Выделенные пунктиром и буквой «К» фрагмент рис.7 изображен на рис.8. Обращает на себя внимание в целом пологие углы падения отдельных слойков и довольно крупные размеры косослоистых серий, характерные для слоистости подводных течений [1,2].

На рис.9 виден отчетливый контакт между альбом и сеноманом, обусловленный перемывом и обогащением подошвы сеноманских песков крупными песчаными и мелкими гравийными частицами кварца и темно-серого до черного кремня.

Данное сообщение имело целью охарактеризовать общие закономерности изменения структуры (грансостава) альбских отложений в связи с условиями формирования толщи. Вопроса о текстурах мы коснулись в самом общем плане, в деталях он требует отдельного специального рассмотрения, что предполагается сделать позднее.

На основании изложенного можно предположить, что альбская трансгрессия развивалась следующим образом. В районе быстро установился режим неглубокого моря со спокойным гидродинамическим режимом. В этих условиях здесь накапливались вначале не очень хорошо сортированные пески с горизонтально слоистой текстурой, а затем – хорошо отсортированные мелкозернистые пески, имеющие вследствие этого однородную текстуру. Так продолжалось до формирования прослоя глины. В дальнейшем происходило направленное постепенное обмеление бассейна, вследствие чего также постепенно увеличивался средний размер зерен и ухудшилась сортировка вещества. В изменившихся условиях морские течения периодически достигали дна, что приводило к накоплению горизонтов песков с косослоистой текстурой, если течение существовало в данном месте продолжительное время, или к образованию маломощных прослоев, обогащенных крупными (до 3 – 4мм) частицами. Эти прослои нередко принимаются за основания новых седиментационных ритмов, хотя таковыми не являются. Они появлялись в тех местах, где морские течения достигали поверхности дна водоема на короткое время, и не связаны с ритмическими колебаниями всей (или по крайней мере значительной) территории, занятой морским бассейном, а обусловлены положением течения в данный момент времени. Основанием для такого утверждения является то обстоятельство, что ни ниже, ни выше этих прослоев не отмечается какого-либо заметного направленного изменения грансостава - он остается практически неизменным (совсем иная картина наблюдается, например, на контакте альба с сеноманом, где происходит довольно резкое его изменение).

ЛИТЕРАТУРА

- Ботвинкина Л.Н. Методическое руководство по изучению слоистости // Тр. ГИН АН СССР. -Вып.119. -М., 1965. –259с.
- Рухин Л.Б. Основы литологии. Учение об осадочных породах. –Л, 1969. –704с.
- 3. Методы изучения осадочных пород. Т.1. –М., 1957. -611с.
- 4. Фролов В.Т. Литология. Кн.2. -М., 1993. -432с.
- Шванов В.Н. Песчаные породы и методы их изучения. – Л., 1968. –148с.

УДК 552.114:551.3.051 470.324)

Шатров В.А., Войцеховский Г.В., Зеленская А.Н.

НОВЫЕ ДАННЫЕ ПО РАСПРЕДЕЛЕНИЮ РЕДКОЗЕМЕЛЬНЫХ И МАЛЫХ ЭЛЕМЕНТОВ В СЕНОМАНСКИХ ФОСФОРИТАХ ВОРОНЕЖСКОЙ АНТЕКЛИЗЫ

Рассматриваются особенности распределения редкоземельных и малых элементов в фосфоритах сеноманского яруса верхнего мела Воронежской антеклизы. Это вторая статья из серии статей, в которых разрабатывается возможность использования элементов-примесей для уточнения обстановок осадконакопления в рамках принятой геодинамической модели развития Воронежской антеклизы.

По представлениям геодинамической модели плитной стадии развития Восточно-Европейской платформы [7,15] зоны глубинных разломов, расположенные на стыке крупных мегаблоков фундамента, периодически испытывают знакопеременное обновление, сопровождающееся повышением проницаемости земной коры и увеличением концентраций ряда мантийных элементов в осадочном чехле. Чуткими индикаторами геохимической среды осадконакопления являются фосфориты в связи с их повышенной сорбционной способностью к концентрации малых элементов. С целью изучения возможности фиксации зон повышенной проницаемости (зон разрывных нарушений), приуроченных к границам разных структурных элементов платформы, рассмотрено поведение малых и редкоземельных (REE) элементов в фосфоритах (в пределах площади Воронежской антеклизы).

