ИССЛЕДОВАНИЕ СПОСОБНОСТИ НАНОЧАСТИЦ ОКСИДА ЦЕРИЯ К ОКИСЛЕНИЮ И АДСОРБЦИИ ОРГАНИЧЕСКИХ КРАСИТЕЛЕЙ

А.А. Шеферова¹, В.Ж. Корокин², Хайдер Аль-Аззави², И.А. Шеферов², Е.А. Захарычев², И.В. Спицкая¹, Н.Б. Мельникова², А.И. Сливкин³

 ¹ΦГБОУ ВО «Приволжский исследовательский медицинский университет» Минздрава России
²Национальный исследовательский Нижегородский государственный университет им. Н. И. Лобачевского
³ΦГБОУ ВО «Воронежский государственный университет» Поступила в редакцию 20.01.2025 г.

Аннотация. Были изучены поверхностные свойства наночастиц оксида церия в гидратной форме, синтезированные двумя методами из гексагидрата нитрата церия (III): 1) окислительным полиольным методом, используя в качестве осадителя гидроксид аммония в этиленгликоле (CeO₂ NPs-ЭГ), и 2) осаждением его аминоспиртом – меглюмином в водной или водно-спиртовой среде (CeO₂ NPs-MPs-MГ).

Методами ИК-, УФ-, флуоресцентной и РФЭС спектроскопии, рентгенофазового анализа подтверждено, что во всех случаях наночастицы CeO₂, имели структуру флюорита, с отношением Ce:O 70:30 CeO₂ NPs-ЭГ и 60:40 CeO₂ NPs-МГ. Адсорбцию, окисление и деструкцию органических красителей изучали, используя кислотно-основные фенольные индикаторы – бромфеноловый синий (БФС) и бромкрезоловый пурпурный (БКП), диазиновый – нейтральный красный (НК) и тиазиновый – толуидиновый голубой (ТГ). Выбор индикаторов был обусловлен тем, что в близи точки перехода рН при изменении окраски, индикатор способен переходить либо в окисленную, либо в восстановленную форму. Количественно адсорбцию красителя на поверхности наночастиц оценивали по изменению интенсивности поглощения окисленной или восстановленной формы, что сопровождалось изменением окраски наночастиц оксидов металлов.

Доля БФС и БКП, адсорбированных на поверхности из спиртового раствора, достигает 80–100% и практически не зависит от старения образца. Поверхность CeO₂ NPs-ЭГ после адсорбции БФС, БКП, НК, ТГ первоначально приобретала цвет окисленных форм индикатора с дальнейшим обесцвечиванием раствора (полная адсорбция). В отличие от CeO₂ NPs-ЭГ, поверхность CeO₂ NPs-МГ способствовала полному разрушению индикаторов, независимо от их природы.

Таким образом, поверхность CeO₂ NPs-ЭГ может выступать в качестве катализатора окисления и адсорбента для всех изученных индикаторов. Для полного разрушения индикаторов может быть рекомендована поверхность CeO₂ NPs-МГ.

Ключевые слова: окислительная способность наночастиц оксида церия, бромфеноловый синий, бромкрезоловый пурпурный, нейтральный красный, толуидиновый голубой, сорбция, старение наночастиц оксида церия

Оксид церия CeO_2 широко используется в катализе, твердооксидных топливных элементах, при УФ-защите, механической полировке, системах контроля загрязнения, в медицине как противоопухолевое, антибактериальное и антиоксидантное средство [1-6]. Основной причиной интереса к оксиду церия, как катализатору, является уникальность его окислительно-восстановительного поведения, обусловленного образованием дефектных участков Ce^{3+} и последующих кислородных вакансий. Механизм окислительно-восстановительного превращения из CeO_2 в Ce_2O_3 включает не только локализацию электрона в ядре атома церия, но и одновременное образование кислородных вакансий. На микро-

[©] Шеферова А.А., Корокин В.Ж., Хайдер Аль-Аззави, Шеферов И.А., Захарычев Е.А., Спицкая И.В., Мельникова Н.Б., Сливкин А.И., 2025

скопическом уровне удаление атомов кислорода происходит за счет способности атома церия легко менять свою электронную конфигурацию. Процесс образования кислородных вакансий связан с квантовым эффектом локализации - делокализации 4f-электрона атома церия и лежит в основе кислородной емкости оксида церия [5].

Окислительно-восстановительные свойства особенно ярко проявляются у наночастиц оксида церия (CeO₂ NPs), представляющего собой смешанный оксид - хСеО, уСе, О,. Большой интерес к СеО, NPs связан с его антиоксидантными свойствами по отношению к продуктам перекисного окисления липидов и АФК [7-9]. Антиоксидантные свойства CeO₂ NPs обычно связывают с его способностью выступать в качестве миметиков ферментов, так называемых наноферментов. Многочисленные исследования демонстрируют свойства CeO, NPs как миметика СОД, каталазы, фосфатаз, галопероксидазы и уреазы, что систематизировано в обзоре [7]. CeO₂ NPs способен участвовать в окислительновосстановительных процессах в клетке и способен восстанавливать исходное состояние окисления за короткий промежуток времени, что позволяет CeO₂ NPs участвовать в неограниченном количестве окислительно-восстановительных циклов. В целом многочисленные данные характеризуют CeO₂ NPs как катализатор с мультиферментно-миметической функцией и с участием в реакциях типа Фентона. Ранее в работе была продемонстрирована способность CeO, NPs восстанавливать окисленную форму цитохрома с и окислять восстановленную форму в подходящих условиях, в основном в кислой среде [10].

Также важно изучить CeO₂ NPs как окислитель как в присутствии дополнительных сильных окислителей (например, перекиси водорода), так и без них, в зависимости от рН [11-19]. Гао и др. изучали окисление органических красителей и индикаторов СеО, NPs в кислой среде [14]. Сюй и Цюй пришли к выводу, что CeO₂ NPs окисляет органические красители в кислых условиях как жертвенный окислитель, а в нейтральных и основных условиях действует как оксидазы, сохраняя способность к переходу Се³⁺⁻Се⁴⁺. Окислительная способность СеО₂ NPs по отношению к органическим красителям и индикаторам АБТС (2,2-азинобис(3-этилбензотизолин-6сульфокислота), ТМБ (3,30,5,50-тетраметилбензидин), ДМПО (5,5-диметил-1-пирролин-N-оксид) была доказана авторами работы [11]. В свою очередь, многие органические красители и индикаторы являются удобными маркерами их окислительной деструкции под воздействием CeO₂ NPs.

