УДК 546.185'817'41'33:548.32

ИЗОМОРФНОЕ ЗАМЕЩЕНИЕ СВИНЦА НА КАЛЬЦИЙ В СИСТЕМЕ Рb_{8-x}Ca_xNa₂(PO₄)₆

А. В. Игнатов, А. О. Жегайло, Н. В. Яблочкова, Е. И. Гетьман

ГОУ ВПО « Донецкий национальный университет» Поступила в редакцию 18.09. 2017 г.

Аннотация. Методом рентгенофазового анализа с применением алгоритма Ритвельда и сканирующей электронной микроскопии изучены полученные при температуре 800 °C твердые растворы $Pb_{8x}Ca_xNa_2(PO_4)_6$ ($0 \le x \le 8$). Установлено, что замещение свинца на кальций протекает в области до x = 5.4 и ограничивается необходимостью наличия $6s^2$ -электронных пар ионов Pb^{2+} в канале структуры апатита. Показано влияние степени замещения на заселенность катионных позиций и изменение межатомных расстояний в структуре твердого раствора.

Ключевые слова: фосфат свинца-кальция-натрия, структура апатита, рентгенофазовый анализ, метод Ритвельда, СЭМ

Abstract. Synthesized at 800 °C solid solutions $Pb_{8-x}Ca_xNa_2(PO_4)_6$ ($0 \le x \le 8$) have investigated by SEM and XRD with Rietveld refinement methods. It was established that calcium substitution for lead occurs up to x = 5.4 and is limited by necessity of presence Pb^{2+} ions with 6s²-electron pairs in the channel of apatite structure. M(1)–O(2) and M(2)–M(2) distances are decreased up to x = 2 and in the range $2 \le x \le 5$ respectively with calcium content increasing in the crystal structure. The changings of these distances correlate with occupancy of M(1) and M(2) sites of apatite structure.

Keywords: lead-calcium-sodium phosphate, apatite structure, X-ray analysis, Rietveld refinement method, SEM

Благодаря разнообразию составов и свойств соединения со структурой апатита стали объектом исследования большого числа ученых. Материалы на основе таких соединений уже используются в качестве катализаторов, ионообменников, сенсоров, люминесцентных и лазерных материалов, искусственных биоматериалов, твердых электролитов и т.д. [1-5]. Изучение изоморфизма является одним из ключевых аспектов для соединений данного типа, так как структурные составляющие апатита легко замещаются другими атомами, ионами или молекулами. Введение изоморфных добавок в кристаллическую структуру может привести не только к изменению кристаллохимических характеристик, но и свойств образующихся соединений или твердых растворов. Поэтому метод модифицирования соединений широко используется при разработке новых материалов.

В литературе приводятся результаты исследований синтеза и изучения кристаллической структуры апатитоподобных кальций-свинец-содержащих твердых растворов: $Ca_{10-x}Pb_x(PO_4)_6(X)_2$ (X = OH [5], F [6], Cl [7]), $Pb_xCa_{10-x}(VO_4)_6F_{2\delta}$ [8], $Pb_xCa_{10-x}(VO_4)_y(PO_4)_{6-y}(OH)_2$ [9]. В то же время отсутствуют данные исследования твердых растворов $Pb_{8-x}Ca_xNa_2(PO_4)_6$, образование которых обусловлено замещением свинца кальцием в двойном фосфате натрия свинца $Pb_8Na_2(PO_4)_6$ со структурой апатита. В ряде работ получены и изучены лишь отдельные образцы, состав которых можно описать указанной выше формулой. Например, в [10] методом рентгенофазового анали-