Изучались фосфориты сеноманского яруса (в связи с их широким площадным распространением) на Курском (номера обр.: 5,7,7а,7б,9-83,Н–30, Н–32) и Брянском (обр. 239) мегаблоках ВКМ, и над Ли-

Рис. 1. Геологическая карта Воронежского кристаллического массива [21] с указанием мест отбора проб: 1-3 – структурно-вещественные комплексы (СВК) Брянского (I), Курского (II) и Воронежского (III) геоблоков; 1 – раннеархейского основания, 2 – Крупецко-Криворожского, Белгородско-Михайловского и Орловско-Тимского позднеархейских зеленокаменных поясов; 3 – нижнего протерозоя; 4 – границы ВКМ; 5 – границы геоблоков; 6 – Новогольско-Орловский краевой рифт с проявлениями докембрийского траппового магматизма; 7 – Тамбовско-Волгоградская зона (типа реактивизированного рифта) в центральной части Воронцовского эпикратонного прогиба; 8 – Лосевско-Усманская шовная зона; 9 – Воронежско-Шукавская грабенсинклиналь; 10 – тектонические разломы; 11 – места отбора проб фосфоритов.

венско-Богучарской (Лосевско-Усманской) шовной зоной (образцы Н-4, Н-26), (рис.1), заложившейся на месте Донского рифта после этапа его раннепротерозойской реактивации [6,21]. Отложения сеноманского возраста вскрываются долинами рек Дона, Ведуги, широко развитой овражной сетью и представлены в основном зеленовато-серыми и желтовато-серыми песками кварц-глауконитового состава, иногда слабо глинистыми. Мощность сеноманских отложений в пределах Воронежской антеклизы в среднем 10 – 15 метров. Фосфориты представлены как в виде рассеянных конкреций, так и прослоев, количество которых непостоянно и изменяется от одного до трех [2,13]. Общая мощность фосфатных слоев достигает 1,5 метров. Фосфориты встречаются в виде желваков и неправильных стяжений, иногда это округлые или вытянутые конкреции длиной до 15 – 20 сантиметров, коричневого или темно-серого цвета, формирующие горизонтально залегающие пласты - "плиты" небольшой мощности (до 0,5 метра). Поверхность плит неровная, с многочисленными твердыми каналами. Сверху плиты часто покрыты глянцевой корочкой, снизу поверхность неровная, шероховатая. Состоят фосфоритовые желваки из кварцевого песка, сцементированного курскитом, реже другими минералами группы фторкарбонатапатитов, с включениями глауконита (10 – 12 %), зерен полевых шпатов, кальцита, фрагментов раковин, окатанных зерен ильменита, магнетита, глинистых минералов. Фосфоритовая плита может располагаться как в верхней (Семилуки) и средней частях разреза, так и слагать почти целиком отложения сеноманского яруса (Павловский гранитный карьер).

Фосфориты желвакового типа образуются преимущественно в диагенетическую стадию литогенеза, но достаточно близко к поверхности осадка. Их образование связано с сорбционными свойствами фосфатного вещества, обуславливающими концентрацию малых элементов, особенности распределения которых представляют интерес и могут служить индикаторами геодинамических обстано-

Рис.2. Распределение REE в фосфоритах.

Таблица 1

Содержание REE в фосфоритах сеноманского яруса верхнего мела (в г/т)

