УДК 553.251.2:552.321.3:553.48(470.324)

Чернышова М.Н.

ЦИРКОН ИЗ ЖИЛЬНЫХ ПОРОД НИКЕЛЕНОСНЫХ КОМПЛЕКСОВ ВОРОНЕЖСКОГО КРИСТАЛЛИЧЕСКОГО МАССИВА

(распространенность, кристалломорфологические особенности, состав, петрологическое и поисковое значение)

В статье приводятся сведения о взаимосвязи количественной распространенности циркона, его кристалломорфического облика и состава в жильных породах, ассоциирующих с различными по возрасту и формационно-генетической принадлежности никеленосными комплексами ВКМ; приводятся данные об использовании циркона для петрологических построений и в качестве дополнительного критерия оценки рудоносности интрузий.

Введение

Среди обширной группы разнообразных по составу (самородные элементы, карбиды, сульфиды и сульфасоли, оксиды и гидрооксиды, галоиды, карбонаты, сульфаты, силикаты) акцессорных минералов (свыше 40), установленных в дайковых породах [6,9] мамонского и еланского никеленосного комплексов [6,7,8,9], особая роль, несомненно, принадлежит циркону, который выступает в качестве одного из ведущих минералов в оценке возраста и формационной принадлежности интрузий, условий их формирования и потенциальной рудоносности. Циркон, входит в ведущий («сквозной») тип акцессорной минеральной ассоциации и установлен, посуществу, во всех 44 исследованных минералогических пробах дайковых пород. Вместе с тем его количественная роль, кристалломорфологический облик, взаимоотношение с другими минералами определяются не только минералого-петрографическими особенностями дайковых образований, но и их принадлежностью, прежде всего, к определенным формационным и структурно-вещественным типам интрузий никеленосных комплексов.

Особенности распределения циркона в дайковых породах мамонского и еланского никеленосных комплексов

Принадлежность даек как существенного компонента интрузий различных по формационной принадлежности комплексов значительно сказывается прежде всего на количественных параметрах распределения циркона (табл.1).

Повышенные концентрации циркона в большей мере присущи породам мамонского комплекса, при этом наиболее обогащены ими дайковые образования. Весьма характерно, что среди жильных пород как мамонского, так и еланского комплексов наиболее высокими концентрациями отличаются роговообманковые разновидности семейства габброидов и диоритов, сформировавшихся в условиях значительного обогащения флюидами кристаллизующихся расплавов.

Характер распределения циркона в значительной мере зависит от пространственно-временной ассоциации жильных пород с определенными структурно-вещественными группами (типами) интрузий как мамонского: а) ранние ультрамафитовые бесполевошпатовые отчетливо дифференцированные с промышленным оруденением и недифференцированные безрудные — мамонский тип; б) рудоносные ультрамафит-мафитовые камернодифференцированные с титанистороговообманково-плагиоклазовыми ультрамафитами — ширяевский тип и калишпатсодержащими мафитами и ультрамафитами — елань-вязовский тип; в) недифференцированные габбровые, габброноритовые и габбродиоритовые безрудные — каменский тип, так и в меньшей мере еланского комплексов (табл.2).

Анализ обобщенных в табл.2 результатов выявляет: а) резкое (на 2-3 порядка) обогащение цирконом однотипных жильных пород (в частности, габбро-порфиритов) ассоциирующих с рудоносными интрузивами мамонского типа (1606,4г/т) по сравнению с безрудными мафитовыми телами каменского типа (30,3г/т), а так же значительное (на 1 порядок) обогащение цирконом жильных роговообманковых габбро еланского комплекса по сравнению с норит-порфиритами; б) высокие концентрации циркона в диоритах различных структурновещественных типов интрузий мамонского комплекса (70,0-100,0г/т) по сравнению с однотипными жильными породами еланского комплекса (7,5-10,2г/т; см.табл.2).