[©] Игнатов А. В., Жегайло А. О., Яблочкова Н. В., Гетьман Е. И., 2017

за исследованы образцы состава Pb₆Ca₂Na₂(PO₄)₆ (a = 9.660 Å; c = 7.082 Å) и Pb₄Ca₄Na₂(PO₄)₆ (a =9.595 Å; *c* = 7.025 Å), синтезированные при температуре 950 °C. Также описано получение методом твердофазных реакций при температуре 900 °С поликристаллического образца Pb₆Ca₂Na₂(PO₄)₆ (a = 9.658(8) Å и c = 7.081(6) Å) и приведены результаты его исследования методами химического анализа, ИК-спектроскопии, рентгеноструктурного анализа порошка, данные измерений проводимости его керамики [11]. Твердый раствор состава $Pb_6Ca_2Na_2(PO_4)_6$ (a = 9.6834(1)Å и c = 7.1064(1)Å) получен при температуре 700 °С при изучении изоморфного замещения в системе Na_(2-x)K_xCa₂P $b_6(PO_4)_6$ ($0 \le x \le 2$) методами рентгеноструктурного анализа порошка ИК- и КР-спектроскопии [12]. Поэтому целью данной работы является изучение изоморфного замещения свинца на кальций в системе $Pb_{s_{v}}Ca_{N}Na_{2}(PO_{4})_{6}$ ($0 \le x \le 8$) и исследование кристаллической структуры твердых растворов.

МЕТОДИКА ЭКСПЕРИМЕНТА

Для получения твердых растворов Pb_{8-x}Ca_x Na₂(PO₄)₆ исходные вещества квалификации «х.ч.»: PbO, CaCO₃, Na₂CO₃ и (NH₄)₂HPO₄ взвешивали на электронных аналитических весах с погрешностью ±0.2 мг. Смеси навесок растворяли в разбавленной азотной кислоте. К полученным растворам добавляли 2 мл глицерина, затем медленно выпаривали воду. Твердые остатки гомогенизировали в агатовой ступке в течение 10 минут, помещали в алундовые тигли и прокаливали при температурах 300 и 600 °С в течение 2 ч для удаления летучих веществ. Синтезировали твердые растворы при температуре 800 °C до достижения постоянства фазового состава образцов. Протекание реакции контролировали методом рентгенофазового анализа после каждых четырех-пяти часов прокаливания. Суммарное время синтеза при температуре 800 °С составило 20 ч.

Рентгенографические исследования выполняли на дифрактомметрах ДРОН-3М и Rigaku Ultima IV (CuK_a-излучение, Ni – фильтр). Идентификацию фазового состава образцов проводили с помощью программы Match и рентгеновской базы данных pdf-2 (ICDD). Параметры элементарных ячеек твердых растворов рассчитывали с помощью программы DICVOL из пакета FullProf Suite Program (3.0). Для уточнения методом Ритвельда особенностей кристаллической структуры некоторых твердых растворов использовали массив данных, полученный из рентгенограммы порошка, снятой в интервале углов 15 – 140 (20). Шаг сканирования и время экспозиции в каждой точке составляли соответственно 0.05° и 3 с. Уточнение проводили с помощью программы FULLPROF.2k с графическим интерфейсом WinPLOTR, входящих в указанный выше пакет программ.

Образцы исследовали на сканирующем электронном микроскопе JSM-6490LV (JEOL, Япония), оснащенном рентгеновским энергодисперсионным спектрометром INCA Penta FETx3 (OXFORD Instruments, Англия).

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Согласно данным рентгенофазового анализа образцов системы $Pb_{8-x}Ca_xNa_2(PO_4)_6$ в области составов x < 5.5 на дифрактограммах присутствуют только рефлексы фазы двойного фосфата натрия-свинца $Pb_8Na_2(PO_4)_6$ со структурой апатита (рис. 1). В области $x \ge 5.5$, кроме указанной фазы, присутствуют рефлексы фазы $Ca_{10}Na(PO_4)_7$, интенсивность которых возрастает с увеличением значения x. На дифрактограмме образца состава x = 8 отсутствуют рефлексы фазы структуры апатита.