№ пробы	5	7	7 - a	7-б	9 83	239	H-4	H-26	H-30	H-32
La	51,0	15,0	7,0	42,0	25,0	28,0	38,0	21,0	16,0	42,0
Ce	112,0	25,0	13,0	91,0	53,0	60,0	68,0	38,0	33,0	86,0
Pr	13,0	2.7	1.4	11,0	6.0	6.9	8.5	4.7	3.7	9.9
Nd	52,0	10,0	5.9	48,0	23.0	27,0	35,0	19,0	14,0	40,0
Sm	9.5	1.6	1.1	9.2	4.0	6.0	7.0	4.1	2.6	7.4
Eu	1.8	0.45	0.34	2.4	0.93	1.3	1.6	2.3	0.63	1.3
Gd	12,0	2.7	1.5	14	5.6	6.6	8.8	4.9	2.9	9.4
Tb	1.2	0.34	0.21	1.7	0.61	0.8	1.1	0.6	0.42	1.1
Dy	5.9	2.0	0.98	9.7	3.0	4.0	6.5	3.4	2.4	5.4
Но	1.2	0.42	0.2	2.1	0.59	0.8	1.2	0.74	0.42	0.97
Er	3.7	1.2	0.71	5.1	1.7	2.1	3.2	2.1	1.4	2.7
Tm	0.53	0.19	0.12	0.62	0.27	0.29	0.5	0.24	0.2	0.34
Yb	2.9	1.2	0.62	3.6	1.6	1.9	3.3	1.8	1,0	2.2
Lu	0.49	0.19	0.12	0.46	0.28	0.29	0.48	0.26	0.17	0.31
Y	15,0	8.7	3.3	35,0	9.0	9.6	17,0	8.8	5.9	12,0
ΣREE	267.22	62.99	33.2	240.88	125.58	145.98	183.18	85.84	78.84	209.02
La/Yb	17.59	12.5	11.29	11.67	15.63	14.74	11.52	11.67	16.0	19.09
Eu/Eu*	0.61	0.76	0.92	0.74	0.69	0.71	0.71	1.78	0.79	0.54
Ce/Ce*	11.1	1.03	1,0	0.21	1.13	1.11	0.94	0.97	1.1	1.07
$\Sigma Ce/\Sigma Y$	8.13	4.03	4.83	3.73	6.89	6.87	5.02	5.24	6.12	7.87

вок - областей растяжения и сжатия на стыке мегаблоков фундамента.

Графики содержания редкоземельных элементов (REE) в фосфоритах (рис.2), нормированные к глинам платформ [1], имеют пологую форму, с небольшим избытком средних REE. Повышенная сорбционная способность фосфатного вещества в отношении REE часто обеспечивает частичное извлечение тяжелых лантаноидов (HREE) и иттрия из морской воды. Отношение La/Yb (легких LREE к тяжелым HREE) изменяется от 11,29 до 17,57, в среднем – 14,19 (табл.1). Такой характер распределения REE формируется в относительно удаленных от береговой линии мелководных отложениях при уменьшении поступления обломочной части, обогащенной LREE, и возрастании роли глинистой составляющей фосфоритов, выступающей в качестве сорбента средних REE. Обогащение средними REE обусловлено сорбированным комплексом осадков (диагенетический тип соотношений REE, характерный для фосфоритов шельфовой зоны). Вывод о фациальной приуроченности фосфоритов не противоречит исследованиям [13,20], относящих их к мелководно-морским образованиям, при формировании части фосфоритов в отрицательных формах подводного рельефа (впадины, понижения).

Среднее значение суммы REE в фосфоритах – 143,27 г/т, что соответствует содержанию REE в породах осадочного генезиса [1]. При изучении распределения REE отмечается корреляционная связь между содержанием P_2O_5 и \sum REE (возрастание содержания P_2O_5 ведет к увеличению \sum REE с определенными коэффициентами корреляции) [1, 18,19]. Средние значения отношений Ce/Ce* = 0,97

Рис. 3. Распределение малых элементов в фосфоритах.

Таблица 2

Геохимические отношения в фосфоритах сеноманского яруса верхнего мела, морской воде и плат-
форменных глинах

Геохимические	Диапазон значений	Средние значения	Шельфовые воды	Платформенные гли-
отношения	(г/т)	(г/т)	(0-350 м, г/т)	ны (г/т)
La/Sm	4.57-9.38	5.90	5.20	5.1
Ce/Sm	9.27-15.63	11.57	13.0	10.7
Yb/Sm	0.30-0.75	0.43	0.4	0.46
Y/Sm	1.58-5.44	2.61	7.7	4.5

и $\sum Ce/\sum Y$ (среднее – 5,87) в фосфоритах подтверждают гумидные климатические условия сеноманского века, хотя фосфориты могут образовываться как в гумидном, так и аридном типах климата, то есть биклиматичны [17,20]. Отношение Eu/Eu* (среднее в фосфоритах – 0,82), являющееся показателем поступления мантийного вещества внекорового происхождения (глубинные мантийные флюиды и материал разрушения основных пород) [1,3,4], близко к среднему содержанию в осадочных породах, за исключением пробы H–26 (аномально высокое значение Eu/Eu*=1.78), приуроченной к Ливенско-Богучарской шовной зоне.

