РАЗРАБОТКА СОСТАВА ГЕЛЯ НА ОСНОВЕ ХИТОЗАНА

А. В. Бузлама¹, С. Х. Доба¹, С. Дагир², Т. Хаммад², Е. Л. Карпова¹

¹ФГБОУ ВО «Воронежский государственный университет»
² «Тишринский университет»
Поступила в редакцию 29.12.2020 г.

Аннотация. Данное оригинальное исследование включает описание разработки геля для приема внутрь с рН не менее 5.0, содержащего в качестве структурообразователя природный полисахарид хитозан или одно из его производных (3 разновидности: высоковязкий хитозан "Sigma-Aldrich" в концентрациях 0.5, 1, 1.2, 1.5, 2% и 3%, хитозана сукцинат водорастворимый "Биопрогресс" в концентрациях 1, 6 и 10%, хитозан пищевой низкомолекулярный водорастворимый "Биопрогресс" в концентрациях 1, 2, 3 и 4%), дополнительные активные ингредиенты (6 лекарственных веществ: натрия гидрокарбонат "Вектон" в концентрации 0.6%, оксид магния "Вектон" в концентрации 0.6%, декспантенол "Вектон" в концентрации 0.43%, таурин "Вектон" в концентрациях 4 и 6%, метилурацил "Вектон" в концентрациях 0.5, 1 и 3%, глутаминовая кислота "Вектон" в концентрации 3%) и различные вспомогательные компоненты (в том числе 3 различных органических кислоты для растворения высоковязкого хитозана: ледяная уксусная кислота "Вектон" в концентрациях 0.25 и 0.5%, лимонная кислота "Вектон" в концентрации 2%, аскорбиновая кислота "Вектон" в концентрации 4%). Выбрана оптимальная технология изготовления и оптимальный состав геля для приема внутрь, содержащего 1% хитозана высоковязкого Sigma-Aldrich и 0.25 мл ледяной уксусной кислоты, что позволяет получить прозрачный гомогенный гель, стабильный при хранении при комнатной температуре не менее 18 месяцев с рН 5.30±0.015. В результате проведенных исследований по технологии разработки геля, содержащего хитозан установлено, что дополнительные активные ингредиенты, такие как таурин в концентрациях 4 и 6% и декспантенол в концентрации 0.43% являются совместимыми с разработанным составом геля. Разработанные хитозановые гели с таурином и декспантенолом являются прозрачными, гомогенными, стабильными при хранении при комнатной температуре не менее 18 месяцев, pH 5.28 ± 0.006 для геля с таурином и 5.26 ± 0.004 для геля с декспантенолом.

Ключевые слова: хитозан, производные хитозана, гель, технология мягких лекарственных форм, фармация.

Физико-химические свойства гелей позволяют рассматривать их как перспективную форму для перорального применения. Гели для приема внутрь сочетают преимущества твердых и жидких пероральных лекарственных форм [1] и характеризуются минимальными побочными эффектами, особенно в случае, если гелеобразующая основа не всасывается в желудочно-кишечном тракте. В Государственной фармакопее РФ XIV издания, гели относятся к общей фармакопейной статье ОФС «Мази», и могут применяться в том числе внутрь (как правило, гидрофильные) [2].

К показателям качества, являющимся обязательными независимо от ЛФ, относятся «Описание», «Подлинность», «Количественное определение», «Микробиологическая чистота» [2, 3].

Удобство приема и возможность коррекции вкуса позволяют использовать лекарственные препараты в форме гелей для целого ряда пациентов особых категорий, включая детей, пожилых людей, а так же пациентов с нарушениями глотания и в других случаях, когда возможно заменить пероральное введение твердых дозированных ЛФ на гель [4].

Использование оптимальной технологической схемы изготовления мягких ЛФ позволяет значительно расширить их терапевтические возможности. Создание современных, высокоэффективных гелей возможно с учетом физико-химических свойств вспомогательных веществ, оценки их влияния на терапевтическую эффективность, стабильность и фармакокинетику лекарственных веществ. Кроме того, с учетом многообразия функций и большого ассортимента вспомогательных веществ возможен их оптимальный выбор для

[©] Бузлама А. В., Доба С. Х., Дагир С., Хаммад Т., Карпова Е. Л., 2021

рационального сочетания с активными фармацевтическими субстанциями.