Рис. 1. Дифрактограммы образцов состава $Pb_{8-x}Ca_xNa_2(PO_4)_6$

Образование твердых растворов Pb_{8-x}Ca_xNa₂(PO₄)₆ подтверждается методом сканирующей электронной микроскопии. Полученные порошки являются мелкодисперсными с размерами отдельных зерен около 1 мкм и агрегатов от 3 до 10 мкм (рис. 2). Содержание химических элементов, определенное методом безэталонного рентгеноспектрального микроанализа, удовлетворительным образом, для данного метода анализа, согласуется с рассчитанными величинами (табл. 1). Зерен с иным содержанием основных компонентов не обнаружено.

Рис. 2. Микрофотография образца состава х = 5 системы твердых растворов $Pb_{8-x}Ca_xNa_2(PO_4)_6$ (× 2500)

Замещение свинца кальцием в кристаллической структуре соединения Pb₈Na₂(PO₄)₆ сопровождается изменением параметров элементарной ячейки, зависимость которых от состава представлена на рис. 3. Параметр а ячейки в однофазной области линейно уменьшается, а в многофазной - не изменяется в пределах точности определения данной величины. Точке пересечения двух прямых соответствует состав x = 5.4. Величина параметра с элементарной ячейки структуры апатита также линейно уменьшается, но в более узком интервале (до x = 3.5). В области $x \ge 4$ величина параметра с не изменяется в пределах точности его определения. Несоответствие в областях линейного изменения параметров а и с элементарных ячеек твердых растворов Pb_{8-x}Ca_xNa₂(PO₄)₆ требует объяснения.

Как известно [13], на изменение параметра *с* элементарной ячейки апатитов существенное влияние оказывают размеры катионов, располагающихся в положении M(1) структуры. Структура апатита характеризуется гексагональной элементарной ячейкой (пространственная группа $P6_3/m$), в которой существуют два катионных положения M(1) и M(2). Положение M(1) кратностью четыре имеет координационное окружение из девяти атомов кислорода, входящих в состав тетраэдров РО₄. Положение М(2) кратностью шесть располагается в центре искаженной пентагональной бипирамиды, образованной шестью атомами кислорода, входящими в состав вышеуказанных тетраэдров и одним, заселяющим положение Х структуры, анионом. Последнее положение расположено в центре канала, сформированного многократным повторением вдоль оси z повернутых друг относительно друга на 60 ° треугольников. Эти треугольники образованы катионами, располагающимися в позиции М(2). Отрицательные заряды анионов, заселяющих позицию Х, создают в канале электронную плотность, которая стабилизирует структуру. Полное удаление отрицательно заряженных ионов из канала приводит к разрушению структуры апатита, за исключением тех случаев, когда канал образован катионами, имеющими в своем составе 6s² – электронную пару (Tl⁺, Рb²⁺, Bi³⁺). Данные электронные пары, располагаясь в каналах структуры, являются стереохимически активными, создают электронную плотность и стабилизируют структуру [14].

Рис. 3. Зависимость параметров элементарной ячейки твердых растворов $Pb_{8-x}Ca_xNa_2(PO_4)_6$ от состава *x*.

Ранее изученное [5] замещение ионов Ca^{2+} ионами Pb^{2+} в гидроксиапатите кальция $Ca_{10}(PO_4)_6(OH)_2$ показало образование непрерывного ряда твердых растворов $Pb_{10-x}Ca_x(PO_4)_6(OH)_2$ ($0 \le x \le 10$), параметры элементарных ячеек ко-

Таблица 1.

Результаты рентгеноспектрального микроанализа образцов Pb, "Ca Na, (PO), (масс. %)

x	Pb		Na		Ca		Р		0	
	эксп.	расч.								
4	51.53	51.65	4.06	2.87	9.86	9.99	10.67	11.58	23.88	23.92
5	44.39	43.24	4.53	3.20	13.68	13.94	11.88	12.93	25.75	26.70

