УДК 546.65: 552.114 (470.32)

РАСПРЕДЕЛЕНИЕ РЕДКОЗЕМЕЛЬНЫХ И МАЛЫХ ЭЛЕМЕНТОВ В ДИАГЕНЕТИЧЕСКИХ МИНЕРАЛАХ ЖЕЛЕЗА ВОРОНЕЖСКОЙ АНТЕКЛИЗЫ

В.А.Шатров, Ю.Ю.Бугельский*, В.М.Новиков*, А.Д.Слукин*, Г.В.Войцеховский, А.Н.Зеленская

Воронежский государственный университет *Институт геологии рудных месторождений, петрографии, минералогии и геохимии РАН, г. Москва

В статье рассматриваются особенности распределения редкоземельных и малых элементов в марказитах, пиритах и сидеритах осадочного чехла. Это очередная статья из серии статей, в которых разрабатывается возможность использования элементов-примесей для уточнения обстановок осадконакопления в рамках принятой геодинамической модели развития Воронежской антеклизы

Считается, что при формировании осадочного чехла плитные условия осадконакопления сохранялись на огромных площадях относительно стабильными, что выражается в стабильности свойств осадков на макроуровне. Однако, на уровне поведения элементов-примесей, в том числе редкоземельных элементов (REE), для аутигенных минералов отмечаются существенные различия. Причины этого вилятся в особенностях проницаемости земной коры на различных этапах формирования осадочного чехла, которые хорошо коррелируются с изменениями движения литосферных плит, обуславливающих эндогенную активность. Задачей настоящего исследования является попытка увязать геохимические особенности диагенетических минералов железа (марказитов, пиритов, сидеритов) с влиянием различных структур фундамента. Данная работа является продолжением изучения закономерностей распределения редкоземельных и малых элементов в фосфоритах Воронежской антеклизы [1,2].

Диагенетические образования минералов группы железа прослеживаются по всему стратиграфическому разрезу территории ВКМ и часто встречаются в виде желваков и конкреций как в пределах осадочного чехла, так и фундамента. В подавляющем большинстве они являются раннедиагенетическими образованиями, формирующимися вблизи поверхности осадка. Рассмотрены диагенетические образования минералов железа (марказиты, пириты, сидериты) осадочного чехла Воронежской антеклизы, имеющие приуроченность к различным структурным элементам фундамента - жестким мегаблокам (обр. 199001, 199002, H – 31, 8/5) и Ливенско-Богучарской шовной зоне (обр. 950732, 950731, 950742, 950741, H – 5, H – 12, H – 16, H – 25). Графики содержания редкоземельных элементов нормированы к глинам платформ [3], содержание малых элементов – к среднему содержанию элементов в глинах [4].

Сульфиды железа из базальных конгломератов воробьевской и ардатовской свит живетского яруса и ястребовской свиты франского яруса (обр. 950742, 950741, 950732, 950731) развиты на контакте с гранитами кристаллического фундамента (Павловский гранитный карьер) и представлены марказитом, который образует небольшие (первые сантиметры) шаровидные конкреции. На срезе (в полированных шлифах) видно, что они имеют неоднородное строение. Внутренняя часть конкреций сложена тонкозернистым материалом, внешняя зона в виде хорошо выраженной оторочки выполнена окристаллизованным марказитом [5]. Распределение REE в марказитах имеет пилообразный характер, слабо выражен дефицит легких (LREE – La. Ce, Pr, Nd)

при небольшом избытке средних (MREE – Sm, Eu, Gd, Tb) и тяжелых (HREE – Du, Ho, Er, Tm, Yb, Lu) редких земель (рис.1). Европиевый максимум на всех графиках выражен отчетливо, значение Eu/Eu* изменяется от 1,08 до 1,92, среднее – 1,4. Значения La/Yb изменяется от 3,85 до 10,64, среднее –

Рис. 1. Распределение REE в марказитах и пиритах Воронежской антеклизы.