В данной работе в качестве гелеобразующей основы использован природный полисахарид хитозан. Хитозан — деацетилированное производное хитина, представляющее собой полимер, состоящий из N-ацетил-2-амино-2-дезокси-D-глюкопиранозы, связанной 1-4- гликозидными связями [5, 6]. Известно, что хитозан является относительно нетоксичным, биосовместимым ингредиентом, при пероральном применении мышам LD50 превышает 16 г/кг, что классифицируется как нетоксичное вещество [7].

Принцип получения хитозана основан на гидролизе ацетамидной группы хитина. Если для производства хитозана используются грибы, щелочная обработка удаляет белок и деацетилирует хитин одновременно. В случае использования в качестве сырья раковин ракообразных требуются две предварительные обработки: одна для удаления следов органического материала, а другая для удаления карбоната кальция. В настоящее время существуют так же химические [8, 9] и ферментативные [9-11] методы получения хитозана.

В дополнение к тому что, хитозан считается вспомогательным веществом и гелеобразователем, в ряде исследований российских и зарубежных ученых доказаны его многочисленные биологические свойства, такие как противовоспалительное, ранозаживляющее, антибактериальное, иммуностимулирующее, гемостатическое и др. [12-18], которые позволяют считать хитозан перспективным активным ингредиентом для разработки новых лекарственных препаратов, в том числе для лечения заболеваний желудочно-кишечного тракта.

В настоящее время в России не зарегистрированы лекарственные препараты, содержащие хитозан для приема внутрь или наружного применения, в связи с чем тема настоящего исследования является актуальной.

Цель работы: разработка геля, содержащего в качестве структурообразователь хитозан или его производные и определение совместимых с ним активных и вспомогательных ингредиентов.

МЕТОДИКА ЭКСПЕРИМЕНТА

Ввиду того, что хитозан не растворяется в воде, но растворяется во многих минеральных и органических кислотах, таких как уксусная, муравьиная кислота и др. [19, 20], для растворения кислоторастворимого хитозана в состав геля вводили

3 различных органических кислоты, а так же использовали производные хитозана растворимые в воде (хитозана сукцинат и хитозан пищевой водорастворимый). После определения оптимальной основы для образования геля выбраны несколько активных ингредиентов, совместимых с полученным гелем по физико-химическим свойствам и отвечающим заданным целям применения.

В работе использованы 3 разновидности хитозана, 3 различных органических кислоты для растворения хитозана, 6 лекарственных веществ, выступающих в качестве активных ингредиентов, характеристики перечисленных ингредиентов и реактивов представлены далее по тексту.

Хитозан — производства Sigma-Aldrich, Япония, высоковязкий из панцирей краба, со степенью деацетилирования 80%, чешуйки белого цвета, CAS №: 9012-76-4.

Хитозана сукцинат – производства ООО «Биопрогресс», Россия, получают из панцирей крабов путем взаимодействия с янтарным ангидридом, распылительная сушка, порошок кремового цвета.

Хитозан пищевой низкомолекулярный водорастворимый – производства ООО «Биопрогресс», Россия, получают из высокомолекулярного хитозана путем химического или ферментативного гидролиза, порошок белого цвета, 90%.

Уксусная кислота ледяная – производства ЗАО Вектон, Россия, жидкость прозрачная бесцветная, ОФС.1.3.0001.15, не менее 98.8%, CAS №: 64-19-7.

Лимонная кислота – ЗАО Вектон, Россия, кристаллический порошок белого цвета, САЅ №: 77-92-9.

Аскорбиновая кислота – 3AO Вектон, Россия, порошок белого цвета, CAS №: 50-81-7.

Натрия гидрокарбонат – ЗАО Вектон, Россия, мелкокристаллический порошок белого цвета, квалификация 'Ч' более 98%, CAS №: 144-55-8.

Оксид магния - 3AO Вектон, Россия, белый кристаллический порошок, CAS №: 1309-48-4.

Декспантенол – ЗАО Вектон, Россия, гель прозрачный гомогенный, +98%, CAS №: 81-13-0.

Таурин – ЗАО Вектон, Россия, белый кристаллический порошок, 99%, CAS №: 107-35-7.

Метилурацил — ЗАО Вектон, Россия, белый кристаллический порошок, 98%, CAS №: 626-48-2.

Глутаминовая кислота — 3AO Вектон, Россия, белый кристаллический порошок, CAS №: 56-86-0.