В качестве красителей используют фенольные индикаторы, например, бромфеноловый синий (БФС) и бромкрезоловый пурпурный (БКП), а также диазиновый - нейтральный красный (НК) и тиазиновый – толуидиновый голубой (ТГ). Их окисление и деструкция легко контролируется визуально и УФвидимой спектрофотометрией, имея четкое изменение окраски при переходах фенольной и хиноидной форм при определенном значении рН [20-23]. Преимуществом этих индикаторов является также то, что хиноидная форма также является окисленной формой индикаторов. Поэтому использование спектрофотометрических методов анализа позволяют однозначно оценить влияние CeO₂ NPs на окисление или восстановление индикатора как в растворе, так и на поверхности наночастиц.

Оценка адсорбционных центров с использованием широкого набора показателей является известным методом прогнозирования распределения кислотно-основных (донорно-акцепторных) свойств поверхностных центров оксидов металлов в водной или водно-спиртовой средах, а также во влажной атмосфере [24-27]. В зависимости от способа получения, условий сушки и отжига на поверхности гидратированного оксида церия могут возникать различные амфотерные формы - метацериевая кислота H_2CeO_3 (в диапазоне pH от ~ 0 до 4), гидратированные оксиды церия CeO₂·nH₂O (pH \sim от 4 до 8) и гидроксиды церия CeO(OH), (pH \sim от 8 до 9) [28]. Вероятно, эти поверхностные центры CeO, NPs могут вступать не только в донорно-акцепторные реакции, но и в реакции с одновременным переносом протона и электрона.

Как окислительно-восстановительный процесс, так и окислительная способность CeO₂ NPs во многом зависят от структуры и свойств наночастиц, особенно от состояния поверхности. Например, стержнеобразный CeO₂ NPs проявляет более сильные окислительно-восстановительные свойства, чем традиционные нерегулярные частицы CeO₂ NPs [11].

В данной работе мы изучили влияние состояния поверхности как свежеприготовленных, так и состаренных наночастиц оксида церия, синтезированных методом полиольного синтеза с этиленгликолем (CeO₂ NPs-ЭГ) и осаждением с аминоспиртом – меглюмином (CeO₂ NPs-MГ), на их сорбционную и окислительную способность по отношению к фенольным индикаторам (бромфеноловый синий и бромкрезоловый пурпурный), а также к диазиновому (нейтральный красный) и тиазиновому (толуидиновый голубой). Во-первых, различия в поверхностных центрах наночастиц обусловлены синтезом, на

поверхности наночастиц CeO₂ NPs адсорбировались либо неионный этиленгликоль (CeO₂ NPs-ЭГ), либо аминоспирт - меглюмин (CeO₂ NPs-MГ). Вовторых, в зависимости от условий (доля кислорода в воздухе, влажность, температура) и времени хранения изменялось и состояние поверхности полупроводникового CeO₂ NPs. В данном исследовании проводилось ускоренное «старение» свежеприготовленных образцов CeO₂ NPs путем: 1) хранения в водной среде в течение 24 часов до адсорбции индикатора; 2) хранения образцов на воздухе в течение 3 месяцев.

МЕТОДИКА ЭКСПЕРИМЕНТА

В исследовании использовали гексагидрат нитрата церия (ООО «Химкрафт», Калининград, Россия), этанол (чистота 95,0%), меглюмин (N-(1дезокси-D-глюцитол-1-ил)-N-метиламмония), этиленгликоль, бромфеноловый синий, бромкрезоловый пурпурный, раствор гидроксида аммония (25,0%) (Векос, Нижний Новгород, Россия), нейтральный красный, толуидиновый голубой (Вектон, Санкт-Петербург, Россия). Все химикаты и реагенты были аналитической чистоты и использовались в полученном виде без какой-либо очистки.

Синтез наночастиц СеО,-ЭГ

 CeO_2 NPs синтезировали по методу Каракоти [29] с небольшими модификациями. Гексагидрат нитрата церия (2,175 г, 5 ммоль) растворили в 100 мл раствора воды и этиленгликоля (30:70) и поместили в колбу. Водный раствор гидроксида аммония (25%) добавляли по каплям очень медленно при интенсивном перемешивании до рН 10-11 при 60°С. После интенсивного перемешивания в течение трех часов при 60°С образовался желтобежевый осадок, который затем отделяли центрифугированием и промывали.

Синтез СеО, NPs-МГ

Гексагидрат нитрата церия (1,736 г) растворяли в 55 мл 95% этанола и помещали в трехгорлую колбу, снабженную обратным холодильником и капельной воронкой, затем нагревали до 60 °C. Добавляли по каплям в течение 15 минут 3,12 г меглюмина в 5 мл воды и 40 мл этанола, нагревали при перемешивании в течение 3 часов, в ходе синтеза раствор и образовавшийся осадок приобретали темно-желтый цвет. Осадок после декантации тщательно промывали водой, этанолом и ацетоном.

Старение CeO, NPs

а) Свежеприготовленные CeO_2 NPs после сушки при 110 °C хранились в открытом бюксе в течение 3 месяцев. b) Свежеприготовленные CeO₂ NPs после сушки при 110 °C погружались в воду на 24 часа (гидратированный CeO₂ NPs).

Подготовка образцов CeO₂ NPs для флуоресцентного спектрального анализа

2,5 мг CeO₂ NPs-ЭГ диспергировались в 3 мл 1,5·10⁻⁵ М спиртового раствора бромфенолового синего, или 1,8·10⁻⁵ М спиртового раствора бром-крезолового пурпурного, или 1,4·10⁻⁵ М спиртового го раствора нейтрального красного, или 1,9·10⁻⁵ М спиртового раствора толуидинового голубого. Раствор обрабатывался в ультразвуковой ванне в течение 5 минут. Дисперсию центрифугировали в течение 5 минут, и надосадочную жидкость анализировали.

Методы анализа

Электронные спектры поглощения были получены на спектрофотометре UV-1800 (Shimadzu, Киото, Япония). Спектры флуоресценции были зарегистрированы на спектрофлуориметре RF-600 (Shimadzu, Киото, Япония) в диапазоне 270-800 нм в кювете с толщиной стенки 10 мм. ИК-Фурье спектры были получены в диапазоне 400-4000 см-1 на ИК-Фурье-спектрометре IR Prestige-21 (Shimadzu, Киото, Япония). Разрешение составило 0,5 см⁻¹, количество сканирований — 45. Порошковые рентгенограммы были получены с помощью рентгеновского дифрактометра Shimadzu XRD-6000 (Shimadzu, Киото, Япония) при 295(2) К с излучением Си Ка ($\lambda = 0,15418$ нм) с использованием геометрии отражения Брэгга-Брентано. Элементный состав порошков был изучен с помощью рентгеновского микрозондового анализа (PMA) с детектором X-MaxN 20 (Oxford Instruments, Оксфордшир, Англия).