ВЕСТНИК ВГУ, СЕРИЯ: ХИМИЯ. БИОЛОГИЯ. ФАРМАЦИЯ, 2017, № 4

торых уменьшаются с увеличением содержания кальция. Методом рентгеноструктурного анализа порошка было установлено, что в твердых растворах $Pb_{10-x}Ca_x(PO_4)_6(OH)_2$ ионы Ca^{2+} склонны к заселению положения M(1), а ионы Pb^{2+} – положения M(2). Поскольку химическая связь металл – кислород в полиэдре M(1) структуры апатита имеет преимущественно ионный характер, а в полиэдре M(2) – более ковалентный [15], подобная склонность к заселенности вышеуказанными ионами кристаллографических положений в структуре апатита вполне объяснима, принимая во внимание существенно большую величину степени ионности связи Са–О в сравнении с Pb–O.

Такое же преимущественное заселение позиции M(1) ионами кальция, по-видимому, происходит и в структуре твердых растворов $Pb_{8-x}Ca_xNa_2(PO_4)_6$, что и предопределяет уменьшение параметра *с* ячейки в области до x = 3.5, а при дальнейшем увеличении содержания ионов Ca^{2+} в твердом растворе параметр *с* остается неизменным, поскольку данные ионы заполняют уже положение M(2).

Как отмечалось выше, для стабилизации структуры апатита необходимо наличие в положении M(2) ионов Pb²⁺ со стереохимически активными 6s²электронными парами. По этой причине в системе $Pb_{8-x}Ca_{x}Na_{2}(PO_{4})_{6}$, в отличие от $Pb_{10-x}Ca_{x}(PO_{4})_{6}(OH)_{2}$, замещение свинца кальцием во всем интервале составов невозможно, поскольку в предельном случае (x = 8) отсутствуют источники отрицательного заряда в каналах, необходимые для стабилизации структуры. Исчезновение рефлексов структуры апатита на дифрактограмме образца x = 8 подтверждает данный факт. В целом, наблюдаемое уменьшение параметров элементарных ячеек твердых растворов со структурой апатита при замещении ионов Рb²⁺ (ионные радиусы 1.19 и 1.35 Å, для координационных чисел 6 и 9 соответственно [16]) ионами Са²⁺ (ионные радиусы 1.00 и 1.18 Å [16]) обусловлено меньшим размерами последних. А предел замещения (x = 5.4) в системе $Pb_{8-x}Ca_xNa_2(PO_4)_6$ лимитируется необходимостью присутствия в структуре твердого раствора стереохимически активных 6s²электронных пар ионов Pb^{2+} .

Склонность ионов Ca²⁺ к заселению кристаллографического положения M1 в кристаллической решетке апатита принималась во внимание при уточнении методом Ритвельда особенностей структуры твердых растворов $Pb_{8-x}Ca_xNa_2(PO_4)_6$. Результаты расчетов приведены в табл. 2 и 3.

Согласно данным рентгеноструктурного анализа порошка в кристаллической структуре незамещенного образца $Pb_8Na_2(PO_4)_6$ ионы натрия практически полностью (96 % от общего содержания) располагаются в положении M(1) структуры апатита, в то время как катионное положение M2 на 99 % заселено ионами Pb^{2+} . Полученные данные, как по заселенности позиций, так и по величинам межатомных расстояний в координационных полиэдрах M(1) и M(2) (табл. 3), согласуются с результатами исследования структуры монокристалла $Pb_8Na_2(PO_4)_6$, приведенными в работе [17].

При уточнении особенностей структуры твердых растворов Pb_{я.v}Ca_vNa₂(PO₄)₆ методом Ритвельда принимали во внимание следующие положения: 1) все химические элементы, входящие в состав твердого раствора находятся в ионной форме; 2) соблюдается принцип электронейтральности; 3) все кристаллографические позиции структуры апатита (за исключением положения Х) заполнены и не содержат вакансий. Кроме того, исходя из характера изменения параметров элементарных ячеек твердых растворов Pb_{8.x}Ca_xNa₂(PO₄)₆, в образцах состава x = 1, 2 и 3 при проведении уточнения ионы Са²⁺ фиксировались в положении М1 и рассчитывалось распределение ионов Na⁺ и Pb²⁺ между двумя катионными положениями структуры апатита. В образце состава x = 4 ионы Pb²⁺ фиксировались в Таблица 2.