Приборы и оборудование: электронные лабораторные весы JW-1 (ACOM, Корея) с погрешностью 0.01 г; рН-метр рН-150М (РУП «Гомельский завод измерительных приборов».

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

При использовании в качестве структурообразователя для получения геля хитозана сукцината в концентрации 1% образуется бесцветный жидкий раствор, в концентрации 6% гель образуется, но превращается в жидкость через несколько дней, только в концентрации больше 10% образуется стабильный гель желтого цвета с рН 7.62 (табл. 1). Данное значение рН является оптимальным, но концентрация хитозана для образования геля является большой, гель является густым и имеет темный цвет, что не вполне пригодно для использования в фармацевтической промышленности, срок хранения не более 9 месяцев, через 9 месяцев при хранении закрытой в стеклянной таре в холодильнике на поверхности геля обнаружены плесневые грибы.

Пищевой низкомолекулярный водорастворимый хитозан в концентрации 1, 2 и 3% представляет собой коричневый жидкий раствор, а в концентрации 4% — гель с твердыми инородными частицами, рН 7.2. Таким образом, пищевой низкомолекулярный водорастворимый хитозан не может считаться оптимальной основой для приготовления геля.

Известно [20], что для растворения 1.0 г высоковязкого хитозана Sigma-Aldrich необходимо 0.5 мл уксусной кислоты на 100 мл. Экспериментальным путем установлено, что такой состав обеспечивает полное растворение хитозана и образование гомогенного, прозрачного, бесцветного, без твердых инородных включений геля с рН 3.22. Однако данное значение рН, пригодное для наружного применения, не является оптимальным при приеме внутрь для желаемых терапевтических целей применения, в связи с чем проведено определение минимального количества уксусной кислоты, необходимого для изготовления геля хитозана со значением рН наиболее близким к нейтральному.

Для определения наименьшего возможного количества уксусной кислоты, необходимо-

го для получения геля хитозана, использована технология с многократным постепенным добавлением минимальных количеств уксусной кислоты. В начале изготовления добавлено 0.22 мл уксусной кислоты, через 13 дней хитозан растворился не полностью, в связи с чем добавили ещё 0.02 мл уксусной кислоты, после этого через 4 дня часть хитозана не растворилась, добавили ещё 0.01 мл уксусной кислоты. Таким образом, суммарное количество уксусной кислоты, необходимое для растворения хитозана в составе 1% геля составило 0.25 мл. В результате через 7 дней хитозан оказался полностью растворен, рН 5.30±0.015, что приемлемо для приема внутрь.

Изготовлены гели с разными концентрациями хитозана – 0.5%, 1%, 1.2%, 1.5%, 2%, 3%. Установлено, что все составы – гомогенные, прозрачные, бесцветные, без твердых инородных включений, отличались друг от друга вязкостью. Составы с концентрациями 0.5%, 1%, 1.2% смещались при наклоне и являлись пригодными для введения внутрь. Составы с концентрациями 1.5%, 2%, 3% представляли собой гели высокой плотности.

В связи с тем, что аскорбиновая кислота является малотоксичным соединением с высокой биологической активностью и обладает антиоксидантным эффектом, проведена оценка возможности замены уксусной кислоты на аскорбиновую кислоту (табл. 2). Гель с содержанием аскорбиновой кислоты 4 г на 100 мл обеспечивает растворение хитозана 1%, рН 3.27, однако при хранении через 3 месяца в геле появились инородные включения, таким образом данный состав не является оптимальным.

Использование лимонной кислоты в количестве 2 г на 100 мл геля обеспечило растворение 1% хитозана, однако при хранении 11 месяцев на дне стеклянной тары выявлены конгломераты беловатого цвета, таким образом, данный состав так же не является оптимальным.

Таблица 1. Состав и характеристики гелей, содержащих хитозан и его производные

Вид хитозана	Концентрация хитозана	Кол-во уксусной кислоты	pН	Описание геля	Срок хранения, Т=24°С
хитозана сукцинат	10%	-	7.62	густой, гомогенный, темновато-желтый	9 мес.
пищевой низкомолекулярный водорастворимый хитозан	4%	-	7.20	средней вязкости, коричневатый, с инород- ными включениям	-
высоковязкий хитозан, Sigma-Aldrich	1%	0.5 мл	3.22	густой, прозрачный, бесцветный, без твердых инородных включений	18 мес.