Рентгеновская фотоэлектронная спектроскопия (XPS)

ХРЅ измерения проводились с использованием сверхвысоковакуумного комплекса Multiprobe RM (Omicron Nanotechnology GmbH, Таунусштайн, Германия). Фотоэмиссию возбуждали немонохроматизированным излучением Mg Ka (энергия 1253,6 эВ, ширина линии 0,7 эВ). Диаметр области анализа составлял 3 мм. Предельно определяемая концентрация элементов определялась по отношению сигнал/шум в фотоэлектронных спектрах и составляла 0,1–1 ат.%. Се 3d анализ высокого разрешения регистрировался при энергии пропускания анализатора 30 эВ и шаге по энергии 0,2 эВ. Математическая обработка спектров проводилась с использованием программного обеспечения SDP версии 4.3 и CasaXPS.

Оценка удельной площади

Удельную площадь поверхности порошковых материалов определяли методом статической вакуумной волюметрии: анализатор площади поверхности, размер микропор, хемосорбция «Autosorb iQ C» (Quantachrome Instruments, FL, USA). Перед измерениями образцы дегазировали в динамическом вакууме (базовое давление = $1,33 \times 10$ Па) при 120° С в течение 3 ч. Удельную площадь поверхности порошка оценивали методом Брунауэра–Эммета–Теллера (БЭТ) с использованием данных, полученных в диапазоне $0,05 < p/p_o < 0,35$.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Свойства наночастиц CeO $_2$ NPs-ЭГ и наночастиц CeO $_2$ NPs-МГ

Данные рентгено-дифракционных спектров подтвердили аморфную структуру наночастиц СеО, NPs-MГ, в то время как наночастицы CeO₂ NPs-MГ оказались более рентгено-аморфными (рис. 1а). Элементный состав CeO, NPs подтверждается энергодисперсионными рентгеновскими спектрами (EDX) (Ce~70-78%; O~30-22%) (рис. 1г). На электронных спектрах поглощения CeO₂ NPs наблюдалась полоса с $\lambda_{max} = 270-310$ нм, что отражает появление экситона, характерного для CeO₂ NPs (рис. 1в). Ранее нами было показано, что соотношение Ce³⁺:Ce⁴⁺ для этих образцов составляло примерно 30:40 [10]. Площадь поверхности для обоих образцов находилась в диапазоне 180,1–233,7 м²/г. Данные ИК-Фурье показали включение меглюмина и этиленгликоля в поверхностный слой CeO₂ NPs (рис. 1б).

Функциональные группы образца можно отмечать по полосам поглощения в диапазоне волновых чисел от 400 до 4000 см⁻¹ ИК-Фурье спектра. Полосы, наблюдаемые при 546 (для CeO₂ NPs-MГ) и 571 см⁻¹ (для CeO₂ NPs-ЭГ), характеризуют колебания Ce-O. Полосы, наблюдаемые на 1653 см⁻¹ для обоих образцов, могут быть связаны с изгибной колебательной модой H–O–H из-за поглощения воды в воздухе. Полосы, наблюдаемые на 3200–3500 см⁻¹, указывали на наличие валентного колебания O–H. Полосы, наблюдаемые при 1091 см⁻¹ (для CeO₂ NPs-MГ) и 1071 см⁻¹ (для CeO₂ NPs-ЭГ), могут быть обусловлены валентными колебаниями С–О от дополнительного CO₂, который может быть абсорбирован на поверхности CeO₂. Полоса при 1050 см⁻¹ для обоих образцов показала валентные колебания NO₃⁻.

Исследование влияния CeO₂ NPs на окисление красителей методом электронной спектроскопии и флуоресценцией

Бромфеноловый синий (БФС) и бромкрезоловый пурпурный (БКП) являются кислотно-основными индикаторами со значениями рКа 4,1 и 6,4 соответственно и значениями рН перехода цвета в диапазоне от 3,0 до 4,6 и от 5,2 до 6,8, соответственно. При этом фенольная форма индикаторов (желтая) переходит в окисленную хиноидную форму (синюю) за счет реакции переноса протона и электрона в растворе. Структурные формы фенольной (восстановленной) и хиноидной (окисленной) показаны на рисунке 2. В спиртовой экспериментальной среде в присутствии кислорода воздуха окисление индикатора может катализироваться кислотными центрами на поверхности наноцерия Ce⁴⁺, при этом возможно увеличение доли Ce³⁺.

Рис. 1. Физико-химические свойства наночастиц CeO₂: а – рентгеновские дифракционные спектры; б – ИК-Фурье спектры; в – электронные спектры поглощения; г - рентгеновские фотоэлектронные спектры Ce 3d; д - изображения сканирующего электронного микроскопа; е - данные элементного анализа. Слева - CeO₂ NPs-ЭГ, справа - CeO₂ NPs-МГ

Рис. 2. Структуры индикаторов бромкрезолового пурпурного и бромфенолового синего в фенольной (восстановленной) и хиноидной (окисленной) формах

На рис. 3 представлены структуры и цвет индикаторов нейтрального красного (рКа = 6,9, рН перехода = 6,8-8,4) и толуидинового голубого (рКа = 2,4; рКа = 11,6), изменяющие цвет при различной кислотности среды или поверхностных центров.

Рис. 3. Структуры индикаторов нейтрального красного и толуидинового голубого в восстановленной и окисленной формах. В нижней части рисунка представлена схема окисления и восстановления индикаторов под действием CeO2 NPs

Взаимодействие БФС и БКП с CeO, NPs

При взаимодействии БФС в восстановленной форме (жёлтый цвет) со свежеприготовленными CeO₂ NPs-ЭГ в течение 1 минуты наблюдалось полное исчезновение жёлтого цвета исходной восстановленной формы БФС_{восст}, а жёлтый цвет наночастиц становился зеленым, вероятно за счёт появления окисленной формы БФС (синий) (рис. 3а, табл. 1). За время эксперимента БФС практически полностью адсорбировался и окислился на поверхностных центрах (Ce⁴⁺) наночастиц CeO₂, образуя адсорбционный комплекс БФС CeO₂. Количество индикатора (q), адсорбированного на свежеприготовленных CeO₂ NPs-ЭГ, соответствовало 0,9±0,1 мкмоль/г (n = 3). В видимой части электронного спектра появилось небольшое поглощение в области 599-610 нм, характерное для окисленного индикатора, а цвет спиртового раствора приобрел слабую розово-фиолетовую окраску, характерную для бромфенолов. Розовый оттенок, вероятно, обусловлен небольшой долей продуктов деградации бромфенолового синего, что характерно для бромфенольных красителей, имеющих красноватые оттенки. Доля адсорбированного индикатора составила 95±5%. После 24 часов выдерживания CeO₂ NPs в растворе БФС раствор практически обесцветился, а CeO₂ NPs приобрел сине-фиолетовую окраску (рис. 4а, табл. 1).