На практике для отложений морского генезиса часто используют нормирование по Sm в связи с обогащением лантаном и HREE морской воды, при котором минимум относительной концентрации элементов приходится на Sm. Для выявления особенностей состава REE морской воды на момент формирования осадков анализируется характер геохимических отношений La/Sm. Ce/Sm. Yb/Sm. Y/Sm (табл.2). Отмечается близость геохимических отношений в фосфоритах к аналогичным параметрам шельфовых вод глубиной от 0 до 350 метров, а также к среднему составу REE в платформенных глинах.

При изучении содержания в фосфоритах элементов-примесей ряд авторов [18,19] отмечают монотонность распределения REE и малых элементов. Фосфориты различных петрографических типов (пластовые, желваковые, раковинные, галечные и др.), а также различного возраста (палеозойские, мезозойские и кайнозойские) имеют похожий характер распределения REE и довольно близкий набор малых элементов, что часто приводит к невозможности применения метода формационного анализа для распознавания геохимического облика различных фосфоритоносных формаций [18]. Отсутствие собственных редкоземельных минералов предполагает нахождение основной массы редких земель в виде изоморфной примеси в фосфатных, глинистых и сульфидных минералах фосфоритов. Извлечение REE происходит сорбционным путем из морской воды, а дальнейшая раскристаллизация фосфатного и глинистого вещества переводит их в изоморфную форму [1,19].

При анализе распределения малых элементов в фосфоритах (рис.3) отчетливо видно различие в содержании ряда элементов. Пробы фосфоритов H– 4 и H-26 (Ливенско-Богучарская зона) при сравнении с другими приведенными данными по фосфоритам характеризуются высокими содержаниями высокоподвижных элементов: Hg,Tl,Te,As,Sb; самородных – Au,Ag,Pt и платиноидов (в пробе H – 26 золота – 4,7 г/т); B, Zn, Pb, Sn, (в пробе H–26 – Ga), также несколько повышенными - Cu,Mo,Hf (табл.3). Необходимо отметить, что концентрации B, Cu, Zn, Pb и других элементов в фосфоритах часто уступают кларку [18], а в пробах H–4, H–26 имеют повышенные содержания. Проведено сравнение содержа-

/1-	L				L		1.	1	(,
№ пробы	5	7	7-a	7-б	9 83	239	H-4	H-26	H-30	H-32
Hg	0.02	0,0	0,0	0.01	0.02	0.05	1.3	1.8	0.03	0.07
As	6.3	2.9	6.3	2.8	4.4	2.9	14,0	13,0	5.9	6.3
Те	0.06	0.02	0,0	0.06	0,0	0.13	4.3	12,0	0.03	0.01
T1	0.18	0.04	0.03	0.05	0.34	0.13	0.22	2.7	0.13	0.1
Sb	0,0	0,0	0,0	0,0	0,0	0,0	3,1	4,4	0,0	0,0
Au	0.02	0,0	0,0	0.21	0,0	0.05	1.6	4.7	0.11	0,0
Ag	0,0	0,0	0,0	0.09	0,0	0	3.9	8.4	0.12	0,0
Pt	0.01	0.02	0,0	0.08	0,0	0	0.11	0.14	0,0	0,0
Se	19,0	9,0	11,0	9,0	13,0	7.9	12,0	7.3	7,0	17,0
Mn	261,0	92,0	90,0	106,0	86,0	163	132,0	136,0	143,0	150,0
Ni	49,0	16,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
Со	7.5	1.6	1.7	1.5	2.6	1.5	4.3	2.4	1.5	2.5
Zn	66,0	34,0	20,0	114,0	17,0	2.3	324,0	419,0	23,0	35,0
Cu	5.9	6.6	2.4	7.8	5.8	2.4	23,0	23,0	11,0	7.8
Pb	13,0	5.6	6.8	7.7	28	5.2	30,0	37,0	12,0	11,0
Cd	1,2	1,3	0,37	3,9	0,14	0,27	0,58	0,92	0,11	0,12
Ga	6.2	2.8	2.3	4.9	3,0	6.1	5.7	86,0	2.9	4.1
Ge	2,5	1,4	1,4	1,3	1,2	2,9	1,7	1,2	1,8	1,7
Sn	0.19	0,0	0.05	0.19	0.06	0.23	2.1	1.3	0,0	0.31
Мо	0.78	0.77	0.91	0.69	0.35	0.43	2,0	1.8	0.96	0.46
Se	19,0	9,0	11,0	9,0	13,0	7.9	12,0	7.3	7,0	17
Rb	14,0	4,0	2.4	3.4	5.9	19	9.9	6.2	5.9	8.1
Zr	72,0	4.1	7.2	7.1	18,0	39	41,0	47,0	20,0	22,0
Ba	57,0	35,0	35,0	82,0	31,0	42	63,0	1660,0	34,0	46,0
Th	5.5	0.52	0.37	0.53	3.1,0	1.9	1.3	0.94	0.9	4.9
U	22,0	45,0	32,0	42,0	53,0	32	39,0	46,0	74,0	49
Hf	1.2	0.07	0.16	0.21	0.54	1.3	1.3	1.4	0.68	0.67