Таблица 2. Выбор органических кислот для изготовления геля, содержащего высоковязкий 1% хитозан Sigma-Aldrich

Органическая кислота	Концентрация кислоты	Характеристика геля	Срок хранения
уксусная кислота	0.5% 0.25%	гомогенный, прозрачный, без твердых включений	18 мес.
лимонная кислота	2%	гомогенный, прозрачный, без твердых включений	11 мес.
аскорбиновая кислота	4%	гомогенный, прозрачный, гомогенный, желтоватый	3 мес.

Таким образом, оптимальными ингредиентами для получения геля являются хитозан высоковязкий Sigma-Aldrich 1.0 г и кислота уксусная 0.25 г, необходимая для растворения хитозана, что обеспечивает получение стабильного прозрачного геля с рН 5.30±0.015 пригодного для приема внутрь.

Проведено изучение стабильности состава геля, содержащего 1% хитозан, 0.25 мл уксусной кислоты при хранении 18 месяцев. Для этого изготовлен состав с концентрацией хитозана 1% объемом 300 мл, поставлены 3 разных емкости в разных условиях хранения. Первая часть хранилась в бесцветной стеклянной бутылке в холодильнике, гель являлся стабильным, без внешних изменений при хранении 18 месяцев. Вторая часть хранилась в бесцветной стеклянной бутылке в шкафу при комнатной температуре, гель являлся стабильным, но более жидким чем предыдущий. Третья часть хранилась в пластиковой банке, через 2 месяца гель являлся более жидким, с видимыми твердыми инородными включениями.

В состав оптимального геля, содержащего 1% хитозана и 0.25 мл уксусной кислоты, добавлены различные активные ингредиенты (таурин, декспантенол, метилурацил, глутаминовая кислота, магния оксид, натрия гидрокарбонат), которые могут обеспечить синергизм с хитозаном для повышения фармакологической активности (табл. 3).

Хитозановый гель 1% с таурином в концентрации 4% и 6% образует гомогенный прозрачный бесцветный гель, стабильный при хранении при комнатной температуре и в холодильнике в течении не менее 18 месяцев с рН 5.28±0.006.

Установлено, что добавление гидрокарбоната натрия 0.6%, оксида магния 0,6% вызывает повышение рН, вследствие чего через несколько минут хитозан выпадает в осадок, следовательно ингредиенты антацидов не совместимы с хитозановым гелем.

Глутаминовая кислота в количестве 3 г, что соответствует суточной дозе для взрослых, не растворяется в 100 мл хитозанового геля, при этом образуется суспензия и наблюдается выпадение осадка. Полученный гель стабилен при хранении в течение 1 года, однако является вязким, что ограничивает удобство его применения и в целом свидетельствует о том, что данный ингредиент не является оптимальным для включения в состав хитозанового геля.

Метилурацил для приема внутрь рекомендован в суточной дозе для взрослых 2 г, при добавлении в концентрации 3% основное количество метилурацила выпало в осадок, при добавлении 1% метилурацила образует прозрачный гомогенный гель, однако через 3 месяца метилурацил кристаллизовался и выпал в осадок. В концентрации 0.5% образован прозрачный бесцветный гель, который явтаблица 3.

Выбор активных ингредиентов для изготовления геля, содержащего высоковязкий 1% хитозан Sigma-Aldrich

Активный ингредиент	Фармакологическая группа	Кол-во, на 100 мл геля	Характеристика геля	
гидрокарбонат натрия	антациды	0.6%	выпадает в осадок	
оксид магния	антациды	0,6%	выпадает в осадок	
таурин	антиоксидант, метаболическое средство	4% 6%	гомогенный, прозрачный, без твердых включений	
метилурацил		0.5%	гомогенный, прозрачный, без твердых включений	
	регенерации тканей	1%	через 3 мес. кристаллизуется, выпадает в осадок	
	стимулятор	3%	суспензия беловатого цвета, выпадает в осадок	
глутаминовая кислота	препарат, улучшающий метаболизм головного мозга, имеется упоминание о противоязвенной активности	3%	суспензия беловатого цвета, выпадает в осадок	
декспантенол	регенерации тканей стимулятор	0.43%	гомогенный, прозрачный, без твердых включений	

лялся стабильным при хранении через 10 месяцев, однако данная концентрация не обеспечивает терапевтической дозы метилурацила в оптимальном для приема внутрь количестве хитозанового геля.

