ФОРМИРОВАНИЕ КОРОНАРНЫХ СТРУКТУР ПРИ МЕТАМОРФИЗМЕ БЕЛОМОРСКИХ ГАББРОИДОВ: ОБЕСПЕЧНОСТИ ЗОНАЛЬНОСТИ КОРОН

Т.Л. Ларикина

Институт геологии рудных месторождений, петрографии, минералогии и геохимии РАН, г. Москва

Рассматриваются различные типы коронарных структур, исследованные в массивах лабрадорит-, лерцолит-габбро-норитах и магнетитовых габбро, расположенных на островах Кандалакского залива Белого моря, а также преобразование коронарных структур на начальных этапах амфиболизаций дружитов. Реконструируется метаморфическая эволюция дружитов и их образований в крепкой коре, иллюстрирующие встречную диффузию в коронарных структурах. Для сравнения приводится зональность гранилантоновых корон, исследованных в гранулитах Воронежского кристиллического массива.

Габброиды с коронарными структурами известны во многих высокометаморфизированных комплексах: на Полярном Урале [1], на Енисейском кряже [2], в Пакистане [3], в Шотландии [4], в Норвегии [5], в Гренландии [6], в горах Адирондак в Северной Америке [7] и др. Термин "дружитовые структуры" был введен Е.С. Федоровым при описании докембрийских пород Беломорья [8]. В зарубежной литературе распространен термин "коронарные структуры". Дружиты представляют собой прерывистые метаморфизм интрузивные породы габбро-норитового ряда, обладающие дружитовой (коронарной) структурой. Она выражается в нарастании концентрических реакционных кайм более поздних минералов (Hi, Grt и Срх) на магматические (Ol, Px) на их границе с пластиолексом [9].

Габброиды с коронарными структурами широко распространены в Беломорском кратоне Балтийского щита. Дружиты расположены в "серых" гнейсах беломорской серии, сложенной тоналит-мigmatит-гнейсов и амфиболит-кристобалит-гнейсовой ассоциацией, имеющие возраст 2.76-2.6 млн лет [10,11]. Внедрение расплавов габбро-норитов произошло примерно 2.45 млн лет назад [11]. Массивы габбро-норитов, имеющие в основном, тектонические контакты с вмещающими породами, метаморфизованы и амфиболизованы по краям. Большинство исследователей относит метаморфическое преобразование дружитов к сформированному этапу метаморфизма, с которым связано становление воронежского гранулитового пояса, примерно 1.9 млн лет назад [12].

Существует много описаний коронарных структур различного минерального состава, но еще не разработано общепринятой гипотезы их формирования. Интересным является вопрос участия флюидов в процессе роста корон, равновесность различных ассоциаций в дружитах (одновременно или сформировались все каймы в коронарных структурах), механизм их формирования, а также причины прекращения роста корон. Существуют представления об образовании дружитовых структур при метаморфизме [13,14], однако большинство авторов полагают, что формирование корон (в частности в породах Беломорья) происходило на предростовом этапе метаморфизма [12,15]. Пограничный же характер метаморфизма, инициирующий образование корон, был рассмотрен лишь на примере габброидов Садбери [16]. Исследования ранее [17,18] гранулитов других массивов, прежде всего Толстик позволяет связать начальный этап формирования корон в Беломорских габброидах с предпограничным метаморфизмом.

В настоящей статье рассматриваются различные типы коронарных структур, исследованные в массивах лабрадорит-, лерцолит-габбро-норитах и магнетитовых габбро, расположенных на островах Кандалакского залива Белого моря, а также преобразование коронарных структур на начальных этапах амфиболизаций дружитов. Реконструируется метаморфическая эволюция дружитов и их образований в крепкой коре, иллюстрирующие встречную диффузию в коронарных структурах. Для сравнения приводится зональность гранилантоновых корон, исследованных в гранулитах Воронежского кристиллического массива.

Массив Овечий

В образце габбро острова Овечий были обнаружены три типа коронарных структур со следующими последовательностями слоев:

1. Tlc → Срх → Grt → Pl
2. Opх → Срх → Hbl → Pl
3. Срх → Hbl → Pl

В центрах коронарных структур первого типа (рис. 1а) расположены тальк (мининостант), образовавшийся, вероятно, по оливину. Он окружен очень узкой (до 20 мкм) каймой клинопироксена. Внеш......
Рис.1 Коронарные структуры в Беломорских мегагабброидах. Фотографии в отраженных электронах.
а) короны Cpx и Grt вокруг первичного Ol, замещенного тальком в друидите массы Овчей. В Grt короне наблюдаются
включения Hbl. В PI россыпь шпинели и цеплюпипы силиманита.
б) короны Оpx, Hbl и Grt вокруг Ol, замещенного тальком в
амфиболизированном друидите массы Овчей. Grt кайма отделяется от Hbl короной тонкой каймой новообразованного
Pl.
в) короны Hbl и Grt вокруг Mt в амфиболизированном друидите массы Овчей. Grt кайма также отделяется каймой
Pl.
д) короны Hbl, Cum, Grt вокруг Оpx в массиве Леденецкий. Интересно отметить кайму более кислого пласцоклаза ре
дом с короной в правом верхнем углу рисунка.
е) короны Оpx, Hbl с Cpx и Sp и Grt вокруг Ol в габброидах массивов Крымов
Горелый. В данном случае Ol весь заместился Оpx, а зерно хромита сохранился.
ж) короны Bt и Grt вокруг Ilm в магне
титовых габбро массива Тополик.
Таблица 1