Влияние состаренных наночастиц CeO, NPs-ЭГ на адсорбцию, окисление и деструкцию БФС продемонстрировано на рис. 46, табл. 1. Для образца, выдержанного на воздухе в течение 3 месяцев, при взаимодействии с индикатором БФС в течение 1 минуты в видимой части спектра полностью исчезла полоса в области 428-483 нм, а полоса в области 599-610 нм существенно увеличилась. Значение q составило $0,7\pm0,1$ мкмоль/г (n = 3), а доля адсорбированного индикатора составила около 80±5%, а окисленного индикатора, перешедшего в раствор, 20±5%. Цвет индикатора изменился с желтого на интенсивно-синий, а частицы также приобрели сине-фиолетовый цвет. Цвет индикатора в растворе и осадке остался неизменным через 24 часа. Соответственно, неизменными остались как количество адсорбированного индикатора, так и доля окисленного индикатора. В случае старения свежеприготовленных частиц СеО, NPs-ЭГ методом гидратации (предварительное погружение в воду на 24 часа) взаимодействие индикатора БФС с гидратированными частицами приводило к появлению синей окраски индикатора в растворе БФС после старения в течение 24 часов. Количество адсорбированного индикатора (q) на гидратированных наночастицах соответствовало $0,8\pm0,1$ мкмоль/г (n = 3), а доля окисленного индикатора, перешедшего в раствор, уменьшалась и составляла примерно 13±5%. Цвет наночастиц СеО, NPs-ЭГ приобретал зелено-желтый цвет. Спектр не менялся в зависимости от времени взаимодействия индикатора с гидратированными наночастицами, а также при взаимодействии с образцом, выдержанным на воздухе. Максимальное окисление БФС наблюдалось на СеО, NPs-ЭГ, выдержанных на воздухе в течение 3 месяцев, тогда как гидратация ослабляла этот процесс. Причем, доминирование адсорбции индикатора отмечено на свежеприготовленных образцах.

Влияние CeO₂ NPs на окисление или восстановление индикатора бромкрезолового пурпурного (БКП) было проведено в двух сериях исследований с использованием как восстановленной, так и окисленной форм индикатора.

При адсорбции БКП восст на поверхность, свежеприготовленных CeO₂ NPs в растворе в течение 1 минуты, ослабевала исходная желтая окраска индикатора (А уменьшалась с 0,798 до 0,311), а окраска, характерная для окисленной формы, не появлялась (отсутствие окисленной формы индикатора в растворе). Доля адсорбированного индикатора в растворе). Доля адсорбированного индикатора составила $60\pm5\%$ (n = 3) (рис. 4в). При выдерживании свежеприготовленного CeO₂ NPs в растворе индикатора в течение 24 часов доля адсорбированного индикатора увеличивалась ($85\pm5\%$). Появление зеленой окраски на наночастицах свидетельствует об адсорбции индикатора в окисленной форме.

В случае состаренного путем предварительной гидратации CeO₂, выдержанного в растворе БКП_{восст} в течение 1 минуты, в верхнем слое твердой фазы появилась фиолетовая окраска. Поглощение восстановленной формы уменьшилось так же, как и для свежеприготовленного образца (с 0,798 до 0,311), но в спектральной области, характерной для окис-

ленной формы, наблюдалось незначительное поглощение. После более длительной выдержки (24 часа) в растворе гидратированного образца наблюдалась только восстановленная форма индикатора. Доля адсорбированного индикатора составила 81±5%, возможно, он частично окислился на наночастицах, так как осадок приобрел зеленый цвет (рис. 4г).

В целом следует отметить, что сорбция БКП_{восст} (pKa = 6,4) на наночастицах CeO₂ NPs-ЭГ близка к БФС (pKa = 4,1), процесс окисления БКП_{восст} практически не происходит.

При взаимодействии свежеприготовленных наночастиц CeO₂ NPs-ЭГ с БКП_{окнсл} в течение 1 минуты цвет дисперсии изменился с фиолетового на бледно-розовый; через 24 часа раствор над осадком стал бесцветным, а наночастицы приобрели зеленый цвет.

Вероятно, что CeO₂ NPs почти полностью адсорбировал БКП (рис. 4д, таблица 1).

Количество индикаторов, адсорбированных на наночастицах оксида церия, рассчитывали по следующей формуле:

$$q = \frac{(\tilde{c}_0 - c) \cdot v}{m}; \ \alpha = \frac{(\tilde{c}_0 - c) \cdot v}{c_0} \cdot \mathbf{100\%},$$
(1)

При окислении или восстановлении индикаторов, сопровождающемся появлением новой по-

Рис. 4. Электронные спектры спиртовых растворов индикаторов и CeO₂ NPs-ЭГ (50 мг/3 мл): а) в растворе БФС; б) выдержанных в растворе БФС после гидратации в течение 24 часов; в) в растворе БКП_{восст}; г) выдержанных в растворе БКП_{восст} после гидратации в течение 24 часов; д) в растворе БКП_{осст}; 1 – исходный индикатор; 2 – после добавления индикатора в течение t = 1 мин; 3 – после добавления индикатора в течение 24 часов; е) спектры флуоресценции раствора БФС: 1 - исходный раствор БФС; 2 – после добавления CeO₂ NPs-ЭГ в течение t = 10 мин; 3 - после добавления CeO₂ NPs-МГ в течение t = 10 мин; ж) спектры флуоресценции раствора БКП: 1 - исходная концентрация БКП_{окисл}; 2 – после добавления CeO₂ NPs-ЭГ в течение t = 10 мин; 3 - после добавления CeO₂ NPs-ЭГ в течение t = 10 мин; 3 - после добавления СеО₂ NPs-ЭГ в течение t = 10 мин; 3 - после добавления СеО₂ NPs-ЭГ в течение t = 10 мин; 3 - после добавления СеО₂ NPs-ЭГ в течение t = 10 мин; 3 - после добавления СеО₂ NPs-ЭГ в течение t = 10 мин; 3 - после добавления СеО₂ NPs-ЭГ в течение t = 10 мин; 3 - после добавления СеО₂ NPs-ЭГ в течение t = 10 мин; 3 - после добавления СеО₂ NPs-ДГ в течение t = 10 мин; 3 - после добавления СеО₂ NPs-ДГ в течение t = 10 мин; 3 - после добавления СеО₂ NPs-ДГ в течение t = 10 мин; 3 - после добавления СеО₂ NPs-ДГ в течение t = 10 мин; 3 - после добавления СеО₂ NPs-ДГ в течение t = 10 мин; 3 - после добавления СеО₂ NPs-ДГ в течение t = 10 мин

лосы поглощения, концентрацию активных центров рассчитывали по формуле [26], используя линейную зависимость оптической плотности от концентрации как окисленной, так и восстановленной форм индикаторов в анализируемом диапазоне концентраций:

$$q = \frac{(\mathcal{L}_0 - \mathcal{L}) \cdot \mathcal{V}}{A_0} \cdot \left(\left| \frac{A_0 - A_1}{m} \pm \frac{A_0 - A_2}{m} \right| \right), \tag{2}$$

где q – количество индикатора, адсорбированное на единицу массы адсорбента (мкмоль/г), V – объем раствора (л), C₀ – исходная концентрация индикатора (моль/л), C – равновесная концентрация индикатора (моль/л), m – масса наночастиц оксида церия, A₀ – поглощение индикатора в растворе до сорбции, A₁, A₂ – поглощение индикатора в растворе после сорбции восстановленной и окисленной форм соответственно.