Для добавления в состав геля декспантенола была выбрана суточная терапевтическая доза для взрослых для приема внутрь 500 мг. Согласно расчетам, добавлено 0.43% декспантенола с уксусной кислотой до добавления хитозана, однако это препятствует полному растворению хитозана, поэтому на следующем этапе исследований сначала приготовлен хитозановый гель и затем добавлен декспантенол, что обеспечило хорошее растворение при перемешивании, гель являлся прозрачным бесцветным без твердых включений, стабильный при хранении при комнатной температуре в течение 3 месяцев с рН 5.26±0.004.

ЗАКЛЮЧЕНИЕ

Выбрана оптимальная технология изготовления и состав геля для приема внутрь, содержащего 1% хитозана высоковязкого Sigma-Aldrich и 0.25 мл уксусной кислоты, что позволяет получить прозрачный гомогенный гель, стабильный при хранении при комнатной температуре не менее 18 месяцев с рН 5.30±0.015.

Установлено, что дополнительные активные ингредиенты таурин и декспантенол являются совместимыми с разработанным составом геля, пригодны для дальнейшей фармацевтической разработки новых лекарственных препаратов и проведения доклинических исследований.

СПИСОК ЛИТЕРАТУРЫ

- 1. Анурова М.Н. , Бахрушина Е.О., Демина Н.Б. // Фармация. 2016. № 6. С. 30—34.
- 2. Государственная фармакопея Российской Федерации XIV. ОФС.1.4.1.0008.15. Мази. Москва, 2018, Т. 2, 67–73 с.
- 3. Государственная фармакопея Российской Федерации XIII. ОФС.1.4.1.0001.15. Лекарственные формы. Москва, 2015, изд. Т. 2, 10–19 с.
- 4. Satyanarayana D.A., Kulkarni P.K., Shivakumar H.G. // Current Drug Therapy. 2011. Vol. 6, pp. 79–86.

- 5. Скрябина К.Г., Вихоревой Г.А., Варламова В.П. Хитин и хитозан: получение, свойства и применение. Москва, Наука, 2002, 368 с.
- 6. Немцев С.В. Комплексная технология хитина и хитозана из панциря ракообразных. Москва, Изд-во ВНИРО, 2006, 134 с.
- 7. Arai K., Kinumaki T., Fujita T. // Bulletin Of Tokai Regional Fisheries Research Laboratory. 1968. Vol.56, pp. 89-94.
- 8. Kurita K., Sannan T., Iwakura Y. // Die Makromolekulare Chemie. 1977. Vol. 178, pp. 3197–3202.
- 9. Jeon Y.J., Shahidi F., Kim S.K. // Food Reviews International. 2007. Vol. 16, pp. 159-176.
- 10. Kafetzopoulos D., Martinou A., Bouriotis V. // Proceedings of the National Academy of Sciences, 1993. Vol.90, pp. 2564–2568.
- 11. Aiba S.I. // Carbohydrate Research. 1994. Vol. 265, pp. 323–328.
- 12. Buzlama A.V., Doba S.H., Slivkin A., Daghir S.R. // Research J. Pharm. 2020. Vol. 13(2), pp.1043-1049
- 13. Федосов П.А., Николаевский В. А., Чернов Ю.Н., Бузлама А.В., Сливкин А.И., Провоторова С.И. // Научный результат. 2017. Т. 3. № 2. С. 14-28.
- 14. Friedman A.J., Phan J., Schairer D.O., Champer J., Qin M., Pirouz A., Blecher-Paz K., Oren A., Liu P.T., Modlin R.L., Kim J. // The Journal of Investigative Dermatology. 2013. Vol.133, pp. 1231-1239.
- 15. Alsarra I.A. // International Journal of Biological Macromolecules. 2009. Vol.45, pp.16.
- 16. Ozcelik E., Uslu S., Erkasap N., Karimi H. // The Kaohsiung Journal of Medical Sciences. 2014. Vol. 30, pp. 286-290.
- 17. Xie W., Xu P., Liu Q. // Bioorganic & Medicinal Chemistry Letters. 2001. Vol.11(13), pp. 1699–1701.
- 18. Bacon A., Makin J., Sizer P.J., Jabbal-Gill I., Hinchcliffe M., Illum L., Chatfield S., Roberts M. // Infection and Immunity. 2000. Vol.68(10), pp. 5764-5770.
- 19. Lim S.H., Hudson S.M. // Journal of macromolecular science_ Part C—Polymer Reviews. 2003. Vol. 2, pp. 223–269.
- 20. Nguyen T.T.B., Hein S., Ng C.H., Stevens W.F. // Journal of Applied Polymer Science. 2007. Vol.107, pp. 2588–2593.