Кристалломорфологические типы и состав циркона из жильных пород никеленосных комплексов

Структурные взаимоотношения циркона с другими минералами свидетельствуют о его кристаллизации как на собственно магматической, так и позднемагматической стадиях становления интрузивно-дайковых породных ассоциаций никеленосных комплексов [2,8].

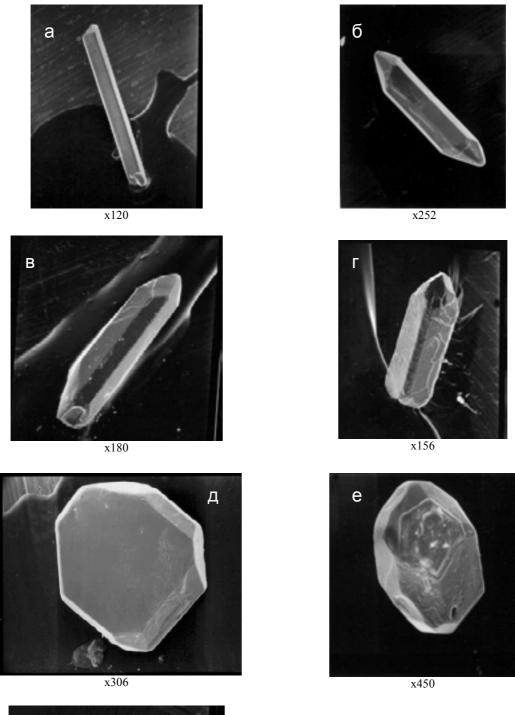
В жильных породах мамонского комплекса наиболее ранняя его генерация представлена близкоизометричными дипирамидально-призматическими и количественно преобладающими удлиненнопризматическими с хорошо выраженными гранями (100), (110), (111) и (311) и гомогенными по внутреннему строению прозрачными и полупрозрачными бледно-розовыми и коричневатыми кристаллами, присутствующими как в виде включений в породо-

Таблица 1 Средние значения содержаний (г/т) циркона в интрузивно-дайковых породных ассоциациях мамонского (I) и еланского (II) никеленосных комплексов ВКМ

	I	II			
№ проб	Содержание, г/т	№ проб	Содержание, г/т		
1(13)*)	2,8	1(9)	53,1		
2(13)	0,4	2(3)	8,1		
3(5)	28,0	3(5)	1,3		
4(6)	22,1	4(2)	10,4		
5(2)	805,5	5(11)	10,0		
6(2)	21,0				
7(6)	53,3				

Примечание: І-интрузивно-дайковые породы ассоциации мамонского комплекса: 1-3-интрузивные породы (по [2]): перидотиты (1), пироксениты (2), габбронориты (3); 4-7-дайковые породы: 4-горнблендиты (интрузии — Астаховская, Сидякинская, Юбилейная, Большемартыновская); 5-роговообманковое габбро (интрузии — Подколодновская, Сухоберезовская); 6-габбро-порфириты (интрузии — Пузевская, Хреновская, Мечеткинская, Сухая Береза); ІІ- интрузивно-дайковые породы ассоциации еланского комплекса: 1-нориты интрузивные (Еланское месторождение); 2-5-жильные породы: нориты (2), норит-порфириты (3), роговообманковое габбро (4), диориты (5). *) В скобках — количество проанализированных проб.

Таблица 2 Распределение (г/т) циркона в жильных габброидах и диоритах, ассоциирующих с различными по степени рудоносности типами интрузий мамонского (I) и еланского (II) никеленосных комплексов


Жильные габброиды				Жильные диориты				
I		II		III		IV		
№ проб	Содержания, г/т	№ проб	Содержания, г/т	№ проб	Содержания, г/т	№ проб	проб Содержания, г/т	
1(1)	1606,4	4(5)	1,4	1(2)	82,5	5(9)	10,2	
2(1)	30,0	5(2)	10,4	2(1)	70,0	6(1)	7,5	
3(1)	4,8			3(3)	78,3	7(12)	9,3	
			_	4(1)	100,0			