В таблице 1 представлены результаты анализа спектров и количества адсорбированных индикаторов.

В отличие от поведения поверхности CeO₂ NPs-ЭГ по отношению к изучаемым индикаторам, взаимодействие CeO₂ NPs-МГ с ними как в течение 1 минуты, так и в течение 24 часов приводило к практически мгновенному разрушению индикатора: дисперсия становилась неоднородной и приобретала оранжево-коричневый цвет, осадок также становился коричневым.

Изменение фенольной структуры БФС на хиноидную после взаимодействия с наночастицами оксида церия можно оценить по данным спектров флуоресценции, поскольку хиноидные соединения обладают более высокой интенсивностью излучения по сравнению с фенольными аналогами. Дисперсии БФС с CeO₂ NPs-ЭГ и CeO₂ NPs-МГ концентрацией 1,5·10⁻⁵ М дополнительно обрабатывали ультразвуком в течение 5 мин для более полного окисления индикаторов. Осадок с адсорбированными индикаторами удаляли центрифугированием, а надосадочную жидкость анализировали. Спектры флуоресценции этих растворов показали существенное увеличение излучения при $\lambda = 682$ нм по сравнению с исходным индикатором, несмотря на то что концентрации БФС снижались за счет адсорбции на удаленных наночастицах (рис. 4е).

Полученные данные подтверждают окисление БФС и БКП при взаимодействии с поверхностью наночастиц, причем под воздействием CeO_2 NPs-ЭГ процесс протекает интенсивнее, чем CeO_2 NPs-MГ. Кроме того, эмиссия раствора с CeO_2 NPs-MГ была ниже, чем в системах CeO_2 NPs-ЭГ. Данный эффект, вероятно, обусловлен ингибированием каталитических центров Ce^{3+} меглюмином (рис. 4 е, ж).

Взаимодействие НК и ТГ с CeO, NPs

Для оценки влияния природы красителей на их сорбцию и окисление на поверхности CeO_2 NPs нами изучены диазиновый и тиазиновый индикаторы – нейтральный красный (НК) и толуидиновый голубой (ТГ), константы рКа которых больше чем рКа бромфеноловых индикаторов (рКа = 4,1 и рКа = 6,4), и равняется рКа 6,9 и 11,4, соответственно (рис. 3).

На рис. 5, представлены электронные спектры исходных индикаторов и в системе с CeO_2 NPs. НК быстро (практически за 1 мин) адсорбировался

Таблица 1

Рис	Кривая	Образец	t	$\begin{array}{c} A_{_{599_{HM}}}-\\ A_{_{610_{HM}}}\\ (A^{ox}) \end{array}$	А _{428нм} — А _{483нм} (А ^{red})	А _{590нм} – А _{610нм} (А ^{ох})	А _{424нм} — А _{431нм} (А ^{red})	q, мкмоль/г	Цвет осадка
4а, б	1	БФС	_	0.110	0.521	_	-		_
4a	2	СеО ₂ NPs-ЭГ (свеж)	1 мин	0.024	_	-	_	0,9±0,1	зел
	3	CeO_2 NPs-ЭГ (свеж)	24 ч	0.046	_	_	_		сине-фиолет
46	2	СеО ₂ NPs-ЭГ (состар)	1 мин	0.293	_	_	_	0,7±0,1	сине-фиолет
	3	СеО ₂ NPs-ЭГ (гидратир)	1мин	0.183	_	_	_	0,8±0,1	зел-жёлт
4в, г	1	БКП	-	-	-	-	0.798		_
4в	2	СеО ₂ NPs-ЭГ (свеж)	1 мин	-	-	-	0.311	0,6±0,1	сине-фиолет
	3	СеО ₂ NPs-ЭГ (свеж)	24 ч	-	-	_	0.115		зел
4Γ	2	СеО ₂ NPs-ЭГ (гидратир)	1 мин	-	-	0.057	0.311	0,6±0,1	сине-фиоле- товый
	3	CeO ₂ NPs-ЭГ (гидратир)	24 ч	-	-	_	0.152		зел
4д	1	БКП	-	-	-	0.410	0.087		_
	2	CeO ₂ NPs-ЭГ(свеж)	1 мин	-	-	0.174	0.045	0,6±0,1	жёлт
	3	СеО ₂ NPs-ЭГ(свеж)	24 ч	_	_	0.070	0.043		зел

Данные УФ-видимого спектра дисперсий CeO₂ NP (50 мг/3 мл) в растворах БФС (1,5·10⁻⁵ M) и БКП (1,8·10⁻⁵ M)

ВЕСТНИК ВГУ, СЕРИЯ: ХИМИЯ. БИОЛОГИЯ. ФАРМАЦИЯ, 2025, № 1

на поверхности CeO₂ NPs-ЭГ, его концентрация в растворе в дальнейшем за 24 часа практически не менялась (рис. 5а), при этом незначительное количество восстановленной формы (жёлтый цвет) полностью исчезала за 24 часа, а осадок приобретал жёлто-розовый цвет.

Рис. 5. Электронные спектры спиртовых растворов индикаторов и CeO2 NPs-ЭГ (50 мг/3 мл): а) в растворе HP; б) выдержанных в растворе HK после гидратации в течение 24 часов; в) в растворе TГ: 1 – исходный индикатор; 2 – после добавления индикатора в течение t = 1 мин; 3 – после добавления индикатора в течение 24 часов

Наночастицы CeO₂ NPs-ЭГ, предварительно гидратированные в течение суток, даже через 1 минуту контакта с раствором НК были способны переводить индикатор в полностью восстановленную форму (жёлто-оранжевый цвет, 448 нм). Со временем наблюдалась обратимое окисление НК в растворе, о чём свидетельствует присутствие в спектре двух полос поглощения (463, 530 нм) (рис. 56).

В системе раствора ТГ - CeO₂ NPs-ЭГ наблюдалась только адсорбция индикатора на поверхности наночастиц, а не образование восстановленной формы ТГ (рис. 5в). Как и в случае бромфеноловых индикаторов, CeO₂ NPs-МГ способствовал деструкции индикаторов: НК и ТГ.