Таблица
Редкоземельные элементы (в г/т) и геохимиче-
ские отношения для марказитов и пиритов
Воронежской антеклизы

		-				
	950742	950741	950732	950731	H-12	H-16
La	1.77	1.17	1.67	0.74	22.0	66.0
Ce	4.26	1.49	4.11	1.63	41.0	124.0
Pr	0.65	0.18	0.5	0.23	4.8	15.0
Nd	2.87	0.78	1.9	1.09	18.0	58.0
Sm	0.91	0.12	0.51	0.17	3.0	1.0
Eu	0.22	0.07	0.18	0.06	0.78	2.9
Gd	0.48	0.15	0.34	0.23	3.2	11.0
Tb	0.14	0.02	0.06	0.03	0.36	1.2
Dy	0.78	0.18	0.23	0.29	1.5	5.2
Но	0.14	0.02	0.06	0.05	0.26	0.88
Er	0.42	0.11	0.16	0.13	0.56	2.2
Tm	0.07	0.02	0.01	0.01	0.07	0.3
Yb	0.46	0.11	0.17	0.17	0.57	1.6
Lu	0.06	0.02	0.02	0.04	0.08	0.2
Y	2.74	1.04	1.34	1.3	2.7	10.0
ΣREE	13.23	4.44	9.92	4.87	96.18	298.48
La/Yb	3.85	10.64	9.82	4.35	38.6	41.25
Eu/Eu*	1.08	1.92	1.47	1.12	0.87	0.94
Ce/Ce*	0.86	0.67	1.0	0.67	1.03	1.02
$\Sigma Ce/\Sigma Y$	2.32	2.61	4.49	2.05	15.21	13.13
La/Sm	1.95	9.75	3.27	4.35	7.33	6.6
Ce/Sm	4.68	12.42	8.06	9.59	13.67	12.4
Yb/Sm	0.51	0.92	0.33	1.0	0.19	0.16
Y/Sm	3.01	8.67	2.36	7.65	0.9	1.0

7,2. Отмечается общее пониженное значение ΣREE , изменяющееся от 4,44 до 13,23 г/т, среднее - 8,16 г/т. Среднее значение Ce/Ce* - 0,8, ∑Ce/∑Y - 2,87 (табл.1). По результатам интерпретации характера распределения REE и значениям геохимических коэффициентов - La/Sm, Ce/Sm, Yb/Sm, Y/Sm (табл.1) условия образования осадка соответствуют морским обстановкам, удаленным от береговой линии. Пилообразный характер распределения связан с многократным перемывом отложений (базальные конгломераты), что привело к различному влиянию на формирование марказитов растворимого и сорбированного комплекса REE. Особенности содержания элементов-примесей в марказитах следующие: высокие содержания Ge,Cd,In,Pd (0,25 г/т обр. 950742), Аи (1,73 г/т - обр. 950732), повышенные содержания - Cu,Zn,Pb,As,Se,Mo (табл.2, рис.3).

Конкреции марказита ястребовской свиты франского яруса верхнего девона - образцы H–12, H–16 (Павловский гранитный карьер) имеют размеры от 1 до 2,5 см в диаметре и отобраны из прослоев тонкого песчаного материала с примесью переотложенной пирокластики, и приурочены к небольшим по мощности пластам глинистых пород в нижней части свиты. Значение ∑REE в конкрециях 96,18 и 298 г/т соответственно, что значительно меньше в сравнении со средним значением ∑REE во вмещаюших глинистых отложениях (в среднем 596,16

Таблица 2 Содержание элементов-примесей в марказитах, пиритах (в г/т) Воронежской антеклизы