Примечание: I-II — жильные габброиды мамонского (I) и еланского (II) комплексов: 1-2-габбро-порфириты рудоносных ультрамафитовых интрузий мамонского типа (1) и безрудных мафитовых интрузий (Мечетка) каменского типа (2); 3-роговообманковое габбро ширяевского типа; 4-жильные норит-порфириты и 5-роговообманковое габбро еланского комплекса (Еланское месторождение); III-IV — жильные диориты, ассоциирующие с интрузиями мамонского (III) и еланского (IV) комплексов: 1-диориты рудоносных интрузий (Подколодновская); 2-диориты безрудных интрузий (Хреновская); 3-среднее значение для диоритов, ассоциирующих с ультрамафитовыми интрузиями мамонского типа; 4-диориты недифференцированных мафитовых интрузий (Мечетка) каменского типа; 5-7-жильные диориты еланского комплекса: 5-диориты среди норитов Еланского месторождения; 6-диориты в пределах Елань-Коленовского плутона; 7-среднее значение для жильных диоритов еланского комплекса.

образующих (пироксены, роговая обманка, полевые шпаты, биотит) и рудных (магнетит, сульфиды) минералах, так и в их интерстициях. Циркон поздней генерации, входящий в состав авто- и аллометаморфических минеральных парагенезисов (амфиболы тремолит-актинолитового ряда, хлориты, серпентин, ±биотит и др.) характеризуется изометрическим, дипирамидально-призматическим, уплощенным удлиненно-призматическим обликом кристаллов с преимущественным развитием граней (100) или (110), иногда (111), нередко в разной мере координированных, темно-бурой с розово-коричневым и коричневым оттенком окраской; обычно они слабо прозрачны и непрозрачны, иногда зональны, и содержат разнообразные по составу минеральные (амфиболы, биотит, магнетит, сульфиды) и газовожилкие включения.

При близком к жильным породам мамонского комплекса характере структурных взаимоотношений циркон интрузивно-дайковой породной ассоциации еланского комплекса, вместе с тем отличается значительно большим многообразием кристалломорфологических популяций. Как показали спе-

циальные исследования [5,4,8] в норитах и диоритах интрузивной и дайковой фации выделяется два генетически различных типа цирконов: 1) сингенетичный, количественно преобладающий, представленный: а) прозрачными и полупрозрачными бесцветными со слабым коричневатым оттенком гомогенными по внутреннему строению с хорошей огранкой удлиненно-призматическими до шестоватых (коэффициент удлинения до 7) кристаллами (до 0,3 мм); б) тетрагонально-призматическими полупрозрачными кристаллами со слабо проявленной зональностью в краевых частях призм и сглаженных дипирамидальных вершин (рисунок а-г); 2) более редко встречающимися "ксеногенными", близкими к изометричным уплощенного облика (0,1-0,2 мм) неравномерно окрашенными (рисунок д-е), а так же призматическими и дипризматическими прозрачными с различной степенью проявления зональности кристаллами, которые по кристалломорфологическим признакам, более низкому (в 1,5-2 раза) содержанию U (187,2-292,0 мг/т против 232,0-544,2 мг/т в цирконе еланского комплекса) и Рb 979,6-129,8 мг/т против 70,7-199,5 мг/т) и возрасту близки

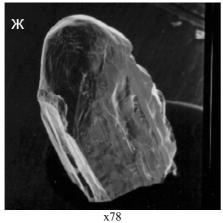


Рисунок. Кристалломорфологические типы цирконов из норит-диоритовой породной ассоциации еланского комплекса: а - г - сингенетический циркон из интрузивных (а) лейкократовых норитов (Еланское месторождение, скв. 9201, гл.725,9-733,5 м), жильных (б) норитов (Елань-Коленовский плутон, скв. 7653, гл.273,8-282,2 м), диоритов (в,г); Елкинское месторождение, скв.8897, гл.296,0-311,0 м); д - е - "ксеногенный" циркон из интрузивных (д) норитов (Еланское месторождение, скв. 9201, гл.725,9-733,5 м) и жильных (е) норитов (Елань-Коленовский плутон, скв. 7653, гл.273,8-282,2 м); ж-циркон ранней генерации из габброноритов Елань-Коленовского массива (скв.7658; гл.286,7-298,7 м). Рис. а, в, г, д по [4].