<table>
<thead>
<tr>
<th>Минер. Точка</th>
<th>Talc</th>
<th>Сpx корона</th>
<th>Сpx 64</th>
<th>Grt 65</th>
<th>Hbl 66</th>
<th>Grt 70</th>
<th>PI 72</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>57.99</td>
<td>53.57</td>
<td>53.37</td>
<td>39.37</td>
<td>43.29</td>
<td>40.06</td>
<td>39.70</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.08</td>
<td>0.00</td>
<td>0.02</td>
<td>0.00</td>
<td>0.70</td>
<td>0.02</td>
<td>0.01</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>3.57</td>
<td>2.72</td>
<td>3.11</td>
<td>22.51</td>
<td>17.90</td>
<td>22.62</td>
<td>22.87</td>
</tr>
<tr>
<td>FeO</td>
<td>14.69</td>
<td>4.51</td>
<td>4.69</td>
<td>20.66</td>
<td>5.54</td>
<td>16.98</td>
<td>18.07</td>
</tr>
<tr>
<td>MnO</td>
<td>0.22</td>
<td>0.02</td>
<td>0.13</td>
<td>0.51</td>
<td>0.07</td>
<td>0.37</td>
<td>0.37</td>
</tr>
<tr>
<td>MgO</td>
<td>22.51</td>
<td>15.10</td>
<td>14.57</td>
<td>10.53</td>
<td>15.68</td>
<td>9.24</td>
<td>10.91</td>
</tr>
<tr>
<td>CaO</td>
<td>0.36</td>
<td>23.11</td>
<td>23.03</td>
<td>6.42</td>
<td>12.58</td>
<td>10.71</td>
<td>8.05</td>
</tr>
<tr>
<td>Na₂O</td>
<td>0.35</td>
<td>0.97</td>
<td>1.08</td>
<td>0.00</td>
<td>2.66</td>
<td>0.01</td>
<td>0.03</td>
</tr>
<tr>
<td>K₂O</td>
<td>0.24</td>
<td>0.00</td>
<td>0.00</td>
<td>1.60</td>
<td>0.00</td>
<td>0.00</td>
<td>0.30</td>
</tr>
<tr>
<td>Сумма</td>
<td>100.00</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100.00</td>
</tr>
</tbody>
</table>

Таблица 2

<table>
<thead>
<tr>
<th>Корона</th>
<th>корона вокруг клинопироксена</th>
<th>корона вокруг ортопироксена</th>
<th>корона вокруг клинопироксена</th>
<th>корона вокруг ортопироксена</th>
</tr>
</thead>
<tbody>
<tr>
<td>Минер. Точка</td>
<td>Сpx</td>
<td>Hbl</td>
<td>Pl</td>
<td>PI</td>
</tr>
<tr>
<td>Комм. перв.</td>
<td>53.04</td>
<td>53.13</td>
<td>43.79</td>
<td>58.91</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>3.21</td>
<td>3.45</td>
<td>15.27</td>
<td>25.99</td>
</tr>
<tr>
<td>FeO</td>
<td>0.13</td>
<td>0.16</td>
<td>0.08</td>
<td>0.00</td>
</tr>
<tr>
<td>MgO</td>
<td>1.16</td>
<td>1.37</td>
<td>2.49</td>
<td>7.22</td>
</tr>
<tr>
<td>Сумма</td>
<td>100</td>
<td>99.99</td>
<td>100</td>
<td>100.02</td>
</tr>
</tbody>
</table>