	-P (°P ° · · · ·			
	950742	950741	950732	950731	H-12	H-16
Hσ	0.0	0.0	0.0	0.0	0.15	0.11
As	24.81	13.46	9.81	11.5	83.0	46.0
Те	0.0	0.0	0.07	0.0	0.02	0.0
TI	2.67	0.0	0.07	0.0	4.0	3.6
Sh	0.87	0.5	0.35	0.59	11.0	27.0
Au	0.3	0.0	0.02	1.73	0.06	0.14
Ag	0.0	0.0	0.02	0.0	1.5	3.2
Pt	0.0	0.0	0.23	0.0	0.67	2.3
Se	2.23	0.1	2.26	0.0	19.0	12.0
Mn	256.16	149.22	149.95	163.26	4800.0	-
Ni	-	-	-	-	1140.0	999.0
Со	-	-	-	-	348.0	-
Zn	55.08	55.29	9.24	58.19	157.0	477.0
Cu	28.83	46.04	22.64	17.55	33.0	72.0
Pb	68.07	42.0	52.34	39.65	344.0	390.0
Cd	0.83	0.19	0.17	0.0	0.84	3.0
Ga	2.44	2.38	2.03	1.78	11.0	17.0
Ge	35.4	33.2	31.88	35.55	28.0	26.0
Sn	1.33	0.0	0.0	0.05	2.4	7.5
Mo	4.24	7.22	8.49	11.38	5.6	6.9
Sc	0.05	0.0	0.0	0.0	40.0	68.0
V	10.51	5.55	7.23	10.42	117.0	206.0
Rb	1.56	1.41	1.49	1.4	2.0	2.3
Zr	13.33	4.97	8.15	4.49	79.0	327.0
Ba	38.1	48.95	38.27	33.69	41.0	116.0
Th	0.36	0.24	0.28	0.11	1.1	2.7
U	0.89	0.51	0.35	0.14	0.56	1.3
Hf	0.4	0.16	0.33	0.18	2.3	6.7

г/т) [6], что связано с наличием в глинах большого количества органического вещества, выступающего в качестве сорбента. Распределение REE в конкрециях характеризуется избытком LREE при дефиците HREE, европиевый максимум выражен слабо (отношения Eu/Eu* изменяется от 0,87 до 0,94), значение La/Yb изменяется от 38,6 до 41,25 (рис.1, табл.1). По значению геохимических отношений Eu/Eu*, Ce/Ce* и ряду других (табл.1) конкреции близки к одновозрастным глинистым образованием. Характер распределения соответствует прибрежноморским условиям при значительном поступлении обломочного материала, обогащенного LREE (начальная стадия трансгрессивного цикла развития палеобассейна ястребовского времени) [6,7]. На основании значений Се/Се* и ∑Се/∑Ү климатические условия образования отложений живетского и франского ярусов - гумидные [3], что подтверждается ранее проведенными исследованиями [8]. В марказитовых конкрециях отмечаются высокие содержания Cr,Co,Ni,Ge,As,Se,Au,Pb,Cd,Sb, в образце Н – 16: Ag (1,5 г/т), Pt (2,3 г/т), Pd (1,4 г/т); повышенные - B, Sc, Zn, Mo, Tl, Cu (рис.3, табл.2).

Образец 199001 представлен пиритом из отложений визейского яруса нижнего карбона (туль-

Рис. 2. Распределение REE в марказитах, пиритах и сидеритах Воронежской антеклизы.

Рис. 3. Распределение элементов-примесей в марказитах и пиритах Воронежской антеклизы.

ский горизонт, Павловский район). Характер распределения REE имеет слабо выраженный избыток MREE и HREE, с отчетливо выраженным минимумом по Sm, что соответствует морским условиям осадкообразования. Отношения Eu/Eu* равно 1,0, отношение La/Yb – 7,0 (рис.2, табл.3). Отмечается низкое значение \sum REE, равное 4,02 г/т. Значение Ce/Ce* - 1,0, значение \sum Ce/ \sum Y – 2,07. Образец имеет повышенные содержания Cd, In, As, Ge, Te, слабо повышенные против кларка - Tl, Mo (рис. 4, табл.4).