Таблица 3 Состав акцессорного циркона (мас.%) из жильных пород мамонского (1-3) и еланского (4-8) комплексов

Компоненты	1	2	3	Компоненты	4	5	6	7	8
Al_2O_3	-	-	-	Al_2O_3	-	0,005	-	-	0,048
SiO ₂	32,98	33,01	32,47	SiO ₂	32,95	31,961	31,979	31,958	31,988
ZrO_2	65,83	66,92	66,71	ZrO_2	66,16	67,720	67,106	67,190	66,153
HfO_2	0,68	0,47	1,12	HfO_2	0,91	0,930	1,157	1,218	1,428
CaO	-	0,02	0,01	CaO	0,01	0,019	0,029	0,013	0,016
Th_2O_5	0,16	0,02	0,15	Th_2O_5	0,14	-	-	-	-
TR_2O_3	•	0,07	0,10	TR_2O_3	1	-	1	-	-
Сумма	99,03	100,51	100,56	Сумма	100,17	100,635	100,271	100,379	99,634
ZrO ₂ /HfO ₂	96,8	142,4	59,6	ZrO ₂ /HfO ₂	72,7	72,8	58,0	55,2	46,3
Количество ионов в формульной единице			Количество ионов в формульной единице						
Al	-	-	-	Al	-	0,001	-	-	0,002
Si	1,010	1,002	0,993	Si	1,01	0,98	0,98	0,98	0,99
Zr^{+4}	0,983	0,993	0,995	Zr^{+4}	0,98	1,01	1,01	1,01	1
Hf ⁺⁴	0,006	0,005	0,010	Hf^{+4}	0,01	0,01	0,01	0,01	0,01
Ca	-	0,001	0,000	Ca	0,001	0,001	0,002	0,001	0,001
Th ⁺⁵	0,001	-	0,001	Th ⁺⁴	0,001	-	-	-	-

Примечание: 1-габбронорит Елань-Коленовского массива, скв. 7699, гл. 374,8 (по [2]); 2-жильное роговообманковое габбро (Подколодновка, скв. 207; 158,7-160,0 м); 3-диориты (там же, скв. 711, 245,3-246,3 м); 4-норит (Елань-Вязовский массив, 7229/567; среднее из двух анализов (по [2]); 5-норит жильный (там же, 7653/273,8-282,2); 6-норит-порфирит (Еланское месторождение, 7823/294,5-308,2); 7-8-диориты жильные (там же, 7606/396,3-398,0).

к циркону из мафитовых дифференциатов Елань-Вязовского плутона мамонского комплекса [4].

Наличие в интрузивно-дайковой фации норитов и диоритов популяций цирконов, близких по кристалломорфологическим признакам, содержанию U и Pb и возрасту (2090±11 млн.лет, [4,9]) к цирконам из габброноритов Елань-Вязовского плутона, выступает в качестве нового дополнительного аргумента, подтверждающего вероятность формирования специфической породной ассоциации еланского комплекса в результате ассимиляции фракционирующим сульфидоносным коматиитовым расплавом пород вмещающего раннедокембрийского структурно-вещественного комплекса Воронежского мегаблока [3].

Характерной особенностью, присущей ранней генерации циркона жильных пород никеленосных комплексов, является возрастание коэффициента удлинения (вплоть до появления близких к шестоватым кристаллов), в ряду субультрамафит-мафит-диоритовых пород, что связывается [1,2,8] с возрастанием щелочности минералообразующей среды.

