распространение в пределах зон повышенной проницаемости для флюида (зоны трещиноватости, интенсивных дислокаций и пр.). Это подтверждается наблюдениями А. Трендалла и Дж. Блокли [24], что образование рибекита в железистых формациях Западной Австралии тесно связано с проявлениями деформаций. Но как отмечалось А.А.Глаголевым [25], интенсивность щелочного метасоматоза в железистой формации КМА была не велика. В железистых кварцитах с эгирином и рибекитом полностью сохраняются все характерные для них текстуры (тонкая полосчатость, плойчатость), и отсутствуют метасоматические тела с массивной или вкрапленной текстурой. В ассоциациях с рибекитом и эгирином сосуществуют кварц, магнетит, гематит, слюды, карбонаты - то есть полностью отсутствуют моно- и биминеральные ассоциации.

Присутствие рибекита в железистых кварцитах контролируется следующими переменными: fO_2 , aNa^+ и T °C [26]. Кроме того, если в парагенезисе с рибекитом находятся карбонаты анкерит-доломитовой серии и/или сидерит, поле его стабильности сужается с увеличением активности CO_2 во флюиде. Устойчивость рибекита в железистых породах не является четким индикатором определенного интервала температур метаморфизма без учета других факторов. Рибекит может кристаллизоваться за счет оксидов железа, карбонатов и кварца при очень низкотемпературном метаморфизме или даже диагенезе, начиная с 130 °C в условиях активного взаимодействия железистых пород с Na^+ содержащими растворами [26].

В изученных нами железистых кваршитах грюнерит и рибекит вместе не наблюдались. хотя в железистой формации Пенж (Южная Африка) [27] и в пределах Приоскольского железорудного месторождения (КМА) [11] описаны реакционные взаимоотношения между грюнеритом и рибекитом. В зависимости от активности натрия во флюиде рассчитано положение реакции Gru+Mag+Qtz+H2O+ $+Na^{+}=Rbk$ в координатах $log[a(Na^{+})/a(H^{+})] - T ^{\circ}C$ [27]. По их данным рибекит стабилен относительно грюнерита при высоких значениях активности натрия - $\log[a(Na^+)/a(H^+)] > 5.0-5.5$ в интервале температур 400-500 °С (рис. 10). При более высокой активности натрия рибекит должен разлагаться с образованием эгирина в результате реакции Rbk+Hem+ $+Na^{+}=Aeg+Mag+H^{+},$ которая происходит при $log[a(Na^+)/a(H^+)] = 6,3-6,5$ при 450 °С. В изученных нами железистых породах эгирин и рибекит часто встречаются вместе. Следовательно, метаморфические преобразования железистых кварцитов Панковского месторождения происходили в условиях высокой активности натрия во флюиде, в интервале значений $\log[a(Na^+)/a(H^+)] = 5.0-6.5$.

По данным Т. Мияно и Н. Бойкса [27] эгирин образуется за счет рибекита в зависимости от физико-химических условий метаморфизма в результате следующих реакций: при повышении температуры -Rbk+3Hem=2Aeg+3Mag+4Qtz+H₂O (1); при повышении фугитивности кислорода – 2Rbk+O₂=4Aeg+ +2Mag+8Qtz+2H₂O (2).

Положение линии реакции (1) было определено экспериментально [28] и рассчитано Т.Мияно и Н.Бойксом [27]. По их данным высокотемпературное разложение рибекита с образованием эгирина происходит при 510-520 °С, и 2,5 кбар и аН₂O=1.0 и не зависит от фугитивности кислорода или активности натрия во флюиде. Реакция (2) по данными тех же авторов также реализуется в высокотемпературной области (выше 510 °C). Поэтому единственным механизмом образования эгирина за счет рибекита в изученных нами железистых кварцитах является реакция: 4Rbk + $3O_2 \rightarrow 8Aeg + 6Hem + 16Qtz +$ которая контролируется окислительно- $4H_2O_1$ восстановительными условиями при метаморфизме. Положение этой реакции на диаграмме log(fO2) -Т °С, рассчитанной при 2.5 кбар и аН₂О=1 почти совпадает с гематит-магнетитовым буфером в интервале температур 400-500 °C [27] (рис. 10). Это подтверждается достаточно частым присутствием гематита, высокой магнезиальностью рибекитов, карбонатов доломит-анкеритовой серии, биотитов, так как в общем случае железистость Fe-Mg силикатов уменьшается с увеличением фугитивности кислорода в результате реакций Fe-силикат + О₂ = Fe-Mg-силикат + Mag и Fe-карбонат + $O_2 = Fe-Mg$ карбонат + Мад.