Кристаллохимические формулы

<table>
<thead>
<tr>
<th>Корона</th>
<th>Si</th>
<th>Ti</th>
<th>Al</th>
<th>Fe</th>
<th>Mn</th>
<th>Mg</th>
<th>Ca</th>
<th>Na</th>
<th>K</th>
<th>О</th>
<th>НП</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ti</td>
<td>0.014</td>
<td>0.008</td>
<td>0.179</td>
<td>0.001</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.001</td>
<td>0.024</td>
<td>0.010</td>
</tr>
<tr>
<td>Al</td>
<td>0.139</td>
<td>0.149</td>
<td>2.552</td>
<td>1.367</td>
<td>1.517</td>
<td>0.051</td>
<td>0.091</td>
<td>0.170</td>
<td>1.342</td>
<td>2.806</td>
<td>2.906</td>
</tr>
<tr>
<td>Fe</td>
<td>0.206</td>
<td>0.155</td>
<td>1.074</td>
<td>0.009</td>
<td>0.004</td>
<td>0.004</td>
<td>0.009</td>
<td>0.015</td>
<td>0.011</td>
<td>0.005</td>
<td>0.792</td>
</tr>
<tr>
<td>Mn</td>
<td>0.004</td>
<td>0.005</td>
<td>0.009</td>
<td>0.000</td>
<td>0.006</td>
<td>0.004</td>
<td>0.009</td>
<td>0.004</td>
<td>0.003</td>
<td>0.000</td>
<td>0.003</td>
</tr>
<tr>
<td>Mg</td>
<td>0.831</td>
<td>0.789</td>
<td>2.994</td>
<td>0.003</td>
<td>0.000</td>
<td>1.577</td>
<td>1.441</td>
<td>0.778</td>
<td>0.009</td>
<td>3.251</td>
<td>3.244</td>
</tr>
<tr>
<td>Ca</td>
<td>0.786</td>
<td>0.868</td>
<td>1.838</td>
<td>0.354</td>
<td>0.524</td>
<td>0.010</td>
<td>0.090</td>
<td>0.865</td>
<td>0.314</td>
<td>1.870</td>
<td>1.870</td>
</tr>
<tr>
<td>Na</td>
<td>0.083</td>
<td>0.097</td>
<td>0.684</td>
<td>0.624</td>
<td>0.462</td>
<td>0.000</td>
<td>0.007</td>
<td>1.144</td>
<td>0.062</td>
<td>0.670</td>
<td>0.723</td>
</tr>
<tr>
<td>K</td>
<td>0.000</td>
<td>0.000</td>
<td>0.248</td>
<td>0.011</td>
<td>0.005</td>
<td>0.000</td>
<td>0.004</td>
<td>0.000</td>
<td>0.008</td>
<td>0.253</td>
<td>0.243</td>
</tr>
<tr>
<td>О</td>
<td>6.0</td>
<td>0.6</td>
<td>23</td>
<td>8</td>
<td>8</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>8</td>
<td>23</td>
<td>23</td>
</tr>
<tr>
<td>Сумма</td>
<td>4.01</td>
<td>4.02</td>
<td>15.79</td>
<td>5.00</td>
<td>5.00</td>
<td>4.01</td>
<td>4.00</td>
<td>4.03</td>
<td>5.02</td>
<td>15.86</td>
<td>15.91</td>
</tr>
<tr>
<td>X Mg</td>
<td>0.801</td>
<td>0.836</td>
<td>0.736</td>
<td>0.798</td>
<td>0.785</td>
<td>0.871</td>
<td>0.802</td>
<td>0.804</td>
<td>36</td>
<td>53</td>
<td>32</td>
</tr>
</tbody>
</table>

Ний края клинопироксенной каймы более глиноэ-мистый и натровый (табл.1, ан. 64). Далее следует широкая (около 100 мкм) корона граната.

Короны второго типа окружают крупные первично-магматические неизмененные зерна ортопироксена и не содержат граната. При этом внешний край первичного зерна ортопироксена более кальциевый (табл.2, ан.54). Короны сложены клинопироксенной каймой (более натровой и кальциевой, чем другие клинопироксены) и широкой амфиболо-
вой. На контакте клиноприпоксеновой и амфиболовой корон присутствуют небольшие зерна плагиоклаза (An₈₅).

Крупные зерна клиноприпоксена с ортоприпоксеновыми ламелями распадаются (вероятно, первичного пижонита) окруженные лишь одной тонкой прерывистой каймой роговой обманки. Эта кайма менее глиноземиста и значительно более тонкостена, чем другие амфиболы (табл.2, ам.35). Крупное зерно первичного клиноприпоксена несколько менее кальциевое и более магнезиальное, чем короны, и кроме того, в этом зерне были обнаружены очень мелкие ламели с высоким содержанием титана – вероятно, это рутил.

Плагиоклаз в породе имеет бурый цвет, что обусловлено включениями мелких (до 2 мкм) зерен шпинели. Плагиоклаз на контакте с гранатовыми коронами имеет состав An₈₅, на контакте с амфиболами - An₈₆-₈₈. Зерна клиноприпоксена окруженное ясно выраженной короной более кислого плагиоклаза (An₉₀) без включений.

В гранатовых коронах наблюдаются небольшие включения роговой обманки и биотита. Определение температуры по ним показывают более позднее перераспределение компонентов включений и контактирующего с ними граната.

При амфиболизации рассмотренных выше друз из них формируется роговая обманка, а гранатовая корона отделяется от амфиболовой тонкой новообразованной плагиоклаза. Исследованный образец (обр. 2/16) амфиболизированного друзья о-ва Овейч состоит из двух частей с хорошо развитыми коронарными структурами:

1. (Tlc —> Opx —> Hbl —> Pl —> Grt —> Pl)
2. (Hbl —> Hbl —> (Pl —> Grt —> Pl)

1. Короны развиваются вокруг таллка (заместившего оливин) и сложены ортоприпоксеном, зеленой роговой обманкой, новообразованным плагиоклазом (An₈₃-₈₄) и гранатом (рис.1b). У гранатовой короны с внешней стороны плагиоклаз имеет состав An₈₅. Ближе к контакту обеих частей породы таллк целиком замещается ортоприпоксеном, плагиоклазовая кайма из прерывистой цепочки зерен превращается в равномерную корону, шириной до 50 мкм, а кайма граната становится толще (до 300 мкм).

2. Короны развиваются по магнетиту и сложены бурым амфиболом, тонкой каймой плагиоклаза (An₂₄) и гранатом (рис.1c). По направлению к контакту наблюдаются те же тенденции, что и в первой части породы: гранатовая и плагиоклазовая каймы утолщаются. Большая степень изменения и амфиболизация коронарных структур в обеих частях породы у их контакта связана с большой проницаемостью в этой зоне.