$\frac{1}{8x^2} \frac{1}{x^2} 1$								
Состав	x = 0	x = 1	x = 2	x = 3	x = 4	x = 5		
Pb(1) (4f)	2.09(1)	1.13(1)	0.40(1)	0.07(1)	0.00	0.00		
Na(1) (4f)	1.91(1)	1.87(1)	1.60(1)	0.93(1)	0.30(9)	0.30		
Ca(1) (4f)	-	1.00	2.00	3.00	3.70(9)	3.70		
Pb(2) (6h)	5.91(1)	5.87(1)	5.60(1)	4.93(1)	4.00	3.00		
Na(2) (6h)	0.09(1)	0.13(1)	0.40(1)	1.07(1)	1.70(9)	1.70		
Ca(2) (6h)	-	0.00	0.00	0.00	0.30(9)	1.30		
R _B	7.03	5.37	4.62	4.28	5.33	7.02		
R _F	6.54	4.94	3.57	3.62	4.64	5.69		
R _p	6.76	6.53	5.95	5.76	5.87	6.26		
R _{wp}	8.54	8.28	7.60	7.55	7.64	8.19		
χ^2	1.51	1.43	1.43	1.48	1.55	1.80		

Заселенность катионных позиций в структуре Pb, Ca Na (PO), и факторы достоверности

позиции М(2) и рассчитывалось распределение ионов Na⁺ и Ca²⁺ между двумя вышеуказанными кристаллографическими положениями. В образце *x* = 5 использовалась такая же заселенность кристаллографического положения M(1), как и в образце *х* = 4, поскольку данные твердые растворы характеризуются одинаковой (в пределах точности определения) величиной параметра с элементарной ячейки. Заселенности катионных позиций, полученные в результате уточнения кристаллической структуры твердых растворов Pb_{8-x}Ca_xNa₂(PO₄)₆, представлены в табл. 2. Следует отметить, что при проведении уточнения предпринимались и другие варианты фиксирования атомов в кристаллографических положениях, однако они приводили к результатам, не имеющим физического смысла. Таким образом можно отметить предрасположенность ионов Ca^{2+} и Pb^{2+} к заселению соответственно положений M(1) и M(2) в кристаллической решетке $Pb_{8-x}Ca_xNa_2(PO_4)_6$, а также постепенное «вытеснение» ионов Na⁺ из положения M(1) в M(2) ионами Ca^{2+} по мере увеличения содержания последних в структуре твердого раствора.

Уточнение структуры образца x = 2 системы Pb_{8-x}Ca_xNa₂(PO₄)₆, по заселенности позиций и величинам межатомных расстояний, удовлетворительно согласуются с данными [11, 12] для поликристаллических образцов Pb₆Ca₂Na₂(PO₄)₆. Например, катионное положение M(2) заселено ионами Pb²⁺ по нашим расчетам на 93 %, по данным [12] на 91 % и на 96 % [11]. Однако в последнем случае уточнение структуры методом Таблица 3