Химические анализы (табл.3.) свидетельствуют о высокой степени комплементарности составов циркона в интрузивно-дайковой породной ассоциации как мамонского, так и еланского комплексов, каждый из которых, в свою очередь несет ряд черт различий, проявляющихся: а) в более существенном обогащении гафнием циркона жильных пород еланского комплекса и возрастанием содержаний HfO₂ (от 0,930 до 1,428 мас. %) в сингенетически родственном ряду пород (от норитов и норитпорфиритов к диоритам) и, как следствие, снижением величины ZrO₂/HfO₂ отношения (см.табл.3); б) постоянное присутствие в составе циркона жильных пород мамонского комплекса [5,9] Ti(10-100 г/т),

Yb(до 500 г/т), иногда La(до 100 г/т), Мо(до 500 г/т), Cu(3-30 г/т).

Выводы

- 1. Количественная распространенность, структурно-морфологический облик, состав и свойства циркона жильных пород наследуют структурновещественную индивидуальность мамонского и еланского никеленосных комплексов.
- 2. Установлено существенное обогащение цирконом жильных пород, ассоциирующих с рудоносными и потенциально рудоносными интрузивами.
- 3. Наличие в составе норит-диоритовой интрузивно-дайковой породной ассоциации популяций циркона, близких по кристалломорфологическому облику, содержанию U и Pb и возрасту к циркону из Елань-Вязовского плутона подтверждает вероятность формирования еланского комплекса в результате ассимиляции высокомагнезиальным коматиитовым расплавом пород вмещающей рамы.

ЛИТЕРАТУРА

- 1. Ляхович В.В. О некоторых особенностях акцессорного циркона гранитоидов // Тр. ИМГРЭ. -М., 1963. -117 с.
- 2. Плаксенко А.Н. Акцессорные минералы дифференцированных никеленосных интрузий Воронежского кристаллического массива // Воронеж, 1981. -228 с.
- 3. Чернышов Н.М., Переславцев А.В., Молотков С.П., Чернышова М.Н. Новый тип никеленосной формации в докембрии Воронежского кристаллического массива // Изв. АН СССР. Сер. геол. -1991. -№ 9. -С. 111-124.
- Чернышов Н.М., Баянова Т.Б., Чернышова М.Н., Левкович Н.В Возраст норит-диоритовых интрузий по изотопно-геохронологическим данным и их временные соотношения с габброноритами мамонского комплекса ВКМ // Геология и геофизика. -1998. -Т.39, №8. -С.1064-1071.

- Чернышова М.Н. Апатит и циркон как индикаторы комагматичности пород интрузивной и дайковой фаций никеленосной габбро-норит-гипербазитовой формации ВКМ // Тез. IV конференции. -Тюмень, 1983. -C.35-37.
- Чернышова М.Н. Состав и особенности распределения акцессорных минералов дайковых пород камернодифференцированных интрузий ВКМ, их петрологическое и поисковое значение // Воронеж. ун-т. -Воронеж, 1982. -10с. -Деп. в ВИНИТИ.
- Чернышова М.Н. Дайки никеленосных комплексов Воронежского кристаллического массива (формаци-
- онно-генетические типы и пространственновременные соотношения // Вестн. Воронеж. ун-та. Сер. геологическая. -1996. -№1. -С. 50-60.
- Чернышова М.Н. Состав и особенности распределения акцессорных минералов в дайковых породах, ассоциирующих с различными по степени рудоносности интрузивами мамонского и еланского комплексов ВКМ // Вестн. Воронеж. ун-та. Сер. геологическая -1998. -№6. -С.94-106.
- 9. Чернышова М.Н. Дайки мамонского никеленосного комплекса и их соотношение с оруденением // Воронеж, 1999.-121 с.

УДК 550.93+549.6

Ляхович В.В.