Различий в составе гранатовых корон в обеих частях породы обнаружено не было. Зональность отдельных зерен граната, расположенных в плагиоклазе в амфиболитах — ретроградная. В породе присутствует два амфибола — бурый в коронах по магнетиту и зеленый в коронах по оливину (таллку) (табл.3). У бурого амфибола — магнезийность ниже, а содержание Al — выше, чем у зеленого, кроме
Таблица 4
Химические составы минералов коронарных структур вокруг Орх друзин масива Лодейный

<table>
<thead>
<tr>
<th>Минерал</th>
<th>Орх 0</th>
<th>Орх 13</th>
<th>Сум 14</th>
<th>Hbl 18</th>
<th>Grt 9</th>
<th>Grt 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>53.15</td>
<td>53.05</td>
<td>57.39</td>
<td>50.93</td>
<td>38.62</td>
<td>38.99</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.12</td>
<td>0.00</td>
<td>0.00</td>
<td>0.62</td>
<td>0.03</td>
<td>0.05</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>1.79</td>
<td>1.14</td>
<td>0.27</td>
<td>9.17</td>
<td>22.25</td>
<td>22.04</td>
</tr>
<tr>
<td>FeO</td>
<td>17.83</td>
<td>18.60</td>
<td>17.46</td>
<td>7.93</td>
<td>21.91</td>
<td>22.28</td>
</tr>
<tr>
<td>MnO</td>
<td>0.202</td>
<td>0.18</td>
<td>0.35</td>
<td>0.00</td>
<td>0.68</td>
<td>0.65</td>
</tr>
<tr>
<td>MgO</td>
<td>26.14</td>
<td>24.89</td>
<td>24.04</td>
<td>17.81</td>
<td>8.84</td>
<td>9.60</td>
</tr>
<tr>
<td>CaO</td>
<td>0.62</td>
<td>0.62</td>
<td>0.34</td>
<td>12.52</td>
<td>7.68</td>
<td>6.20</td>
</tr>
<tr>
<td>Na₂O</td>
<td>0.14</td>
<td>0.08</td>
<td>0.13</td>
<td>0.67</td>
<td>0.00</td>
<td>0.17</td>
</tr>
<tr>
<td>K₂O</td>
<td>0.02</td>
<td>0.00</td>
<td>0.02</td>
<td>0.37</td>
<td>0.00</td>
<td>0.04</td>
</tr>
<tr>
<td>Сумма</td>
<td>100.01</td>
<td>100.01</td>
<td>100.00</td>
<td>100.02</td>
<td>100.01</td>
<td>100.02</td>
</tr>
</tbody>
</table>

Кристаллохимические формулы

<table>
<thead>
<tr>
<th>Минерал</th>
<th>Формула</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si</td>
<td>1.940</td>
</tr>
<tr>
<td>Ti</td>
<td>0.003</td>
</tr>
<tr>
<td>Al</td>
<td>0.077</td>
</tr>
<tr>
<td>Fe</td>
<td>0.543</td>
</tr>
<tr>
<td>Mn</td>
<td>0.006</td>
</tr>
<tr>
<td>Mg</td>
<td>1.420</td>
</tr>
<tr>
<td>Ca</td>
<td>0.024</td>
</tr>
<tr>
<td>Na</td>
<td>0.010</td>
</tr>
<tr>
<td>K</td>
<td>0.001</td>
</tr>
<tr>
<td>O</td>
<td>6.00</td>
</tr>
<tr>
<td>Сумма</td>
<td>4.02</td>
</tr>
<tr>
<td>Х₂О₃</td>
<td>0.723</td>
</tr>
</tbody>
</table>

tого, по иллюмину развивается более титанистый амфибол.

В целом, при амфиболизации коронитов тальк становится более натрёвым и магнезийным (табл.1,3); в амфиболах понижается содержание алюминия и повышается - титана. Гранаты в друзьях имеют магнезиальность 0.5, амфиболиты заметно более желеzystые X₄₀₃=0.25-0.3. Содержание кальция в гранатах друзин и амфиболитов одинаково.

Массив Лодейный

Вокруг крупных зерен ортопироксена на границе с плаэгиоклазом развивается несколько типов корон (рис.1d) (эти три типа можно наблюдать даже вокруг одного зерна Орх) (табл. 4):

1. Орх → Hbl → Grt → Pl
2. Орх → Cpx → Hbl → Pl

Между оливином и плаэгиоклазом развиваются многослойные короны с гранатом (рис. 1e). В плаэгиоклазе были обнаружены очень мелкие, размером до 3 мкм, зерна шпинели и игольки силиманита. Рядом с коронами располагается зона гомогенного плаэгиоклаза.

От оливина к плаэгиоклазу последовательно развиваются следующие короны:

1. широкая ортопироксеновая кайма;
2. корона, состоящая из роговой обманки с мелкими зернами шпинели (иногда содержатся отдельные кристаллы клинопироксена);
3. гранатовая кайма с мелкими включениями роговой обманки;
4. внешняя роговообманковая кайма с небольшим количеством биотита.

Возможно, вторая (амфиболовая) кайма была сначала сложена клинопироксеном и шпинелем, однако затем, по ней сформировался вторичный амфибол. В отдельных участках коронарных структур реликты клинопироксена сохранялись, а в других местах - нет.

В породе были обнаружены аналогичные коронарные структуры без оливина (рис.1е), но с зернами хромита в центре корон. Этот факт не может свидетельствовать о другом типе корон - вероятно, в процессе роста корон весь оливин заместился ортопироксеном, а включения хромита в оливине сохранились.
Вокруг крупных зерен первичного ортопироксена были обнаружены короны, имеющие скошенное иное строение: они состоят из внутренней клинопироксеновой каймы и внешней роговообманковой (табл.5). Между этими двумя каймами иногда находятся мелкие (возможно, вторичные) зерна ортопироксена, содержащие до 0,1 форм.ед. Al. Клинопироксены в коронах по ортопироксену и по оливию в массиве Кривой-Горелый в целом похожи (табл.5), но клинопироксен, развивающийся по ортопироксену (ане.33) содержит чуть больше алюминия и натрия по сравнению с клинопироксеном по оливию (ане.5).