Образец 199002 (с. Новочеркутино), представлен пиритом, предположительно четвертичноюрского возраста (по всей видимости относится к переотложенным юрским образованиям). График распределения REE имеет избыток HREE при слабо выраженном дефиците легких и средних редких земель (рис. 2). Отношение La/Yb - 5,48. Значение ∑REE низкое, равное 5,3 г/т. Отношение Eu/Eu*-1,39, Се/Се* - 1,0. По геохимическим отношениям La/Sm, Ce/Sm, Yb/Sm. Y/Sm (табл. 3) и характеру распределения REE условия образования осадка определяются как относительно глубоководные при значительном удалении от береговой линии. Содержание элементов-примесей в целом незначительное (рис.4, табл.4). Отмечаются повышенные концентрации Au (0,14 г/т); высокоподвижных - Sb, Te; литофильных и халькофильных - Со, Ge, Mo, In, слабо повышенные содержания Tl, Bi, Se.

Карбонатно-железистые стяжения сантонского яруса верхнего мела (образец Н – 25), отобранные в северной части мергельного карьера п. Подгоренский, представлены желваками коричневато-черного цвета, неправильной формы, размером до 4 сантиметров, рентгеноструктурный анализ показывает присутствие в них следующих минералов: кальцита, сидерита, гетита. Распределения REE характеризуется небольшим избытком MREE и в целом близко к распределению в глинах платформ, отношение La/Yb - 12, 73 (рис. 2, табл. 3). Значение УREЕ -159,28 г/т, Eu/Eu* - 0,78, Ce/Ce* - 1,29, ∑Ce/∑Y -5,04. Геохимические отношения La/Sm, Ce/Sm, Yb/Sm, Y/Sm близки к составу морских вод и среднему содержанию элементов в платформенных глинах (табл.3). Анализ распределения показывает формирование осадка на значительном удалении от береговой линии при возрастании роли сорбированных и взвешенных REE. Образец Н – 25 характеризуется слабо повышенными содержаниями В, Со, Cu, Zn, Sb, P и повышенными - Cr, V, Cd, As, Se, Te, Pd (1,1 г/т) (рис. 4, табл. 4).

В пределах Курского мегаблока отобраны марказитовые конкреции сеноманского яруса верх-

Таблица 3 Редкоземельные элементы (в г/т) и геохимические отношения для марказитов, пиритов и сидеритов Воронежской антеклизы

	199001	199002	H-25	H-31	8//5	H-5
La	0.84	1.15	28.0	0.96	1.6	15.0
Ce	1.57	1.96	71.0	1.9	3.6	29.0
Pr	0.22	0.28	7.0	0.22	0.39	3.2
Nd	0.53	0.76	27.0	0.96	1.2	12.0
Sm	0.1	0.15	5.5	0.04	0.27	1.8
Eu	0.04	0.05	1.4	0.11	0.09	0.64
Gd	0.17	0.1	7.2	0.15	0.28	3.0
Tb	0.03	0.02	0.77	0.02	0.06	0.36
Dy	0.19	0.3	5.0	0.09	0.26	2.1
Но	0.05	0.04	1.0	0.01	0.05	0.47
Er	0.13	0.23	2.5	0.08	0.23	1.3
Tm	0.01	0.03	0.39	0.01	0.01	0.18
Yb	0.12	0.21	2.2	0.15	0.22	1.1
Lu	0.02	0.02	0.32	0.01	0.04	0.16
Y	1.13	2.28	17.0	0.33	0.42	8.1
ΣREE	4.02	5.3	159.28	5.04	8.3	70.31
La/Yb	7.0	5.48	12.73	6.4	7.27	13.64
Eu/Eu*	1.0	1.39	0.78	0.37	1.18	0.96
Ce/Ce*	1.0	1.0	1.29	1.0	1.0	1.1
$\Sigma Ce/\Sigma Y$	2.07	1.42	5.04	6.2	5.76	4.69
La/Sm	8.4	7.67	5.09	24.0	5.92	8.33
Ce/Sm	15.7	13.07	12.91	47.5	13.33	16.11
Yb/Sm	1.2	1.4	0.4	3.75	0.81	0.61
Y/Sm	11.3	15.2	3.09	8.25	1.56	4.5