Содержание малых элементов в фосфоритах сеноманского яруса верхнего мела (в г/т)

ния малых элементов в пробах с микроэлементами в пластовых фосфоритах датского яруса палеоцена Курской области (район г. Рыльска), желваковых фосфоритов сеноманского яруса Курской области (Щигровское месторождение) и Брянской области (Полпинское месторождение) и в пластовых фосфоритах Кимовского месторождения Тульской области юрского возраста [23]. Отмечается значительное превышение по содержанию Zn, Cu, Ga, As, Ag, Au в пробах H – 4, H – 26 в сравнении с элементами в фосфоритах Рыльского района, по содержанию Zn, Pb, Cu, Ga, Ag, Au по сравнению с элементами в желваковых фосфоритах и по Zn, Cu, Ag, As, Au по сравнению с микроэлементами в фаунистических остатках из фосфатных плит на месторождениях Курской и Брянской области, по содержанию Zn, Ga, Ag, Au по сравнению с элементами в фосфоритах Кимовского месторождения. При сравнении содержаний микроэлементов рассматривался не весь набор элементов, а только рассматриваемые А.П.Ясыревым [23] микроэлементы в фосфоритах пластового и желвакового типа.

Существующую определенную геохимическую специализацию как регионов, так и отдельных ареалов распространения фосфоритов отмечают давно [18], причем заметное обогащение определенными металлами для всей совокупности фосфоритов региона не является характерным. В работе рассматривается один из возможных механизмов обогащения фосфоритов элементами – примесями, связанный с зонами разрывных нарушений, приуроченных к границам структурных элементов платформы.

Таблица 3

В последние годы большое внимание уделяется поиску золота в осадочном чехле Воронежской антеклизы [5,10,11,12,14]. Установлено проявление золотоносности в фосфорито-глауконитовых песках раннесантонского времени (Уколовское месторождение желвачного песчанистого типа в Курской области), где самородное золото имеет хемогенное происхождение за счет сорбционно - восстановительных процессов [16], а также и на других месторождениях фосфоритов Русской платформы [19]. По мнению А.Д.Савко и др. [10,11 и др.] источником повышенных концентраций золота и других элементов в осадочных породах могли служить глубинные флюиды, приуроченные к области повышенной проницаемости коры. Возрастной интервал повышенных концентраций золота – преимущественно мел, палеоген-эоцен, квартер, хотя строгий стратиграфический контроль отсутствует. Петрогенный состав отложений самый разнообразный: грубозернистые осадки базальных горизонтов, конгломераты, пески, алевриты, глины, сидеритовые, лимонитовые, фосфоритовые "плиты" и др. Фациальные обстановки - континентальные и активногидродинамические прибрежно-морские преимущественно трансгрессивных циклов развития, а также отсутствие заметных концентраций в пределах осадочного чехла жестких глыб фундамента. Отмечает-

ся приуроченность заметных концентраций золота к зонам влияния глубинных разломов и постоянное присутствие в нем металлов платиновой группы, высокоподвижных элементов Hg,Tl,Te,As,Sb; повышенные содержания халькофильных и литофильных: Zn, Cd, Cu, Sn, Pb, Bi, Zr, Hf. Предлагаемый А.Д.Савко и др. [14] процесс образования повышенных концентраций золота представляет захват Au из фундамента летучими компонентами флюидов в процессе активизации глубинных разломов, достигающих верхней мантии (глубины порядка 45 км), вынос и концентрация золота в верхние горизонты осадочного чехла (тип золотооруденения - эксгаляционно-осадочный).