При амфиболизации этих пород гранатовая корона, также как и в других островах Овечий, отделяется от клинопироксеновой каймы плагиоклаза.

Магнезитовые габбро массива Толстик

Коронаные структуры в массиве лабрадор-габбро-норитов Толстик были подробно описаны в [17]. Рассмотрим коронаные структуры в магнезитовых габбро этого же массива. В породе были обнаружены крупные зерна клинопироксена с ортопироксеновыми ламеллями распада твердых растворов, вероятно, первично-магматического пикинита (табл.6). Вокруг крупных зерен магнезита и ильменита образуются следующие короны:

- \(\text{Mag} \rightarrow \text{Cpx} \rightarrow \text{Grt} \rightarrow \text{Pl} \)
- \(\text{Im} \rightarrow \text{Bt} \rightarrow \text{Grt} \rightarrow \text{Pl} \)
- \(\text{Cpx} \rightarrow \text{Ort} \rightarrow \text{Pl} \)

Зерно магнезита окружено тонкой (до 30 мкм) каймой клинопироксена и каймой граната шпинельной около 300 мкм. В коронах по ильмениту (рис.11) ширина биотитовой короны варьирует от 30 до 200 мкм и больше. Гранатовые короны всех трех типов габброидных структур аналогичны по составу и характеру зональности.

Р-Т параметры метаморфизма

Определения температуры образования коронаных структур в массиве Овечий показали в среднем 660-680°C. В амфиболизированных габроболах массива Овечий интервал температур несколько ниже — 590-670°C; зеленый амфибол (по тальку) менее высокотемпературный (560-610°C), чем бурый (по магнетиту) (650-680°C). Подобное различие по температуре и давлению можно объяснить тем, что ассоциация Grt-Cpx в коронах по оливию (тальку) устойчива до более низких температур.

Роговые обманки безоливиновых коронитов массива Лодейного и массива Толстик менее высокотемпературные (550-600°C). Гранатовые равновесия показывают температуру около 660°C. В магнезитовых габбро массива Толстик распад твердых растворов первичного пикинита произошел при температуре — 670°C по [25]. По гранатовым равновесиям можно определить температуру, равную 660-690°C. Температура формирования корон массива Кривой-Горелый укладывается в тот же интервал. В целом можно выделить два основных этапа формирования коронаных структур: рост корон при проградном метаморфизме (приблизительно при Т=670°C и Р=6-7 кбар) и этап амфиболизации габброидов на ретроградном этапе метаморфизма (Т=540-590°C, Р=4-5 кбар). Аналогичные этапы амфиболизации температуры демонстрирует термометрия включений роговой обманки и биотита в гранатовой кайме, а также контактные зоны граната и клинопироксена, что указывает на позднее переурожаевшение составов минералов. Таким образом, всю ретроградную ветвь метаморфизма удастся четко проследить в различных типах коронаных структур.

Для сопоставления условий метаморфизма в габроболах и вмещающих породах были исследованы вмещающие архейские тонолит-тондьемитовые гнейсы и амфиболиты (рис. 7). Особое внимание было удалено зональности гранатов в них. Зональность зерен граната (рис. 3e) практически ровная (и магнезиальность и кальциевость), однако, к краю зерна наблюдается некоторое увеличение содержания магнезии. Биотит-гранатовая термометрия в гнейсах массива Лодейный показала ретроградный тренд - от 680°C до 650°C. В гнейсах массивов Кривой-Горелый и Овечий геотермометры фиксируют снижение температуры до 615-630°C. В целом, эти Р-Т параметры хорошо укладываются в рассмотренный трендом метаморфизма и соответствуют условиям формирования коронаных структур в габроболах.

В тоналлитовых гнейсах и гранатовых амфиболитах на полуострове Толстик были исследованы лилины гранатитов (Qtz-Hbl-Grt пород с реликтами клинопироксена). Зерна граната практически гомогены, но к краю кристаллов наблюдается слабое ретроградное уменьшение магнезиальности. Термоарометрия показывает следующие результаты по
Таблица 5

<table>
<thead>
<tr>
<th>Крона вокруг оливинна</th>
<th>корона вокруг Оpx</th>
<th>корона вокруг Оpx</th>
</tr>
</thead>
<tbody>
<tr>
<td>Мнр. Точка на Комм.</td>
<td>Ol</td>
<td>Opx</td>
</tr>
<tr>
<td>SiO₂</td>
<td>39.46</td>
<td>56.22</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.09</td>
<td>0.00</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>0.00</td>
<td>0.75</td>
</tr>
<tr>
<td>FeO</td>
<td>18.32</td>
<td>12.38</td>
</tr>
<tr>
<td>MnO</td>
<td>0.12</td>
<td>0.23</td>
</tr>
<tr>
<td>MgO</td>
<td>41.99</td>
<td>30.15</td>
</tr>
<tr>
<td>CaO</td>
<td>0.00</td>
<td>0.21</td>
</tr>
<tr>
<td>Na₂O</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>K₂O</td>
<td>0.00</td>
<td>0.02</td>
</tr>
<tr>
<td>Сумма</td>
<td>99.98</td>
<td>99.96</td>
</tr>
</tbody>
</table>