Как и в большинстве докембрийских железистых формаций, кислород в изученных породах ве-

Рис. 10. Устойчивость рибекит и эгиринсодержащих парагенезисов на диаграммах: а) Log[a(Na⁺)/a(H⁺)]-T⁰ C; б) Log f(O₂)-T⁰ C [27].

дет себя как локально зависимый (инертный) компонент [29,30,31]. Многими исследователями признается, что летучесть кислорода в метаморфических железистых породах зависит от его первичного содержания [32] и мало изменяется при метаморфизме вследствие его инертного поведения. Для каждого конкретного региона и даже прослоя летучесть кислорода контролируется условиями седиментации и диагенеза, а также буферными реакциями. Поэтому значения фугитивности кислорода могут изменяться от слоя к слою в пределах одной железисто-кремнистой формации, но в пределах одного прослоя они остаются приблизительно постоянными. Обычно в железистых формациях это выражается в изменениях железистости силикатов, например, грюнерита, ортопироксена, в присутствии магнетита или гематита от прослоя к прослою. В обогащенных щелочами железистых породах КМА изменение фугитивности кислорода от прослоя к прослою отражено в стабильности парагенезисов, где устойчив только рибекит или рибекит с эгирином.

Заключение

Среди пород железисто-кремнистой формации Панковского месторождения преобладают карбонатно-магнетитовые и силикатно-магнетитовые кварциты. Карбонатные железистые породы содержат минеральный парагенезис Qtz+Mag+Dol+Sd+ +Rbk±Stp± Aeg±Bt, силикатно-магнетитовые Qtz+ +Mag+Gru±Bt±Grt±Hbl. Одновременное присутствие в железистых породах стильпномелана и грюнерита позволяет ограничить температурные условия метаморфизма интервалом 430-470 °С при давлениях 2-3 кбар, что подтверждается результатами гранат-биотитовой термометрии по внутрирудным сланцам. Метаморфические преобразования железистых кварцитов Панковского месторождения происходили в условиях высокой активности натрия во флюиде, в интервале значений $\log[a(Na^+)/a(H^+)] =$ 5.0-6.5 при фугитивности кислорода близкой к гематит-магнетитовому буферу.

Благодарности. Авторы выражают благодарность сотрудникам ОАО «Белгородгеология» И.Ф. Плужникову, Е.И. Дунаю, В.И. Горяшину и другим, а также В.И. Белых за помощь в проведении полевых работ и полезные консультации. Работа выполнена при финансовой поддержке, гранта «Российские университеты» (проект УР.09.01.038), грантов РФФИ (проекты № 03-05-64073, 02-05-79023, 03-05-06443), Президента РФ (проект 00-15-99397), ФЦП "Интеграция" (проект Э0348).

ЛИТЕРАТУРА

- James H.L. Sedimentary facies of iron formation // Econ. Geol. -1954. -V. 49. -P. 235-285.
- Железные руды КМА (Под ред. В.П Орлова и др.). -М., 2001. -616 с.
- Gole M.J., Klein C. Banded iron formation through much of Precambrian time // J. Geol. -1981. -V. 89. -P. 169-183.
- Савко К.А., Поскрякова М.В. Рибекит-эгиринселадонитовые железистые кварциты Михайловского железорудного месторождения курской магнитной аномалии: фазовые равновесия и условия метаморфизма // Петрология. -2003. -Т. 11. -№4. (В печати).
- Fonarev V.I., Graphchikov A.A., Konilov A.N. A consistent system of geothermometers for metamorphic complexes // Int. Geol. Review. -1991. -V. 33. -№ 8. -P. 743-783.
- Eggleton R.A, The crystal structure of stilpnomelane: Part II. The full cell // Miner. Mag. -1972. -V. 38. -P. 693-711.
- Eggleton R.A., Chappell B.W. The crystal structure of stilpnomelane: Part III. Chemistry and physical properties // Miner. Mag. 1978. -V. 42. -P. 361-368.
- Miyano T., Beukes N. J. Mineralogy and petrology of the amphibole asbestos-bearing rocks of the Penge iron formation, Transvaal Supergroup, Penge area // Geol. Soc. South Africa. Geocongress 84, 1984. Potchefstroom. -P. 109-113.
- Leake B.E., Woolley A.R., and 20 members of the Subcommittee on Amphiboles. Nomenclature of amphiboles. Report of the Subcommittee on Amphiboles of the International Mineralogical Association Commission on New Minerals and Mineral Names// Eur. J. Mineral. -1997. -V. 9. -P. 623-651.
- Robinson P., Spear F. S. et. al. Phase relations of metamorphic amphiboles: natural occurrence and theory // Reviews in mineralogy. -1982. -V. 9B. -P. 3-227.
- Савко К.А., Кальмуцкая Н.Ю. Физико-химические условия метаморфизма магнетит-грюнерит-рибекитовых пород Приоскольского железорудного месторождения Курской магнитной аномалии // Вестн. Воронежского ун-та. Сер. геол. -2002. -№ 1. -С. 95-103.
- Klein C. Mineralogy and Petrology of the metamorphosed Wabush iron formation, southwestern Labrador // J. Petrol. -1966. -V.7. -P. 246-305.
- Klein C., Fink R. P. Petrology of the Sokoman Iron Formation in the Howells River area, at the western edge of the Labrador Trogh // Economic Geology. -1976. -V. 71. -P. 453-488.
- Miyano T., Klein C. Phase equilibria in the system K₂O-FeO-MgO-Al₂O₃-SiO₂-CO₂-H₂O and the stability limit of stilpnomelane in metamorphosed Precambrian iron formations // Contrib. Mineral. Petrol. -1989. -V.102. -P. 478-491.