		Коорлинац	ионный поли	издр M(1) $\frac{gp c r s_{8-x} c u_x r u_2}{2}$	1046		
Состав	M(1)–O(1)×3	M(1)-	M(1)–O(2)×3		M(1)–O(3)×3		<m(1)–o></m(1)–o>	
x = 0	2.428(16)	2.69	2.693(18)		2.913(2)		2.678	
x = 1	2.424(20)	2.66	2.665(19)		2.904(3)		2.664	
x = 2	2.397(18)	2.57	2.574(18)		2.889(4)		2.620	
x = 3	2.40(3)	2.5	2.56(3)		2.872(6)		2.61	
x = 4	2.379(18)	2.55	2.552(18)		2.855(4)		2.595	
x = 5	2.381(18)	2.54	2.540(19)		2.840(4)		2.590	
x = 0[17]	2.447(14)	2.72	2.720(13)		2.912(12)		2.693	
x = 2[11]	2.387(3)	2.5	2.561(3)		2.764(3)		2.571	
x = 2[12]	2.5344(12)	2.58	2.5856(13) 2.8636(13		.8636(13)		2.6612	
	•	Координац	ионный поли	іэдр М(2	2)			
Состав	M(2)–O(1)	$M(2)-O(1)$ $M(2)-O(2)$ $M(2)-O(3)\times 2$		M(2)-O(3)×2		<m(2)–o></m(2)–o>		
x = 0	2.77(4)	2.21(2)	2.622(3)	2.508(1)		2.54	
x = 1	2.87(3)	2.19(2)	2.603(3)		2.491(1)		2.55	
x = 2	2.93(2)	2.212(16)	2.584(3)		2.477(1)		2.54	
x = 3	2.98(3)	2.192(16)	2.574(3)		2.464(1)		2.54	
x = 4	2.97(2)	2.193(16)	2.573(4)		2.456(1)		2.54	
x = 5	2.98(2)	2.191(16)	2.571(5)		2.451(1)		2.54	
x = 0[17]	2.765(15)	2.241(16)	2.631(11)		2.505(13)		2.546	
x = 2[11]	3.143(3)	2.256(3)	2.598(3)		2.499(4)		2.599	
x = 2[12]	2.7737(6)	2.2083(6)	2.5864	<i>2.4878(14)</i>)	2.5217	
		Координа	ционный пол	иэдр РО	4			
Состав Р-О(1)		P-O(2)	PO(3)×2	<p-o></p-o>		M(2)–M(2)×3	
x = 0	1.54(4) 1.557(19)		1.578(8)		1.56		4.332(4)	
x = 1	1.51(3)	1.548(19)	1.555	(7)) 1.54		4.322(4)	
x = 2	1.55(3)	1.570(19)	1.547	(6)	1.55		4.305(4)	
<i>x</i> = 3	1.56(3)	1.567(18)	1.527(6)		1.54		4.246(4)	
<i>x</i> = 4	1.58(3)	1.580(19)	19) 1.503(1.54		4.200(5)	
<i>x</i> = 5	1.59(3)	1.600(18)	1.484	(6)	5) 1.54		4.175(6)	
x = 0[17]	1.525(16)	(16) 1.535(17) 1.5		13) 1.531				
x = 2[11]	1.543(3)	1.552(3) 1.524		3) 1.536				
x = 2[12]	1.5334(4)	1.5559(4)	1.5248	8(4)	1.5347			

Некоторые межатомные расстояния	я $(Å)$ в структуре Pb_{a} Ca Na_(PO).).
recomopore medicantomitore pareentomitar	$x (11) \circ compynettype 1 \circ_{8-x} \circ a_x^{-1} \circ a_2(1 \circ a_4)$	6

ВЕСТНИК ВГУ, СЕРИЯ: ХИМИЯ. БИОЛОГИЯ. ФАРМАЦИЯ, 2017, № 4

Ритвельда отличается несколько большими величинами факторов достоверности ($R_B = 9.31$; $R_F = 5.43$; $R_P = 9.30$; $R_{WP} = 11.6$; $\chi^2 = 3.28$) в сравнении с результатами, полученными нами (табл. 2) и авторами [12].

На основании уточненных значений координат атомов и величин параметров элементарных ячеек твердых растворов рассчитаны межатомные расстояния в структуре $Pb_{8-x}Ca_xNa_2(PO_4)_6$, некоторые из них представлены в табл. 3.