При сравнении элементов – примесей в золоте эксгаляционно-осадочного типа и в фосфоритах с площади Ливенско-Богучарской шовной зоны отмечается сходство элементов, имеющих повышененные концентрации: высокоподвижные Hg,Tl,Te,As, Sb, Pt и платиноиды; Zn, Cu, Sn, Hf в золоте. На основании анализа содержания элементов заложение разломов можно отнести как к подкоровой области, так и коровой больших глубин [9]. Источником повышенных содержаний элементов в фосфоритах и в золоте могут служить проявления золоторудной, платиноидно-золоторудной и свинцово-цинковой минерализации, размещенные, приуроченной к высокоуглеродистым сульфидизированным и карбонатсодержащим сланцам архейско-протерозойского фундамента [6,22]. Мобилизация элементов могла роисходить под воздействием глубинных флюидов, приуроченных к областям повышенной проницаемости коры, причем ряд авторов отмечают возможность выноса флюидами халькофильных элементов: Cu,Zn,Au,Ag,Hg,Sb,As [8]. Влияние глубинного вещества подтверждается и аномально высоким содержанием европия в пробе H-26.

Причиной активизации разломов могут являться различия в скоростях движения как крупных мегаблоков ВКМ, так и отдельных фрагментов, составляющих мегаблоки, вызывающих в областях растяжения усиление проницаемости земной коры и ее утонение, возрастание интенсивности проявления гидротермально-метасоматических процессов. Ме-

Рис. 4. Диаграмма REE – (Hg, Tl, Te, As, Sb)x10 для фосфоритов сеноманского яруса.

ханизм формирования осадочного чехла Русской платформы в палеозое подробно рассмотрен в литературе [7,15], причем его по мнению авторов статьи вполне можно перенести на осадочные отложения мезозойского и кайнозойского возраста. В обстановках растяжения коры открывается возможность поступления глубинного вещества в виде флюидов, обогащенных рядом эле-

ментов, как в комплексы ранее образованных осадочных пород, так и в одновозрастные (на момент активизации разломов) осадки. Поступающее вещество строго локализуется над зоной тектонических нарушений, что приводит к отсутствию значительных концентраций золота и других элементов в ранее сформированных породах (в данном случае – палеозойских). В формирующихся на момент растяжения коры осадках высокоподвижные, самородные, халькофильные и другие элементы могут распространяется в виде значительных ореолов, образуя при это как повышенные концентрации (вплоть до рудных проявлений), так и пониженные, вплоть до разубоживания компонентов, за счет геохимического рассеяния вещества.

На основании приведенного анализа содержания элементов - примесей отмечается различие в характере распределения REE и малых элементов в зависимости от приуроченности к различным типам структур фундамента. В работе рассмотрена возможность применения для целей диагностики зон растяжения – сжатия бинарных и тройных диаграмм. Наиболее перспективны диаграммы в системе Σ (Hg.Tl.Te.As.Sb) - Σ REE, характеризующие проницаемость земной коры. Кроме того, возможна разбраковка глубины заложения тектонических нарушений с использованием диаграмм в системе As -∑(Hg.Tl.Te.Sb)х100, где мышьяк является показателем глубины заложения разломов. Применительно к осадочным породам отношение La/Yb выступает показателем положения осадков на фациальном профиле. Бинарные диаграммы в системах *SREE* - \sum (Hg.Tl.Te.As.Sb)x10; La/Yb - \sum (Hg.Tl.Te.As.Sb); As - (Hg.Tl.Te.Sb)x100 - хорошо совпадают с геологическими данными, четко обособляя поля фосфоритов, приуроченных к жестким мегаблокам и Ливенско-Богучарской шовной зоне (рис.4,5,6).

В заключение можно сделать следующие выводы:

 по характеру распределения малых элементов и REE (в частности по Eu) в фосфоритах можно фиксировать шовные зоны между блоками (как места повышенной проницаемости земной коры);

Рис. 5. Диаграмма As – (Hg,Tl,Te,Sb)х100 для фосфоритов сеноманского яруса.

Рис. 6. Диаграмма La/Yb – Hg, Tl, Te, As, Sb.

- бинарные диаграммы распределения малых элементов и REE в системах ∑REE, ∑(Hg.Tl.Te.As. Sb), La/Yb, As - (Hg.Tl.Te.Sb) выделяют поля фосфоритов, приуроченных к разным структурам фундамента.