Химические составы минералов коронарных структур в друзитах массива Кривой-Горелья

<table>
<thead>
<tr>
<th>Кристаллохимические формулы</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si</td>
</tr>
<tr>
<td>Ti</td>
</tr>
<tr>
<td>Al</td>
</tr>
<tr>
<td>Fe</td>
</tr>
<tr>
<td>Mn</td>
</tr>
<tr>
<td>Mg</td>
</tr>
<tr>
<td>Ca</td>
</tr>
<tr>
<td>Na</td>
</tr>
<tr>
<td>K</td>
</tr>
<tr>
<td>O</td>
</tr>
<tr>
<td>Сумма</td>
</tr>
<tr>
<td>X_Mg</td>
</tr>
</tbody>
</table>
Рис.3. Профили через гранатовые короны в друизитах: а) корона по Ой (тальку) в друизите массы Овечий; б) корона по тальку в амфиболизированном друизите массы Овечий; в) по Ой в друизите массы Кривой-Горбец; г) по Орх в друизитах массы Людейны; д) по плагиоклазу в Мт габбро массы Топлип; е) профиль через зерно граната в тоналитовом гнейсе.
равновесием гранат-клинопиросен и гранат-амфибол: 628-656°С, что также хорошо согласуется с метаморфизмом друцитов и вмещающих тонолитовых гнейсов.

Особенности зональности коронарных структур

Для описания процессов образования корон рассматривается следующая модель: коронарные структуры различного минерального состава формируются по механизму диффузионного биметасоматоза при реакциях Fe-Mg минералов (Ol, Opx, Mag, Cpx) с плагиоклазом (при встречной диффузии Ca, Al, Si со стороны Pl, и Mg и Fe - со стороны жезло-магнезиальных минералов). Как и в случае классического метасоматоза [26], все слои в коронах были сформированы одновременно, и в дальнейшем происходило только их разрастание. Подобный взгляд на коронарные структуры как продукт твердофазной диффузии в «сухой» системе давно рассматривался разными исследователями, например [27, 28]. Существуют представления, что на начальных этапах метаморфизма в друцитах были локальные неравновесные участки, в каждом из которых происходил реакционный рост определенных ассоциаций. Однако рассматриваемые выше коронарные структуры в магнетитовых габбро массива Толстик опровергают это: вокруг магнетита, на его контакте с плагиоклазом, образуются короны клинопиросенна (X_{Mg} = 0.6) и граний (X_{Mg} = 0.16) (табл.6). Возможный источник магния для подобных коронарных структур – первичный пироксен. Кроме того, этот факт косвенно подтверждает присутствие межгранулярного флюида, который служил средой для массопереноса при формировании корон. Рассмотрим зональность пироксеновых, гранатовых и амфиболово-корков для иллюстрации этого процесса.

Пироксены. Периклино-магматические и коро- нарные ортопироксены, образующиеся по оливину, четко различаются между собой – их можно разделить на две группы по морфологии и составу:

- Периклино-магматические – крупные зерна, темные при одном николе, всегда окружены двойной Hbl-Cpx каймой без граната. Краевые части крупных первичных зерен ортопироксена более кальциевых и глиноzemистые. Вероятно, это изменение первичного состава произошло в процессе роста корон.

- Коронарные - представлены волокнистым агрегатом мелких зерен.

Во всех ортопироксеновых коронах и в друситах массива Кривой-Гордель и в амфиболизированных друситах массива Овечей была обнаружена четкая зональность (табл.3 и 5): по направлению от оливинка к плагиоклазу в кайме повышается содержание алюминия (с резким пиком на границе со следующей каймой).

В клинопиросеновых коронах, там, где они сохранились (не подверглись амфиболизации) в магнетитовых габбро Толстик и в друситах массива Овечей, можно также отметить похожее увеличение содержания Al и Ca по направлению к плагиоклазу (табл.1 и 6). Клинопиросены в коронах по ортопироксenu в массивах Кривой-Гордель и Овечей обычно содержат чуть больше алюминия и натрия по сравнению с клинопиросенами по оливину.

Амфиболы. В короне по оливину в друситах массива Кривой-Гордель внутренняя кайма амфи-