него мела: образец Н – 31 (Лебединский железорудный карьер) и образец 8/5 (Стойленский железорудный карьер). Для марказитов отмечается очень низкое значение **SREE** - от 5,04 до 8,3 г/т соответственно. Графики распределения REE имеют пилообразный характер распределения HREE, отношение La/Yb изменяется от 6,4 до 7,27 (рис. 2, табл. 3). Обр Н - 31 имеет аномально высокие значения отношений La/Sm, Ce/Sm, Yb/Sm, Y/Sm и незначительный максимум Eu (Eu/Eu* - 0,37). Условия образования осадка определяются как мелководно-морские, удаленные от береговой линии. Значение Се/Се* - 1,0, $\Sigma Ce/\Sigma Y$ – изменяется от 5,76 до 6,2. Содержание малых элементов для марказитов следующее: обр. Н 31 характеризуется слабо повышенными содержаниями B, Zn, Pb, Cr, As, Мо и повышенными - Ge, Se, Sb, Cd, Au, Ag (1,6 г/т), обр. 8/5 – слабо повышенными содержаниями B, Co, Ni, As, Se, Mo, Te, W и повышенными - Sb, Cd, Bi, Tl, Au (0,29 г/т) (рис. 4, табл. 4).

Образец H – 5, представлен сидеритом из «сидеритовой плиты», залегающей в подошве неокомского надъяруса и расположенной в пределах междуречья Дона – Ведуги. Сидерит серого или голубовато-зеленого цвета, массивной текстуры, кристаллической до пелитоморфной структуры, слабо подвергнутый диагенетическим преобразованиям. Распределение REE имеет слабо выраженный избыток средних лантаноидов, отношение La/Yb – 13,64,

Таблица 4 Содержание элементов-примесей в марказитах, пиритах и сидеритах (в г/т) Воронежской антеклизы

	199001	199002	H-25	H-31	8//5	Н-5
Hg	0.0	0.25	0.07	0.02	0.21	0.0
As	224.35	-	34.0	42.0	32.0	4.9
Te	0.37	0.35	0.11	0.0	0.05	0.0
T1	4.21	1.97	0.41	0.2	43.0	0.07
Sb	0.73	50.17	14.0	43.0	54.0	9.4
Au	0.0	0.34	0.0	0.01	0.29	0.0
Ag	0.0	0.0	0.25	1.6	0.0	1.0
Pt	0.0	0.0	0.0	0.08	0.19	0.0
Se	0.33	1.1	34.0	8.2	2.8	13.0
Mn	133.67	104.57	5050.0	441.0	196.0	-
Ni	-	-	190.0	56.0	127.0	5.1
Со	8.41	175.92	85.0	9.3	32.0	2.0
Zn	10.87	9.6	576.0	95.0	20.0	15.0
Cu	9.45	9.11	81.0	11.0	51.0	6.4
Pb	11.14	2.92	46.0	50.0	24.0	4.1
Cd	0.52	0.0	1.0	1.1	1.3	0.7
Ga	1.54	2.47	37.0	2.8	1.4	9.3
Ge	37.13	30.01	34.0	33.0	0.75	30.0
Sn	0.03	0.0	0.69	1.6	0.72	0.67
Mo	9.28	19.14	221.0	14.0	8.4	0.4
Sc	0.0	0.04	0.0	0.0	2.9	0.0
V	11.47	27.4	169.0	1.9	52.0	14.0
Rb	1.07	4.26	9.8	2.4	2.2	13.0
Zr	5.78	13.27	99.0	4.2	13.0	25.0
Ba	17.99	29.19	437.0	30.0	171.0	68.0
Th	0.16	0.25	0.99	0.15	0.8	1.4
U	0.1	0.68	20.0	0.17	1.1	0.46
Hf	0.16	0.19	1.1	0.09	0.72	0.82