Анализ межатомных расстояний показывает, что вхождение ионов Ca^{2+} в кристаллическую структуру соединения $Pb_8Na_2(PO_4)_6$ приводит к уменьшению расстояния M(1)–O(2), при этом существенным образом изменение данной величины происходит в интервале до x = 2, что вовсе не удивительно, поскольку именно в этой области наблюдается уменьшение содержания ионов Pb^{2+} в позиции M(1). Также можно отметить тенденцию к уменьшению и других межатомных расстояний металл – кислород в полиэдре M(1) структуры апатита. Характер изменения средних расстояний <M(1) - O> в целом соответствует уменьшению расстояния M(1)–O(2).

В полиэдре M(2) можно отметить увеличение расстояния M(2)–O(1) в области до x = 3, а также тенденцию к уменьшению величин M(2)–O(3), поэтому средние межатомные расстояния <M(2)–O> не изменяются с увеличением содержания ионов кальция в твердом растворе. Также остаются неизменными величины средних расстояний <P–O> в полиэдрах PO₄.

Обращает на себя внимание изменение расстояний M(2)-M(2) в треугольниках канала структуры апатита, существенное уменьшение которых наблюдается в области x > 2. Именно в данной области составов происходит значительное уменьшение содержания ионов Pb^{2+} в катионном положении M(2), что приводит к снижению электростатического отталкивания между ионами, как за счет уменьшения числа неподелённых электронных пар в канале структуры, так и за счет заселения положения M(2) меньшими по размерам и заряду (в сравнении с Pb^{2+}) ионами Na⁺.

ЗАКЛЮЧЕНИЕ

Методом рентгенофазового анализа и сканирующей электронной микроскопии исследованы твердые растворы в системе $Pb_{8-x}Ca_xNa_2(PO_4)_6$. Установлено, что замещение свинца на кальций протекает в области до x = 5.4 и лимитируется необходимостью наличия $6s^2$ -электронных пар ионов Pb²⁺ в канале структуры апатита. С увеличением содержания кальция в твердом растворе происходит существенное уменьшение расстояний M(1)–O(2) в области до x = 2 и M(2)–M(2) в интервале $2 < x \le 5$, изменение которых коррелируется с заселенностью катионных позиций структуры апатита. Кроме того, установлено, что по мере увеличения степени замещения происходит изменение заселенности позиций большинством ионов натрия, которые из положения M(1) переходят в положение M(2).

СПИСОК ЛИТЕРАТУРЫ

1. Biomimetic apatite sintered at very low temperature by spark plasma sintering: physico-chemistry and microstructure aspects / D. Grossin [et al.] // Acta Biomaterialia. 2010. — V. 6, —№ 2. — P. 577–588.

2. Luminescence of Ce³⁺-activated chalcogenide apatites Ca₁₀(PO₄)₆Y (Y = S, Se) / J. Zhang [et al.] // Materials Chemistry and Physics. — 2009. — Vol. 114, N 1. — P. 242–246.

3. Yoshioka H. Ionic conductivity and fuel cell properties of apatite-type lanthanum silicates doped with Mg and containing excess oxide ions / H. Yoshioka, Y. Nojiri, S. Tanase // Solid State Ionics. — 2008. — Vol. 179, N 38. — P. 2165–2169.

4. Kale S. Conventional and microwave-assisted multicomponent reaction of alkyne, halide and sodium azide catalyzed by copper apatite as heterogeneous base and catalyst in waste / S. Kale, S. Kahandal, S. Disale [et al.] // Current Chemistry Letters. — 2012. — Vol. 1. — P. 69–80.

5. Zhua Y. Synthesis of the Lead-Calcium HAP Solid Solutions / Y. Zhua [et al.] // Russian Journal of Applied Chemistry. — 2015. — Vol. 88, N 1. — P. 178–183.

6. Babayevskaya N.V. Crystal structure and luminescent properties of europium activated $Ca_{10.}M_x(PO_4)_6F_2$ (M = Pb, Mg) prepared via precipitation from aqueous solutions / N.V. Babayevskaya, Y.N. Savvin, A.V. Tolmachev // Inorganic Materials. — 2007. — Vol.43, N 8. — P. 873–877.