Результаты адсорбции, окисления и деструкции индикаторов на поверхности наночастиц оксида церия можно объяснить кислотно-основными свойствами как поверхностных центров наночастиц, так и индикаторов. Свежеприготовленные CeO₂ NPs-ЭГ, высушенные при 125°С, вероятнее всего, представляют собой гидратированный смешанный оксид церия Ce₂O₃·CeO₂·xH₂O, проявляющий амфотерные свойства. Согласно работе [28], поверхностные центры гидратированных оксидов церия, не прокален-

ных при высоких температурах, относятся к слабым кислотам Бренстеда – CeO₂·H₂O (рКа от 4 до 7), либо к основаниям Бренстеда – CeO₂·2H₂O (pKa от 6 до 8). Индикаторы БФС, БКП и НК имеющие pKa 4,1; 6,4 и 6,9, соответственно, способны не только адсорбироваться, но и переходить в окисленные формы в том же диапазоне рН. Данные таблиц 1 и рисунков 4 и 5 подтверждают эффективность адсорбции (80-90%) БФС, БКП и НК на СеО, NPs-ЭГ. Индикаторы быстро окисляются в поверхностных центрах наночастиц, приобретая окраску окисленных форм индикатора независимо от режима старения. Следовательно, гидратированная форма наночастиц СеО, NPs- $\Im\Gamma$ соответствует форме CeO₂·H₂O (pKa or 4 до 7) и может быть использована в качестве эффективного сорбента и окислителя. В отличие от СеО, NPs-ЭГ, наночастицы CeO₂ NPs-МГ с иммобилизованным меглюмином, полученные методом окислительного осаждения, вероятнее всего, будут иметь основные поверхностные участки СеО(ОН), что будет способствовать деградации индикаторов.

Свойства гидратированного оксида церия как хорошего амфотерного сорбента по отношению к ионам металлов хорошо известны [30]. Основной эффект наночастиц гидратированного оксида церия, в отличие от наночастиц, полученных прокаливанием при высокотемпературной, обусловлен как уменьшением активных центров при прокаливании, так и снижением гидрофильных свойств поверхности адсорбента [30]. Этот эффект, обусловленный высокой концентрацией активных центров СеО₂ NPs, широко используется при очистке сточных вод от токсичных органических красителей [31-34].

ЗАКЛЮЧЕНИЕ

В работе изучено влияние состояния поверхности наночастиц оксида церия (CeO, NPs) на их способность адсорбировать и окислять фенольные индикаторы бромфеноловый синий (БФС) и бромкрезоловый пурпурный (БКП), а также нейтральный красный (НК) с использованием спектров УФвидимой области и флуоресценции. Адсорбция, окисление или разрушение индикаторов зависят от способа синтеза наночастиц (в этиленгликоле - СеО2-NPs-ЭГ или при осаждении меглумином -СеО₂-NPs-MГ), от условий и времени хранения и старения образцов. Окисление индикаторов СеО,-NPs-ЭГ происходит при взаимодействии свежеприготовленного образца, тогда как CeO₂-NPs-MГ вызывает разрушение индикатора. Старение СеО, NPs, как во влажной среде, так и при длительном хранении на воздухе, замедляет процессы окисления, практически не влияя на сорбцию индикаторов. В отличие от восстановленных форм индикаторов, окисленная форма БКП только адсорбируется наночастицами оксида церия, практически не образуя восстановленную форму.

Таким образом, данные о спектральных свойствах БФС, БКП и НК в растворе в УФ-видимой области, а также визуальная оценка их цвета на поверхности наночастиц оксида церия позволяют осуществлять экспресс-контроль адсорбции, окисления и деструкции токсичных бромфенольных красителей в сточных водах. Кроме того, использование бромфенольных индикаторов может быть удобным методом контроля состояния поверхности наночастиц оксида церия, как свежеприготовленных, так и в процессе старения, полученных различными методами.

СПИСОК ЛИТЕРАТУРЫ / REFERENCES

1. Melchionna M. 2—Synthesis and properties of cerium oxide-based materials. In Cerium Oxide (CeO₂): Synthesis, Properties and Applications. Metal Oxides / M. Melchionna, A. Trovarelli, P. Fornasiero – 1st ed., Scire S., Palmisano L., Eds. – Elsevier: Amsterdam, The Netherlands, 2020. – p. 380.

2. Shcherbakov A.B. 8—Biological, biomedical and pharmaceutical applications of cerium oxide. In Cerium Oxide (CeO₂): Synthesis, Properties and Applications. Metal Oxides / A.B. Shcherbakov, N.M. Zholobak, V.K. Ivanov – 1st ed., Scire S., Palmisano L., Eds. – Elsevier: Amsterdam, The Netherlands, 2020. – p. 380.

3. Chen S. Size-Dependent Reaction Pathways of Low-Temperature CO Oxidation on Au/CeO₂ Catalysts / S. Chen, L. Luo, Z. Jiang, W. Huang // ACS Catalysis. – 2015. – Vol. 5. №3. – P. 1653-1662,

4. Yashima M. Invited Review: Some recent developments in the atomic-scale characterization of structural and transport properties of ceria-based catalysts and ionic conductors / M. Yashima // Catalysis Today. – 2015. – Vol. 253. – P. 3-19

5. Aneggia E. 3—Catalytic applications of cerium dioxide. In Cerium Oxide (CeO₂): Synthesis, Properties and Applications. Metal Oxides / E. Aneggia, C. Leitenburga, M. Boaroa, P. Fornasierob, A. Trovarellia – 1st ed., Scire S., Palmisano L., Eds. – Elsevier: Amsterdam, The Netherlands, 2020. – p. 380.

6. Barker E. The Use of Cerium Compounds as Antimicrobials for Biomedical Applications / E. Barker, J. Shepherd, I.O. Asencio // Molecules. – 2022. – Vol. 27. №9. – P. 2678

7. Huang Y. Nanozymes: Classification, Catalytic Mechanisms, Activity Regulation, and Applications /

Y. Huang, J. Ren, X. Qu // Chemical Reviews. – 2019. – Vol. 119. – № 6. – P. 4357-4412

8. Ivanov V.K. Structure-sensitive properties and biomedical applications of nanodispersed cerium dioxide / V. K. Ivanov, A. B. Shcherbakov, A. V. Usatenko // Russian Chemical Reviews. – 2009. – Vol. 78. – №9. – P. 855–871

9. Thakur N. Synthesis and biomedical applications of nanoceria, a redox active nanoparticle / N. Thakur, P. Manna, J. Das // Journal of Nanobiotechnology. – 2019. – Vol. 17. – №84. – P. 27