значение $\sum REE - 70,31$ г/т, Eu/Eu - 0,96, Ce/Ce* - 1,1, $\sum Ce/\sum Y - 4,69$ (табл. 3, рис. 2). Климатические условия образования диагенетических минералов мелового возраста на основании значений Ce/Ce*, $\sum Ce/\sum Y$ определяются как гумидные, причем при сравнении с климатическими условиям живетского и франского веков девона, гумидность климата выражена более отчетливо. Сидерит имеет повышенные содержания Cr,Ge,Se,Cd,Sb,Ag (табл.4, рис. 4).

Содержания REE в пиритах и марказитах Воронежской антеклизы значительно ниже по сравнению с фосфоритами, глинистыми породами (212,15 г/т) и осадочным чехлом (112,02 г/т) Русской плиты в целом [9]. Однородный (без терригенных примесей) состав изученных марказитовых и пиритовых конкреций свидетельствует о сорбционном характере входящих в них редких земель. Следовательно, дифференциация лантаноидов в разновозрастных сульфидах, по-видимому, обязана как составу вмещающих отложений (положению на фациальном профиле седиментации), так и структурным особенностям фундамента (влияние разрывных нарушений).

В литосфере, и, в частности, в земной коре, отмечается значительное влияние процессов ман-

Рис.4. Распределение элементов-примесей в марказитах, пиритах и сидеритах Воронежской антеклизы.

тийного метасоматоза, осуществляемого при переносе химических элементов флюидными фазами $(CO_2, H_2O, CO_2 + H_2O)$. Считается, что содержание REE и других элементов во флюидной фазе значительно превосходит их содержание в расплаве, причем наименее глубинные магмы, а также продукты их кристаллизации характеризуются повышенными содержаниями Eu, и имеют резкий дефицит LREE [10]. В условиях пониженного литостатического давления (условия растяжения земной коры), приводящего к увеличению общей трещиноватости пород и раскрытию ранее образованных систем трещин, возможна разгрузка подвижных компонентов (углисто-водных флюидов) в вертикальном направлении и кристаллизация из них солевых компонентов, приводящая как к образованию стяжений железистого состава (пиритов), так и к обогащению осадочных пород, и в большей мере диагенетических образований (фосфоритов, марказитов, пиритов) рядом элементов, причем в большей мере редкоземельными, особенно европием и HREE, литофильными и халькофильными элементами. Возможность выноса флюидами халькофильных элементов: Си, Zn, Au, Ag, Hg, Sb, As неоднократно подчеркивается в литературе [11,12].

Причиной активизации тектонических нарушений могут являться различия в скоростях движения как крупных мегаблоков ВКМ, так и отдельных фрагментов, составляющих мегаблоки, вызывающие в областях растяжения утонение земной коры и усиление ее проницаемости, приводящее к возрастанию интенсивности проявления гидротермально-метасоматических процессов. Механизм формирования осадочного чехла Русской платформы в палеозое, подробно рассмотренный в литературе [13,14], применим и для осадочных отложений мезозоя и кайнозоя. В обстановках растяжения коры открывается возможность поступления вещества в виде флюидов, обогащенных рядом элементов, как в комплексы ранее образованных осадочных пород, так и в одновозрастные (на момент активизации разломов) осадки. Поступающее вещество строго локализуется над зоной тектонических нарушений (к примеру – золото) [15,16,17], что приводит к отсутствию значительных концентраций элементов в ранее сформированных породах. В реальных условиях формирование областей влияния разрывных нарушений фундамента в осадочный чехол сложно. Кинематика одних и тех же разломов фундамента существенно изменяется во времени. При изменении характера движения по разломам фундамента образование областей их динамического влияния в осадочном чехле как бы начинается заново [18]. В формирующихся на момент растяжения коры осадках, приуроченных к зонам динамического влияния разрывных нарушений, высокоподвижные, самородные, халькофильные, литофильные элементы могут распространяться в виде значительных ореолов, образуя при этом как повышенные концентрации (вплоть до рудных проявлений), так и пониженные, вплоть до разубоживания компонентов, за счет геохимического рассеяния вещества.