- Klein C. Regional metamorphism of Proterozoic iron formation, Labrador Trough, Canada // Amer. Miner. -1978. -V. 63. -P. 898-912.
- Klein C. Diagenesis and metamorphism of Precambrian iron formations. In Trendall A.F., Morris R.C. (eds.) "Iron formations: facts and problems". Elsevier, Amsterdam, 1983. -P. 417-469.
- Haase C. S. Metamorphic petrology of the Negaunee Iron Formation, Marquette District, Northern Michigan: mineralogy, metamorphic reactions, and phase equilibria // Econ. Geol. -1982. -V. 77. -P. 60-81.
- Кориковский С.П. Фации метаморфизма метапелитов. – М., 1979. -260 с.
- French B.M. Mineral assemblages in diagenetic and lowgrade metamorphic iron formations // Econ. Geol. -1973. -V.68. -P. 1063-1074.
- Klein C. Greenalite, minnesotaite, crocidolite and carbonates in a very low-grade metamorphic Precambrian iron formation // Canad. Miner. -1974. -V. 12. - P. 475-498.
- Eugster H.P. Inorganic bedded cherts from the Magadi area, Kenya // Contrib. Miner. Petrol. -1969. -V.22. -P. 1-31.
- 22. Miyano T. Stilpnomelane, Fe-rich mica, K-feldspar and hornblende in banded iron formation assemblages of the Dales Gorge Member, Hammersley Group, Western Australia // Canad. Miner. -1982. -V.20. -P. 189-202.
- 23. Giralt S., Riera S., Klerkx J. et al. Lake Issyk-Kul: an example of recent evolution in a continental environment// Terra Nostra 2001/2. Girona, Spain. 3rd Workshop Southern European Working Group of the European lake Drilling program.
- 24. Trendall A.F., Blockley J.G. The iron formation of the Precambrian Hamersley Group, Western Australia with special reference to the associated crocidolite // Western Australia Geol. Surv. Bull. -1970. -119p.
- 25. Глаголев А.А. Метаморфизм докембрийских пород КМА. - М., 1966. - 157 с.
- Miyano T., Klein C. Conditions of riebeckite formation in the iron-formation of the Dales Gorge Member, Hamersley Group, Western Australia // Amer. Mineral. -1983. -V. 68. - P. 517-529.
- Miyano T., Beukes N. J. Mineralogy and petrology of the contact metamorphosed amphibole asbestos-bearing Penge iron formation, Eastern Transvaal, South Africa // J. Petrol. 1997. -V. 38, №5. -P. 651-676.
- Ernst W.G. Synthesis, stability relations, and occurrence of ribeckite and ribeckite-arfvedsonite solid solutions // J. Geol. -1962. -V.70. -P. 689-736.
- 29. Frost B.R. Contact metamorphic effect of the Stillwater Complex, Montana: the concordant iron formation: a discussion of the role of buffering in metamorphism of iron formation // Amer. Mineral. -1982. -V. 67, № 1/2. -P. 142-148.
- Фонарев В.И. Минеральные равновесия железистых формаций докембрия. -М., 1987. -296 с.
- Савко К.А. Фаялит-грюнерит-магнетит-кварцевые породы железистой формации ВКМ: фазовые равновесия и условия метаморфизма // Петрология. -1994. -Т.2. -№ 5. -С. 540-550.
- Коржинский Д.С. Факторы минеральных равновесий и минералогические фации глубинности. -М., 1940. -Вып.12. -№5. -100 с.