10. Melnikova N. Synthesis of Cerium Oxide Nanoparticles in a Bacterial Nanocellulose Matrix and the Study of Their Oxidizing and Reducing Properties / N. Melnikova, D. Malygina, V. Korokin, H. Al-Azzawi, D. Zdorova, E. Mokshin, E. Liyaskina, I. Kurgaeva, V. Revin // Molecules. – 2023. – Vol. 28. – P. 2604

11. Pan N. On the origin of the oxidizing ability of ceria nanoparticles / N. Pan, W. Xiaoshu, G. Jin, Y. Xiaorui, Y. Sen // RSC Advances. – 2015. – Vol. 5. – P. 97512-97519

12. Xu C. Cerium oxide nanoparticle: a remarkably versatile rare earth nanomaterial for biological applications / C. Xu, X. Qu // NPG Asia Materials. – 2014. – Vol. 6. – P. e90

13. Asati A. Oxidase-like activity of polymercoated cerium oxide nanoparticles / A. Asati, S. Santra, C. Kaittanis, S. Nath, J.M. Perez // Angewandte Chemie International Edition. – 2009. – Vol. 48. – №13. – P. 2308-2312

14. Peng Y. Mechanism of the oxidation of organic dyes in the presence of nanoceria / Y. Peng, X. Chen, G. Yi, Z. Gao // Chemical Communications. – 2011. – Vol. 47. – P. 2916-2918

15. Alili L. Combined cytotoxic and anti-invasive properties of redox-active nanoparticles in tumorstroma interactions / L. Alili, M. Sack, A. S. Karakoti, S. Teuber, K. Puschmann, S. M. Hirst, C. M. Reilly, K. Zanger, W. Stahl, S. Das, S. Seal, P. Brenneisen // Biomaterials. – 2011. – Vol. 32. – №11. – P. 2918-2929

16. Lee S. S. Antioxidant properties of cerium oxide nanocrystals as a function of nanocrystal diameter and surface coating / S. S. Lee, W. Song, M. Cho, H. L. Puppala, N. Phuc, H. Zhu, L. Segatori, V. L. Colvin // ACS Nano. – 2013. – Vol. 7. – №11. – P. 9693-9703,

17. Chen F. CeO_2/H_2O_2 system catalytic oxidation mechanism study via a kinetics investigation to the degradation of acid orange 7 / F. Chen, X. Shen, Y. Wang, J. Zhang // Applied Catalysis B: Environmental. – 2012. – Vol. 223. – P. 121-122

18. Skorodumova N.V. Quantum origin of the oxygen storage capability of ceria / N.V. Skorodumova,

S.I. Simak, B.I. Lundqvist, I.A. Abrikosov, B. Johansson // Physical review letters. – 2002. – Vol. 89. – №16. – P. 166601

19. Rajeshkumar S. Synthesis and biomedical applications of Cerium oxide nanoparticles — A Review / S. Rajeshkumar, P. Naik // Biotechnology Reports. – 2018. – Vol. 17. – P. 1–5,

20. Ameen S. Solution-processed CeO_2/TiO_2 nanocomposite as potent visible light photocatalyst for the degradation of bromophenol dye / S. Ameen, M. Shaheer Akhtar, H.-K. Seo, H.-S. Shin // Chemical Engineering Journal. – 2014. – Vol. 247. – P. 193-198

21. Bouanimba N. Factors influencing the photocatalytic decolorization of Bromophenol blue in aqueous solution with different types of TiO_2 as photocatalysts / N. Bouanimba, R. Zouaghi, N. Laid, T. Sehili // Desalination. – 2011. – Vol. 275. – P. 224-230

22. Gao B. Photocatalytic degradation of 2,4,6-tribromophenol over Fedoped ZnIn2S4: Stable activity and enhanced debromination / B. Gao, L. Liu, J. Liu, F. Yang // Applied Catalysis B: Environmental. – 2013. – Vol. 129. – P. 89-97

23. Shapovalov S.A. Cation–Anionic Interactions of Dyes in Aqueous Solutions: Bromocresol Purple in the Processes of Dissimilar Association / S.A. Shapovalov // Colorants. – 2022. – Vol. 1. – P. 5–19

24. Дзисько В.А. Физико-химические основы синтеза оксидных катализаторов / В.А. Дзисько, А.П. Карнаухов, Д.В. Тарасова; Отв. ред. В.В. Поповский. – Новосибирск : Наука. Сиб. отд-ние, 1978. – 384 с. // Dzis'ko V.A. Fiziko-himicheskie osnovy sinteza oksidnyh katalizatorov / V.A. Dzis'ko, A.P. Karnauhov, D.V. Tarasova; Otv. red. V.V. Popovskij. – Novosibirsk : Nauka. Sib. otd-nie, 1978. – 384 s.

25. Tanabe K. Solid acid and bases: Their catalytic properties / K. Tanabe – Tokyo, New York-London: Academic press, Kodansha, 1970. p 183.

26. Baidarashvili M.M. Study of the sorption properties of materials using the physicochemical method of distribution of adsorption centers / M.M. Baidarashvili, A.S. Sakharova // Sorption and chromatographic processes. $-2020. - Vol. 20. - N_{\rm P}1. - P. 87-94.$

27. Fadeev G. N. Adsorption activation of the catalytic functions of dyes / G. N. Fadeev // Journal physical chemistry. – 1966. – Vol. 12. – P. 3043 – 3047.

28. Кравцов, А. А. Разработка процессов получения и исследование физикохимических свойств наноматериалов для электронной техники на основе оксидов титана и церия : специальность

05.27.06 «Технология и оборудование для производства полупроводников, материалов и приборов электронной техники» : Диссертация на соискание учёной степени кандидата технических наук / Кравцов А. А. ; Южно-Российский государственный политехнический университет (НПИ) имени М.И. Платова. — Новочеркасск, 2017. — 186 с. // Kravcov, A. A. Razrabotka processov poluchenija i issledovanie fizikohimicheskih svojstv nanomaterialov dlja jelektronnoj tehniki na osnove oksidov titana i cerija : special'nost' 05.27.06 «Tehnologija i oborudovanie dlja proizvodstva poluprovodnikov, materialov i priborov jelektronnoj tehniki» : Dissertacija na soiskanie uchjonoj stepeni kandidata tehnicheskih nauk / Kravcov A. A. ; Juzhno-Rossijskij gosudarstvennyj politehnicheskij universitet (NPI) imeni M.I. Platova. — Novocherkassk, 2017. — 186 c.