В связи с различными возможностями формирования диагенетических образований железа (как собственно диагенетических образований, так и вторичных образований за счет метасоматических процессов), а также большим возрастным, площадным и минеральным разнообразием изученных образцов для марказитов-пиритов характерен широкий спектр повышенных концентраций элементов. Характер распределения элементов-примесей в диагенетических образованиях минералов железа зависит от многих факторов. На первом месте стоит приуроченность к определенному комплексу вмещающих пород. Марказиты и пириты, залегающие среди глинисто-обломочных отложений, гораздо богаче по содержанию малых элементов (обр. 950742, 950741, 950732, 950731, Н – 12, Н – 16, Н – 31, 8/5), чем марказиты и пириты, залегающие среди карбонатных пород или представленные железисто-карбонатными минералами (сидеритом) (обр. 199001, 199002, H – 5, H – 25). Вторым фактором является приуроченность к различным структурам фундамента: Ливенско-Богучарской шовной зоне и жестким блокам фундамента (Брянскому и Курскому). Марказиты и пириты, расположенные в пределах шовной зоны,

Рис. 6. Бинарная диаграмма в системе La / Yb - ∑ (Hg. Tl. Te. As. Sb).

более разнообразны по содержанию и концентрациям малых элементов, чем приуроченные к областям жестких мегаблоков. Взаимоотношение этих факторов очень сложно и пока не до конца изучено.

На основании приведенного анализа содержания элементов - примесей отмечается различие в характере распределения REE и малых элементов в марказитах – пиритах в зависимости от приуроченности к различным типам структур фундамента. В работе рассмотрена возможность применения для целей диагностики зон растяжения – сжатия диагностических бинарных и тройных диаграмм [12]. Из раннее разработанных для фосфоритов диаграмм [11] для диагенетических минералов железа наиболее перспективны диаграммы в системе \sum (Hg. Tl. Te. As. Sb) - \sum REE, характеризующие проницаемость земной коры и в системе La / Yb - \sum (Hg. Tl. Te. As. Sb) (La/Yb является показателем положения осадков на фациальном профиле). Бинарные и тройные диаграммы в системах \sum REE - \sum (Hg. Tl. Te. As. Sb) x 10; La / Yb - \sum (Hg. Tl. Te. As. Sb) хорошо совпадают с геологическими данными, четко обособляя поля марказитов, пиритов, сидеритов, приуроченных к жестким мегаблокам (Курский, Брянский) и зонам развития крупных тектонических нарушений фундамента (рис.5,6,7).

В заключение можно сделать следующие выводы:

 характер распределения REE и значения геохимических отношений в диагенетических образованиях минералов железа позволяют проводить палеофациальные и палеоклиматические реконструкции условий образования;

- бинарные и тройные диаграммы распределения малых элементов и REE в системах \sum REE, \sum (Hg. Tl. Te. As. Sb), La / Yb – хорошо разделяют по-

Рис. 7. Тройная диаграмма в системе: $\sum \text{REE} - \sum$ (Hg. Tl. Te. As. Sb)- La / Yb.

ля, характеризующие приуроченность пиритовмарказитов к различным структурным элементам фундамента (жесткие блоки, тектонические нарушения – области повышенной проницаемости).

Работа выполнена при поддержке федеральной программы «Интеграция», проект КО – 335.