ЛИТЕРАТУРА

- Балашов Ю.А. Геохимия редкоземельных элементов. М., 1976. -267с.
- Геология, гидрогеология и железные руды бассейна Курской магнитной аномалии. –М., 1972.- Т. 1., кн. 2. –359 с.
- Зеленская А.Н., Шатров В.А., Сиротин В.И. Палеофациальные условия образования сланцев курской серии КМА (по результатам изучения распределения REE) // Вестн. Воронеж. ун-та. Сер. геол. -1999. -№ 7. -С.39-44.
- Зеленская А.Н., Шатров В.А., Войцеховский Г.В. Редкоземельные и малые элементы как индикаторы обстановок осадконакопления (на примере Воронежской антеклизы) // Вестн. Воронеж. ун-та. Сер. геол. -1999. -№ 8. -С.38-45.
- Лоскутов В.В. Геохимические аномалии в осадочном чехле Воронежской антеклизы и их связь с зонами фанерозойской тектонической активности // Вестн. Воронеж. ун-та. Сер. геол. –1998. -№ 6. –С.250–255.
- 6. Металлогения рядов геодинамических обстановок раннего докембрия. –М., 1999. –399с.
- 7. Минерагения осадочных бассейнов континентов и периконтинентальных областей М., 1998. 590с.

- Основы металлогении метаморфических поясов докембрия. –Л., 1984. – 340с.
- 9. Перельман А.И. Геохимия. –М., 1989. –528с.
- Савко А.Д., Шевырев Л.Т., Ильяш В.В., Окороков В.А. Геохимические особенности и генезис золота осадочного чехла Воронежской антеклизы // Вестн. Воронеж. ун-та. Сер. геол. – 1996. -№2. –С.86–95.
- Савко А.Д., Шевырев Л.Т. Россыпи Русской платформы – главная область Российской золотодобычи XX1 века? Основы оптимистического прогноза // Вестн. Воронеж. ун-та. Сер. геол. -1996. -№2. –С.198–199.
- Савко А.Д., Шевырев Л.Т., Ильяш В.В., Божко Е.Н. Золото и редкие минералы в осадочном чехле Воронежской антеклизы // Вестн. Воронеж. ун-та. Сер. геологическая. –1996. -№1. –С.133–138.
- Савко А.Д., Беляев В.И., Мануковский С.В. Фосфориты Центрально-Черноземного района России. – Воронеж, 1994. –184с.
- Савко А.Д., Шевырев Л.Т., Лоскутов В.В. Эксгаляционно-осадочная металлоносность Воронежской антеклизы - новые горизонты поисков рудных месторождений в осадочном чехле. Статья 1. Интерметаллиды: локализация, типы, состав // Вестн. Воронеж. ун-та. Сер. геологическая. – 1999. -№7. –С.139–155.
- 15. Трегуб А.И., Ненахов В.М., Сиротин. Модель геодинамического развития Русской платформы в палеозое

// Вестн. Воронеж. ун-та. Сер. геол. –1998. -№5. –С.19– 26.

- Турлычкин З.М., Горенков И.Л. Фосфориты адсорбенты золота и восстановители до свободного металлического // Геол. вестн. центральных районов России. –1999. -№3. –С.14–17.
- Холодов В.Н., Баранов Ю.Е., Бойко Т.Ф., Бурков В.В., Потемкин К.В. Генетические типы осадочных месторождений редких элементов и климатическая зональность // Геохимия осадочных пород и руд. –М., 1968. –С.308–324.
- Холодов В.Н., Блисковский В.З. Геохимия элементов-примесей в фосфоритоносных формациях // Литология фосфоритоносных отложений. –М., 1976. –С.29– 42.
- Холодов В.Н., Минаев Д.А. Редкие элементы в фосфоритах // Вещественный состав в фосфоритах. -Новосибирск, 1979. -С. 46 - 65.
- 20. Фролов В.Т. Литология. Кн. 2. -М., 1993. -432с.
- Чернышов Н.М. Металлогения раннего докембрия Воронежского кристаллического массива // Вестн. Воронеж. ун-та. Сер. геол. –1996. -№ 1. –С.5–20.
- 22. Чернышов Н.М., Коробкина Т.В., Лапутина И.П. Состав сульфидов золото-платиноносных черносланцевых толщ раннего докембрия КМА и некоторые особенности распределения в них благородных металлов // Вестн. Воронеж. ун-та. Сер. геол. –1996. -№3. –С.56– 65.
- Ясырев А.П. Микроэлементы в пластовых и желваковых фосфоритах некоторых месторождений Центральных районов РСФСР // Литология и полезные ископаемые. –1964. -№3 –С.66–76.

Вестн. Воронеж. ун-та. Сер. геология. 2000. Вып. 9