<table>
<thead>
<tr>
<th>Минер.</th>
<th>Тошка</th>
<th>Kom.</th>
<th>Bt</th>
<th>33</th>
<th>Cpx 73</th>
<th>Cpx 74</th>
<th>Grt 75</th>
<th>Grt 76</th>
<th>Grt 77</th>
<th>Grt 78</th>
<th>Opx 79</th>
<th>Cpx 80</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>37.72</td>
<td>50.78</td>
<td>51.37</td>
<td>37.01</td>
<td>37.23</td>
<td>37.51</td>
<td>37.66</td>
<td>49.02</td>
<td>51.94</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TiO₂</td>
<td>4.76</td>
<td>0.20</td>
<td>0.11</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.07</td>
<td>0.02</td>
<td>0.24</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>14.75</td>
<td>1.97</td>
<td>1.49</td>
<td>20.62</td>
<td>20.71</td>
<td>20.56</td>
<td>20.95</td>
<td>0.70</td>
<td>2.03</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FeO</td>
<td>22.32</td>
<td>14.21</td>
<td>13.17</td>
<td>32.13</td>
<td>31.21</td>
<td>30.53</td>
<td>30.32</td>
<td>35.49</td>
<td>13.20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MnO</td>
<td>0.00</td>
<td>0.15</td>
<td>0.02</td>
<td>1.06</td>
<td>0.69</td>
<td>0.63</td>
<td>0.60</td>
<td>0.59</td>
<td>0.06</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MgO</td>
<td>10.99</td>
<td>10.32</td>
<td>10.84</td>
<td>2.34</td>
<td>2.37</td>
<td>2.38</td>
<td>3.11</td>
<td>13.65</td>
<td>10.21</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CaO</td>
<td>0.00</td>
<td>21.00</td>
<td>21.93</td>
<td>6.80</td>
<td>6.67</td>
<td>7.43</td>
<td>7.28</td>
<td>0.39</td>
<td>21.32</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Na₂O</td>
<td>0.33</td>
<td>1.29</td>
<td>1.01</td>
<td>0.00</td>
<td>0.21</td>
<td>0.00</td>
<td>0.00</td>
<td>0.11</td>
<td>0.94</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K₂O</td>
<td>9.08</td>
<td>0.03</td>
<td>0.03</td>
<td>0.00</td>
<td>0.00</td>
<td>0.04</td>
<td>0.00</td>
<td>0.00</td>
<td>0.06</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Сумма</td>
<td>99.95</td>
<td>100.01</td>
<td>99.97</td>
<td>99.96</td>
<td>99.99</td>
<td>99.98</td>
<td>99.99</td>
<td>99.97</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Кристаллохимические формулы

- Si: 5.704
- Ti: 0.549
- Al: 2.668
- Fe: 2.861
- Mn: 0.000
- Mg: 2.514
- Ca: 0.000
- Na: 0.098
- K: 1.776
- O: 22.6
- Сумма: 16.26
- Mg: 0.468

<table>
<thead>
<tr>
<th>Состояние</th>
<th>Обозначение</th>
<th>Масса</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Оливин</td>
<td>Opx</td>
<td>39</td>
<td>39</td>
</tr>
<tr>
<td>Плагиоклаз</td>
<td>Pl</td>
<td>31</td>
<td>31</td>
</tr>
<tr>
<td>Гранат</td>
<td>Grt</td>
<td>20</td>
<td>20</td>
</tr>
</tbody>
</table>
более менее глиноzemистая, чем внешняя (контактная) с плагиоклазом. В массиве Лодейный наблюдается следующая последовательность корон: Орх-Cum-Hbl-Grt-Pl. Таким образом, менее кальциевый и менее глиноzemистый амфибол располагается со стороны пироксена, а более глиноzemистая роговая обманка - со стороны плагиоклаза. В друзьях массива Криловой-Горелый кайма роговой обманки по ортопироксену менее кальциевая и глиноzemистая, чем амфиболовые каймы по оливину. Аналогично в породах массива Овечий амфиболовая корона по клинохлору содержит меньше Al и Ca, чем по ортопироксену. Это, вероятно, связано с меньшими градиентами концентрации на границе ортопироксена и плагиоклаза, по сравнению с контактом олива и плагиоклаза.

Подобные зональности корон ортопироксена и амфибола хорошо иллюстрируют особенности градиентов концентрации (диффузионных потоков) Ca и Al со стороны плагиоклаза и Fe и Mg со стороны олива или пироксена.

Гранаты. В гранатовых коронах, как и во всех изученных ранее каймах гранатов из других друзитов [17], наблюдается схожий характер зональности (рис.3а-3д): в центральной части короны наблюдается один или несколько пиков содержания кальция, свидетельствующие о том, что рост гранатовых кайм происходил от центральных частей корон к их краям. Характерна практическая постоянная магнезиальность в гранатовых коронах. Однако в амфиболизированных коронарных структурах массива Овечий можно отметить небольшое снижение магнезиальности гранатовых кайм с обоих краев (рис. 36), связанное, вероятно, с более поздними процессами формирования роговой обманки. Зональность гранатов в магнезиальных габбро массива Толстик демонстрирует те же черты, что и в других коронах, однако сами гранаты заметно более желе-

![Diagram](https://via.placeholder.com/150)

Рис.4. Профили через гранатовые короны в породах Воронежского кристаллического массива: а) корона по Орх; б) корона по Маг.

зистые, чем в других массивах, что можно объяснить более железистым валовым составом системы.

Аналогичные гранатовые короны были исследованы и в породах Центрального блока Воронежского кристаллического массива (обр. 2848/11), геологии и метаморфическая эволюция которых были подробно исследованы К.А.Савюк [29]. Было проведено детальное микрозондовое профилирование через корону и зерна гранатов. В коронах вокруг ортопироксена и магнетита наблюдается схожий характер зональности (рис.4), как и во всех исследованных ранее коронах. В центральной части гранатовой короны (ближе к внешнему краю с плагиоклазом) наблюдается один или два (вокруг Орх) пика содержания кальция. Магнезиальность в целом постоянна по профилю, хотя в короне по магнетиту в районе пика кальциевого наблюдается некоторое уменьшение магнезиальности. Интересно, что магнезиальность гранатовых корон вокруг магнетита и вокруг ортопироксена одинакова. Аналогичные соотношения были зафиксированы и в магнезиальных габбро массива Толстик. Это говорит о том, что диффузия была не только твердофазной, но также существовал и другой механизм диффузии, (возможно с участием флюида) который позволил магнитно участвовать в формировании гранатовой короны по магнетиту.