Воронежский государственный университет * Бузлама А. В., доктор медицинских наук, заведующий кафедрой фармакологии и клинической фармакологии

E-mail: buzlama@pharm.vsu.ru

Доба С. Х., аспирант кафедры фармакологии и клинической фармакологии

E-mail: silversleman23@gmail.com

Карпова Е. Л., кандидат медицинских наук, доцент кафедры фармакологии и клинической фармакологии

E-mail: karpova@pharm.vsu.ru

Тишринский университет

Дагир С., доктор фармацевтических наук, доцент кафедры фармацевтической технологии, E-mail: srd.537343@gmail.com

Хаммад Т., докторфармацевтических наук, доцент кафедры фармации и технологической фармации

E-mail: tamimhahd@gmail.com

Voronezh State University

* Buzlama A. V., MD., DSci., Head of the Department of Pharmacology and Clinical Pharmacology

E-mail: buzlama@pharm.vsu.ru

Doba S. H., Post-graduated Student, Department of Pharmacology and Clinical Pharmacology E-mail: silversleman23@gmail.com

Karpova E. L., MD., Associate Professor of the Department of Pharmacology and Clinical Pharmacology

E-mail: karpova@pharm.vsu.ru

Tishreen University

Daghir S, PhD., DSci., Associate Professor, Department of pharmaceutical technology,

E-mail: srd.537343@gmail.com

Hammad T., PhD., DSci., Associate Professor, Department of Pharmaceutical Technology E-mail: Tamimhahd@gmail.com

DEVELOPMENT OF A CHITOSAN-BASED GEL

A. V. Buzlama¹, S. H. Doba¹, S. Daghir², T. Hammad², E. L. Karpova¹

¹FSBEI of HE "Voronezh State University" ²Tishreen University

Abstract. This original study includes a description of the development of a gel for oral administration with a pH of at least 5.0 containing the natural polysaccharide chitosan or one of its derivatives (3 varieties, high-viscosity chitosan "Sigma-Aldrich" at concentrations of 0.5, 1, 1.2, 1.5, 2 % and 3%, water-soluble chitosan succinate "Bioprogress" in concentrations of 1, 6 and 10%, low-molecular water-soluble chitosan "Bioprogress" in concentrations of 1, 2, 3 and 4%), additional active ingredients (6 medicinal substances, sodium bicarbonate "Vekton" at a concentration of 0.6%, magnesium oxide "Vekton" at a concentration of 0.6%, dexpanthenol "Vekton" at a concentration of 0.43%, taurine "Vekton" at concentrations of 4 and 6%, methyluracil "Vekton" at concentrations of 0.5, 1 and 3%, glutamic acid "Vekton" at a concentration of 3%) and various excipients (including 3 different organic acids for dissolving high-viscosity chitosan, glacial acetic acid "Vekton" at concentrations of 0.25 and 0.5%, citric acid "Vekton" at a concentration of 2%, ascorbic acid "Vekton" at a concentration of 4%).

The optimal manufacturing technology and the optimal composition of the gel for oral administration, containing 1% high-viscosity Sigma-Aldrich chitosan and 0.25 ml of glacial acetic acid, have been defined, which makes it possible to obtain a transparent homogeneous gel that is stable during storage at room temperature for at least 18 months with a pH of 5.30 ± 0.015 . As a result of studies carried out on the technology of developing a gel containing chitosan, it was found that additional active ingredients, such as taurine in concentrations of 4 and 6% and dexpanthenol in a concentration of 0.43%, are compatible with the developed gel composition. The developed chitosan gels with taurine and dexpanthenol are transparent, homogeneous, stable when stored at room temperature for at least 18 months, pH 5.28 ± 0.006 for a gel with taurine and 5.26 ± 0.004 for a gel with dexpanthenol.