29. Karakoti A.S. Direct synthesis of nanoceria in aqueous polyhydroxyl solution / A.S. Karakoti, S.V. Kuchibhatla, K.S. Babu // Journal of Physical Chemistry C. – 2007. – Vol. 111. – P. 17232–17240

30. Yadav I.D. Facile synthesis of CeO_2 nanoparticles and their applications in photodegradation of methylene blue and as supercapacitor electrode material / I.D. Yadav, A. Ansari, D. Yadav, S.S. Garje // Bulletin of Materials Science. – 2023. – Vol. 46. – N \otimes 86. – P. 8

31. Khanjar A.Q. Eco-friendly Method of Synthesis CeO_2 Nanoparticles by Watercress Plant Extract for Removal of Cibacron Red Dye from Aqueous Solutions / A.Q Khanjar, A.M. Farhan, A.M. Rheima // Journal of the American Industrial in Chemistry. – 2023. – Vol. 94. – No1.

32. Zuas O. Synthesis and characterization of nanostructured CeO_2 with dyes adsorption property / O. Zuas, H. Abimanyu, W. Wibowol // Processing and Application of Ceramics. – 2014. – Vol. 8. – N \ge 1. – P. 39–46

33. Ayman A.A. Fabrication and characterization of cerium oxide nanoparticles for the removal of naphthol green B dye / A.A. Ayman, R. EL-Sayed Sahar, A.S. Sayed, Y.M. Talaat, S.A. Alaa // Desalination and Water Treatment. – 2020. – Vol. 204. – P. 124-135

34. Magesh G. Photocatalytic behavior of CeO_2 -Ti O_2 system for the degradation of methylene blue / G. Magesh, B. Viswanathan, R.P. Viswanath, T.K. Varadarajan // Indian Journal of Chemistry. – 2009. – Vol. 48. – P. 480-488.

Приволжский исследовательский медицинский университет

Шеферова Алёна Анатольевна, кандидат фармацевтических наук, Ассистент кафедры управления и экономики фармации и фармацевтической технологии

E-mail: Liza200000@yandex.ru

Спицкая Ирина Вячеславовна, кандидат фармацевтических наук, Заведующий кафедрой управления и экономики фармации и фармацевтической технологии

E-mail: iraspitskaya@yandex.ru

Национальный исследовательский Нижегородский государственный университет им. Н. И. Лобачевского

Корокин Виталий Жанович, кандидат химических наук, Доцент кафедры аналитической и медицинской химии

E-mail: vit-korokin@yandex.ru

Хайдер Аль-Аззави, аспирант кафедры аналитической и медицинской химии E-mail: alazzavik@bk.ru

Шеферов Илья Александрович, аспирант кафедры аналитической и медицинской химии E-mail: iluxa-sheferov@mail.ru

Захарычев Евгений Александрович, кандидат химических наук., Заведующий лабораторией полимерных материалов НИИ химии E-mail: eazakh@ichem.unn.ru

Мельникова Нина Борисовна Профессор кафедры аналитической и медицинской химии, доктор химических наук E-mail: melnikovanb@gmail.com

Воронежский государственный университет Сливкин Алексей Иванович, доктор фармацевтических наук, профессор, Заведующий кафедрой фармацевтической технологии

E-mail: slivkin@pharm.vsu.ru

Volga Region Research Medical University Sheferova Alyona A., PhD., Assistant Professor, Department of Management and Economics of Pharmacy and Pharmaceutical Technology E-mail: Liza200000@yandex.ru

Spitskaya Irina V., PhD., Head of the Department of Management and Economics of Pharmacy and Pharmaceutical Technology E-mail: iraspitskaya@yandex.ru

National Research Nizhny Novgorod State University named after N. I. Lobachevsky

Korokin Vitaly Zh., PhD., Associate Professor of the Department of Analytical and Medicinal Chemistry

vit-korokin@yandex.ru

Hayder Al-Azzawi, Postgraduate student of the Department of Analytical and Medicinal Chemistry E-mail: alazzavik@bk.ru

Sheferov Ilya A., Postgraduate student of the Department of Analytical and Medicinal Chemistry E-mail: iluxa-sheferov@mail.ru

Zakharychev Evgeniy A., PhD., Head of laboratory of polymer materials Research Institute for Chemistry E-mail: eazakh@ichem.unn.ru

Melnikova Nina B., PhD., DSci., Full Professor, Department of Analytical and Medicinal Chemistry E-mail: melnikovanb@gmail.com

Voronezh State University Slivkin Alexey I., PhD., DSci., Full Professor., Head of the Department of Pharmaceutical Technology E-mail: slivkin@pharm.vsu.ru

STUDY OF THE ABILITY OF CERIUM OXIDE NANOPARTICLES TO OXIDATE AND ADSORPTION ORGANIC DYES

A.A. Sheferova¹, V.Zh. Korokin², Haider Al-Azzawi², I.A. Sheferov², E.A. Zakharychev², I.V. Spitskaya¹, N.B. Melnikova², A.I. Slivkin³.

¹Volga Region Research Medical University ²National Research Nizhny Novgorod State University named after N. I. Lobachevsky ³Voronezh State University

Abstract. Cerium oxide nanoparticles synthesized by two methods from cerium (III) nitrate hexahydrate: 1) the oxidative polyol method, using ammonium hydroxide as a precipitant in ethylene glycol (CeO₂ NPs-EG), and 2) its precipitation with an amino alcohol – meglumine in an aqueous or aqueous-alcoholic medium (CeO₂ NPs-MG), were studied.

The methods of IR, UV-vis, fluorescence and XPS spectroscopy, X-ray phase analysis confirmed that in all cases the CeO₂ nanoparticles had a fluorite structure with a Ce:O ratio of 70:30 CeO₂ NPs-EG and 60:40 CeO₂ NPs-MG, consequently. The adsorption, oxidation and destruction of organic dyes were studied using acid-base indicators - bromophenol blue (BPS) and bromocresol purple (BCP), diazine - neutral red (NR) and thiazine - toluidine blue (TB). The choice of indicators was determined by the fact that near the pH transition point, when the color changes, the indicator can transfer into either an oxidized or a reduced form. The dye adsorption on the nanoparticle surface was quantitatively assessed by the change in the absorption intensity of the oxidized or reduced form, which was accompanied by a change in the color of the metal oxide nanoparticles too.

The proportion of BFS and BKP adsorbed on the surface from an alcohol solution reaches 80-100% and is virtually independent of sample aging. The CeO₂ NPs-EG surface after adsorption of BFS, BKP, NC, TG initially acquired the color of the oxidized forms of the indicator with subsequent discoloration of the solution (complete adsorption). Unlike CeO₂ NPs-EG, the CeO₂ NPs-MG surface contributed to the complete destruction of the indicators, regardless of their nature.

Thus, the CeO_2 NPs-EG surface can act as both an oxidation catalyst and an adsorbent for all the studied indicators. The CeO_2 NPs-MG surface can be recommended for the complete destruction of the indicators.

Keywords: oxidizing capacity of cerium oxide nanoparticles, bromophenol blue, bromocresol purple, neutral red, toluidine blue, sorption, aging of cerium oxide nanoparticles