Таким образом, вариации в минеральном составе коронарных структур невозможно объяснить лишь различиями в магнезиальности первичных минералов или составом первичного плагиоклаза. Например, в друзьях массива Криловой-Горелый магнезиальность первичных оливина и ортопироксена – практически одинаковы (табл. 5), в то время как минеральный состав корон сильно отличается. Состав плагиоклаза также может сильно различаться: Марк 29] описал Grt-Px коронарные структуры, образующиеся в гиперстеновых гранитах, где
Таблица 7

<table>
<thead>
<tr>
<th>Минер. Точка Комм.</th>
<th>SiO₂</th>
<th>TiO₂</th>
<th>Al₂O₃</th>
<th>FeO</th>
<th>MnO</th>
<th>MgO</th>
<th>CaO</th>
<th>Na₂O</th>
<th>K₂O</th>
<th>Сумма</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>37.35</td>
<td>36.97</td>
<td>37.01</td>
<td>60.36</td>
<td>37.13</td>
<td>37.14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bt</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>7</td>
<td>15</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grt</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>7</td>
<td>15</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pt</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>7</td>
<td>15</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kт</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>99.99</td>
<td>100.02</td>
<td>100.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Кристаллохимические формулы

<table>
<thead>
<tr>
<th>Силикоклаз</th>
<th>5.984</th>
<th>2.967</th>
<th>5.938</th>
<th>2.693</th>
<th>2.946</th>
<th>2.953</th>
</tr>
</thead>
<tbody>
<tr>
<td>Титанопироксен</td>
<td>0.516</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.002</td>
</tr>
<tr>
<td>Алюмокварц</td>
<td>3.151</td>
<td>1.975</td>
<td>3.166</td>
<td>1.297</td>
<td>1.946</td>
<td>2.012</td>
</tr>
<tr>
<td>Магнетит</td>
<td>2.961</td>
<td>2.028</td>
<td>2.951</td>
<td>0.009</td>
<td>1.774</td>
<td>1.855</td>
</tr>
<tr>
<td>Жемчужинка</td>
<td>0.003</td>
<td>0.095</td>
<td>0.000</td>
<td>0.000</td>
<td>0.077</td>
<td>0.090</td>
</tr>
<tr>
<td>Магнетит</td>
<td>2.295</td>
<td>2.302</td>
<td>2.382</td>
<td>0.000</td>
<td>0.482</td>
<td>0.364</td>
</tr>
<tr>
<td>Жека</td>
<td>0.003</td>
<td>0.066</td>
<td>0.000</td>
<td>0.305</td>
<td>0.825</td>
<td>0.760</td>
</tr>
<tr>
<td>Натрий</td>
<td>0.051</td>
<td>0.026</td>
<td>0.000</td>
<td>0.689</td>
<td>0.025</td>
<td>0.000</td>
</tr>
<tr>
<td>Калий</td>
<td>1.976</td>
<td>0.003</td>
<td>0.000</td>
<td>0.021</td>
<td>0.003</td>
<td>0.004</td>
</tr>
<tr>
<td>Оксид кальция</td>
<td>22</td>
<td>12</td>
<td>22</td>
<td>22</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>Сумма</td>
<td>16.94</td>
<td>8.06</td>
<td>17.04</td>
<td>5.01</td>
<td>8.09</td>
<td>8.04</td>
</tr>
<tr>
<td>Силикаты</td>
<td>0.437</td>
<td>0.130</td>
<td>0.447</td>
<td>0.214</td>
<td>0.164</td>
<td>0.11</td>
</tr>
</tbody>
</table>

плагиоклаз имеет, очевидно, более кислый состав, чем в габброидах. Различия в минеральном составе коронарных структур, образованных по первичному оливину, ортопироксену и клинопироксену, вероятно, связаны с различным содержанием кремния в этих минералах, и, следовательно, большим градиентом химических потенциалов диффундирующих компонентов.

Заключение

На начальных этапах амфиболизации коронарных структур гранатовая кайма отделяется от амфиболовой тонкой каймой вторичного плагиоклаза; гранатовые короны становятся шире и в них появляется содержание железа. Беломорские габброиды с коронарными структурами испытали метаморфическую эволюцию вместе с вмещающими тонолитовыми гнейсами и амфиболитами.

Исследования зональности пироксеновых, амфиболовых и гранатовых короли иллюстрирует встречную диффузию Al и Ca со стороны плагиоклаза и Fe и Mg со стороны оливины и пироксена. Состав рассмотренных корон (Grt и Cpx) по магнетиту в метагаббро массы Толстик не соответствует модели твердофазной диффузии и "сухой" системе и свидетельствуют о существовании межгранулярного флюида. Вариации в минеральном составе коронарных структур невозможно объяснить лишь различиями в магнезиальности первичных минералов или составом первичного плагиоклаза. Они, вероятно, связаны с различным содержанием кремния в этих минералах, и, следовательно, большим градиентом химических потенциалов диффундирующих компонентов.

Литература

17. Ларикова Т.Л. Формирование друидитов (коронарных) структур вокруг оливины и ортопироксена при метаморфизме габброидов С. Беломорье, Карелия // Петрология. -2000.-№4.-С.430-448.