7. Structural and luminescent properties of new Pb²⁺-doped calcium chlorapatites $Ca_{10-x}Pb_x(PO_4)_6Cl_2$ ($0 \le x \le 10$) / M. Mehnaoui [et al.] // Journal of physics: Condensed Matter. — 2008. — Vol. 20. — art. 275227.

8. Dong Z.-L. Calcium-lead fluoro-vanadinite apatites. I Disequilibrium structures / Z.-L. Dong, T.J. White //Acta Cryst. — 2004. — B60. — P. 138–145.

9. A Solid-State NMR Study of Lead and Vana-

Изоморфное замещение свинца на кальций

dium Substitution into Hydroxyapatite. / H. Pizzala [et al.] // J. Am. Chem. Soc. — 2009. — Vol. 131. — P. 5145–5152.

10. Engel G. Mischkristallbildung und Kationenordnung im System Bleihydroxylapatit-Calciumhydroxylapatit / G. Engel, F. Kreig, G. Reif // J. Solid State Chem. — 1975. — Vol. 15. — P. 117–126.

11. Structure and ionic conductivity of the lacunary apatite $Pb_6Ca_2Na_2(PO_4)_6$ / T. Naddari [et al.] // Solid State Ionics. — 2003. — Vol. 158. — P. 157–166.

12. Elaboration, Rietveld refinements and vibrational spectroscopic study of $Na_{1-x}K_xCaPb_3(PO_4)_3$ lacunar apatites ($0 \le x \le 1$). / S. Lahrich [et al.] // Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. — 2015. — Vol. 145. — P. 493–499.

13. Synthesis and distribution of cations in substituted lead phosphate lacunar apatites / B. Hamdi [et al.] // Mat. Res. Bull. — 2007. — Vol. 42. — P. 299–311.

14. Synthesis, Rietveld refinements and Raman spectroscopic studies of tricationic lacunar apatites $Na_{1-x}K_xPb_4(AsO_4)_3$ ($0 \le x \le 1$) / B. Manoun [et al.] // Journal of Molecular Structure. — 2011. — Vol. 986. — P. 1–9.

15. The crystal structure of lacunar apatite NaP- $b_4(PO_4)_3$. / M. El Koumiri [et al.] // Mat. Res. Bull. - 2000. - Vol. 35. - P. 503-513.

 Shannon R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides / R.D. Shannon // Acta Cryst. — 1976. — Vol. 32.– P. 751–767.

17. Toumi M. Crystal structure and spectroscopic studies of $Na_2Pb_8(PO_4)_6$ / M. Toumi, T Mhiri // J. Ceramic Soc. Japan. — 2008. — Vol. 116. — P. 904–908.

Донецкий национальный университет Игнатов А. В., к.х.н. доцент кафедры неорганической химии Тел.: +38 095 318 22 38

E-mail: 8051978@gmail.com

Жегайло А. О., ассистент кафедры неорганической химии

Тел.: +38 066 555 96 23 E-mail: zhegailoalisa@mail.ru

Яблочкова Н. В., к.х.н., доцент кафедры неорганической химии Тел.: +38 050 141 00 09 E-mail: natasha05072008@rambler.ru

Гетьман Е. И., д.х.н., профессор, кафедра неорганической химии Тел.: +38 066 434 63 21 E-mail: gtmn@i.ua Donetsk National University Ignatov A. V., PhD in Chemistry, associate professor, Department of Inorganic Chemistry Ph.: +38 095 318 22 38

E-mail: 8051978@gmail.com

Zhegailo A. O., Assistant of the Department of Inorganic Chemistry Ph.: +38 066 555 96 23

E-mail: zhegailoalisa@mail.ru

Yablochkova N. V., PhD in Chemistry, associate professor, Department of Inorganic Chemistry Ph.: +38 050 141 00 09 E-mail: natasha05072008@rambler.ru

Get'man Eugeny I., Doctor of Chemistry, Professor, Department of Inorganic Chemistry Ph.: +38 066 434 63 21 E-mail: gtmn@i.ua