"ЦИРКОНОВЫЙ МЕТОД": ДОСТОИНСТВА И НЕДОСТАТКИ Статья II

Рассмотрены различные "типоморфные" признаки циркона, обычно используемые при различных петрологических построениях. Показана конвергентность многих из этих признаков и трудность их однозначного толкования. Наиболее достоверную информацию о генезисе циркона и включающей его породы несут особенности состава циркона и встречающихся в нем минеральных микровключений.

Состав циркона

Состав циркона в отношении содержания некоторых редких элементов непостоянен и зависит, главным образом, как от характера материнских пород, так и от времени выделения минерала. К числу таких индикаторных элементов могут быть отнесены Hf, U, TR, Th, Sc, Nb, Та. Их вхождение в кристаллическую решетку циркона возможно в результате как изо-, так и гетеровалентного изоморфизма, осуществляемого по схемам: $Zr^{4+} \leftarrow (Th, U, Hf)^{4+}$ или $2Zr^{4+} \leftarrow TR^{3+} Nb^{5+}; Zr^{4+} Si^{4+} \leftarrow TR^{3+} P^{5+}; 3Zr^{4+} \leftarrow (Nb, Ta)^{5+} + (Th, U)^{4+} + (Y, TR)^{3+}.$

Присутствие разнообразных редких элементов в цирконе. Связанное с явлениями изо- или гетеровалентного изоморфизма, обусловило выделение целого ряда его разновидностей: малакона (уран-ториево-редкоземельный), циртолита (торий-урано-редкоземельный), альвита (гафниево-бериллиевый), наэгита (ниобий-тантал-ториевый), ямагутилита (урано-ториевый), сямалита (фосфорный) и др. [14].

Ряд исследователей [10] считают, что в силу особенностей положения иона циркона в структуре циркона вероятность нахождения в нем U, Th, TR, Nb, Ta, Y в виде изоморфной примеси весьма незначительна. Большая часть этих элементов находится в нем в составе микровключений собственных минералов этих элементов, изоструктурных с цирконом. Проведенные экспериментальные исследования в тройных системах $ZrO_2 - ThO_2 SiO_2$ и $ZrO_2 - UO_2 - SiO_2$ обнаруживают крайнюю ограниченность изоморфного вхождения урана и тория в структуру циркона. В пользу этого казалось бы свидетельствует и индиферентность Zr по отношению к U, Zr

TR, проявляющая в простых окислах этих элементов уранинит и церианит имеют кубическую, а бадделит – моноклинную кристаллическую структуру. С этой точки зрения присутствие в цирконе U, Th, TR, Y обусловлено захватом в процессе его роста готовых кристалликов минералов этих элементов [15].

Различная форма нахождения редких элементов в цирконе находит отражение в неравномерном их распределении в этом минерале. Она выражается в наличии послойных зон, характеризующихся повышенным содержанием Si или Zr. Обнаружены также зоны с локальными концентрациями Ge — 3,6%, Hf — 2,24, Sm — 2,3%, Yb — 1,1%. В цирконах оловоносных и вольфрамоносных гранитов Приморья Sn,W,Nb,Y,Th,U присутствуют в виде микровключений соответствующих минералов, и в меньшей мере в виде изоморфной примеси. В связи с этим следует отметить, что циркон из золотоносных жил Канады содержит большое количество включений золота.

Так или иначе, но определенные геохимические отличия циркона, не обсуждая истинную форму нахождения в нем редких элементов, хорошо отражают геохимические особенности среды минералообразования и, следовательно, включающей циркон породы. Следующие примеры позволяют убедиться в справедливости этого положения.

Гафний. Элемент, постоянно присутствующий в цирконе. Его содержание неизменно увеличивается как в цирконах поздних генераций (табл.1), так и в цирконе пегматитов. Этот признак позволяет более уверенно выделять позднемагматические и пегматитовые генерации циркона, чем это делается по особенностям его формы. Это также подтверждается наблюдениями, фиксирующими