ЛИТЕРАТУРА

- Шатров В.А., Войцеховский Г.В., Зеленская А.Н. Новые данные по распределению редкоземельных и малых элементов в сеноманских фосфоритах Воронежской антеклизы // Вестн. Воронеж. ун та. Сер. геол. 2000. № 3(9). С. 95 101.
- Шатров В.А., Ненахов В.М., Войцеховский Г.В., Зеленская А.Н. Геохимические особенности фосфоритов и марказитов как индикаторов геодинамических обстановок для плитной стадии развития (на примере Восточно-Европейской платформы) // Матер. к литологическому совещ. «Литология и полезные ископаемые центральной России». -Воронеж, 2000. -С. 104.
- Балашов Ю.А. Геохимия редкоземельных элементов. М., 1976. -267 с.
- Виноградов А.П. Средние содержания химических элементов в главных типах изверженных пород земной коры // Геохимия. – 1962. – № 7. – С. 555-571.

- Сиротин В.И., Бугельский Ю.Ю., Новиков В.М., Слукин А.Д. Особенности изотопии серы, поведения лантаноидов и микроэлементов в пиритах и марказитах Воронежской антеклизы // Вестн. Воронеж. ун-та. Сер. геол. –2000. – №5(10). – С. 47-51.
- Зеленская А.Н., Шатров В.А., Войцеховский Г.В. Редкоземельные и малые элементы как индикаторы обстановок осадконакопления (на примере Воронежской антеклизы) // Вестн. Воронеж. ун-та. Сер. геол. - 1999.
 № 8. – С. 38 – 45.
- Девон Воронежской антеклизы и Московской синеклизы / Г.Д. Родионова, В.Т.Умнова, Л.И.Кононова и др. – М., 1995. – 265 с.
- Тихомиров С.В. Этапы осадконакопления девона Русской платформы. – М., 1967. – 268 с.
- Ронов А.Б., Мигдисов А.А. Количественные закономерности строения и состава осадочных толщ Восточно-Европейской платформы и Русской плиты и их место в ряду древних платформ мира // Литология и полезные ископаемые. -1996. - №5. - С. 451-475.
- Балашов Ю.А. Изотопно-геохимическая эволюция мантии и земли. – М., 1985. – 224 с.
- Механизмы концентрирования благородных металлов в терригенно-углеродистых отложениях. – М., 1999. – 124 с.
- Основы металлогении метаморфических поясов докембрия. – Л., 1984. – 340 с.
- Минерагения осадочных бассейнов континентов и периконтинентальных областей – М., 1998. – 590 с.
- 14. Трегуб А.И., Ненахов В.М., Сиротин В.И. Модель геодинамического развития Русской платформы в палеозое // Вестн. Воронеж. ун-та. Сер. геол. – 1998. -№5. – С. 19 – 26.
- Савко А.Д., Шевырев Л.Т., Ильяш В.В., Божко Е.Н. Золото и редкие минералы в осадочном чехле Воронежской антеклизы // Вестн. Воронеж. ун-та. Сер. геол. –1996. - № 1. – С. 133 – 138.
- Савко А.Д., Шевырев Л.Т., Ильяш В.В., Окороков В.А. Геохимические особенности и генезис золота осадочного чехла Воронежской антеклизы // Вестн. Воронеж. ун-та. Сер. геол. – 1996. - № 2. – С. 86 – 95.
- Савко А.Д., Шевырев Л.Т., Лоскутов В.В. Эксгаляционно-осадочная металлоносность Воронежской антеклизы - новые горизонты поисков рудных месторождений в осадочном чехле. Статья 1. Интерметаллиды: локализация, типы, состав // Вестн. Воронеж. ун-та. Сер. геол. – 1999. - № 7. – С. 139 – 155.
- 18. Трегуб А.И. Разрывные нарушения в фундаменте и осадочном чехле территории Воронежского кристаллического массива (ВКМ) // Вестн. Воронеж. ун-та. Сер. геол. 2000. № 5(10).– С. 7 15.