Keywords: Chitosan, Chitosan derivative, gel, technology of soft dosage forms, pharmacy.

REFERENCES

- 1. Anurova M.N., Bakhrushina E.O., Demina N.B. Pharmacy. 2016, № 6, C. 30–34.
- 2. State Pharmacopoeia of the Russian Federation XIV. OFS.1.4.1.0008.15. Mazi. Moscow, 2018, T. 2, 67–73 p.
- 3. State Pharmacopoeia of the Russian Federation XIII. OFS.1.4.1.0001.15. Lekarstvennye formy. Moscow, 2015, ed. T. 2., 10-19 p.
- 4. Satyanarayana D.A., Kulkarni P.K., Shivakumar H.G., Current Drug Therapy, 2011, Vol. 6, pp. 79–86. DOI: 10.2174/157488511795304921
- 5. Skryabina K.G., Vikhorevoi G.A., Varlamova V.P. Khitin i khitozan: poluchenie, svoistva i primenenie. Moscow, Nauka Publ., 2002, 368 p.
- 6. Nemtsev S.V. Kompleksnaya tekhnologiya khitina i khitozana iz pantsirya rakoobraznykh, Moscow, VNIRO, 2006, 134 p.
- 7. Arai K., Kinumaki T., Fujita T., Bulletin Of Tokai Regional Fisheries Research Laboratory. 1968, Vol.56, pp.89-94.
- 8. Kurita K., Sannan T., Iwakura Y., Die Makromolekulare Chemie. 1977, Vol. 178, pp. 3197–3202. DOI: 10.1002/macp.1977.021781203
- 9. Jeon Y.J., Shahidi F., Kim S.K., Food Reviews International. 2007, Vol. 16, pp. 159-176. DOI: 10.1081/FRI-100100286.
- 10. Kafetzopoulos D., Martinou A., Bouriotis V., Proceedings of the National Academy of Sciences, 1993, Vol. 90, pp. 2564–2568. DOI: 10.1073/pnas.90.7.2564.
- 11. Aiba S.I., Carbohydrate Research. 1994, Vol. 265, pp. 323–328. DOI: 10.1016/0008-6215(94)00243-6.

- 12. Buzlama A.V., Doba S.H., Slivkin A., Daghir S.R., Research J. Pharm. and Tech. 2020, Vol. 13(2), pp. 1043-1049. DOI: 10.5958/0974-360X.2020.00192.4.
- 13. Fedosov P.A., Nikolaevsky V. A., Chernov Y.N., Buzlama A.V., Slivkin A.I., Provotorova S.I., Research Results in Pharmacology, 2017, Vol.3, №2, pp. 14-28. Doi: 10.18413/2313-8971-2017-3-2-14-28.
- 14. Friedman A.J., Phan J., Schairer D.O., Champer J., Qin M., Pirouz A., Blecher-Paz K., Oren A., Liu P.T., Modlin R.L., Kim J., The Journal of Investigative Dermatology. 2013, Vol.133, pp. 1231-1239. DOI: 10.1038/jid.2012.399
- 15. Alsarra I.A., International Journal of Biological Macromolecules. 2009, Vol.45, pp.16. DOI: 10.1016/j.ijbiomac.2009.03.010.
- 16. Ozcelik E., Uslu S., Erkasap N., Karimi H., The Kaohsiung Journal of Medical Sciences. 2014, Vol.30, pp.286-290.
 - DOI: 10.1016/j.kjms.2014.02.003
- 17. Xie W., Xu P., Liu Q., Bioorganic & Medicinal Chemistry Letters. 2001, Vol.11(13), pp. 1699–1701. DOI: 10.1016/s0960-894x(01)00285-2.
- 18. Bacon A., Makin J., Sizer P.J., Jabbal-Gill I., Hinchcliffe M., Illum L., Chatfield S., Roberts M., Infection and Immunity. 2000, Vol.68(10), pp. 5764-5770. DOI: 10.1128/iai.68.10.5764-5770.2000.
- 19. Lim S.H., Hudson S.M., journal of macromolecular science Part C—Polymer Reviews. 2003, Vol. 2, pp. 223–269. DOI: 10.1081/MC-120020161.
- 20. Nguyen T.T.B., Hein S., Ng C.H., Stevens W.F., Journal of Applied Polymer Science. 2007, Vol.107, pp. 2588–2593. DOI: 10.1002/app.27376.