АНАЛИЗ СПЕКТРАЛЬНОГО СОСТАВА ОПТИЧЕСКИХ ШУМОВ В РАСТВОРЕ НА ГРАНИЦЕ С СУЛЬФОКАТИОНООБМЕННОЙ МЕМБРАНОЙ МК-40 ПОСЛЕ ТЕМПЕРАТУРНОГО ВОЗДЕЙСТВИЯ МЕТОДОМ ФЛИККЕР-ШУМОВОЙ СПЕКТРОСКОПИИ

В. И. Колганов, Э. М. Акберова, М. Д. Малыхин, С. В. Бабичев

Воронежский государственный университет Поступила в редакцию 25.04.2015 г.

Аннотация. Методом Фурье-анализа установлен спектральный состав флуктуаций концентрационного поля в стратифицированных системах с катионообменной мембраной при интенсивных токовых режимах. Выявлена высокая шумовая составляющая колебаний концентрационного поля в растворе на границе с мембраной МК-40 после температурного воздействия, характеризующейся большей долей проводящей поверхности и более развитым микрорельефом по сравнению с кондиционированным образцом.

Ключевые слова: катионообменная мембрана, термохимическое воздействие, неоднородность поверхности, электроконвективная нестабильность, лазерная интерферометрия, фликкер-шумовая спектроскопия.

Abstract. The spectral composition of fluctuations of the concentration field in the stratified systems with cation-exchange membrane at intensive current regimes using Fourier-method was established. The high noise component of the concentration field in the solution at the boundary with cation-exchange membrane MK-40 after temperature treatment characterized by a large fraction of the conductive surface and more developed microrelief with compared conditioned sample

Keywords: cation-exchange membrane, thermochemical treatment, surface heterogeneity, electroconvective instability, laser interferometry, the flicker noise spectroscopy.

Использование метода фликкер-шумовой спектроскопии для анализа спектрального состава оптических шумов в электромембранных системах является удачным способом расширить знания о процессах концентрационной поляризации и возникновения электроконвекции, полученные на основе математического моделирования [1] и экспериментальных результатов лазерной интерферометрии [2-5], вольтамперометрии [6], визуализации градиентов концентрации с помощью флуоресцентных трейсеров [7] и т.д.

К факторам, влияющим на интенсивность электроконвективной нестабильности в электромембранных системах при сверхпредельных токовых режимах, относятся такие свойства поверхности ионообменных мембран как поверхностные группы, электрическая и геометрическая неоднородность, гидрофобность. Анализ флуктуационной динамики и спектрального состава колебаний концентрационного поля (интерференционных полос) дает возможность получить информацию об особенностях возникновения и развития конвективных потоков в растворе на границе с мембраной [8-12]. Цель настоящей работы состояла в изучении влияния изменения свойств поверхности сульфокатионообменных мембран после температурного воздействия на спектральный состав флуктуаций концентрационного поля методом фликкер-шумовой спектроскопии.

МЕТОДИКА ЭКСПЕРИМЕНТА

Объектом исследования являлись образцы гетерогенной ионообменной мембраны МК-40 с низкой каталитической активностью в реакции диссоциации воды достаточно термостабильных

[©] Колганов В. И., Акберова Э. М., Малыхин М. Д., Бабичев С. В., 2015

фиксированных сульфогрупп. Мембраны подвергали химическому кондиционированию последовательной обработкой растворами кислот и щелочей. Затем образцы мембран термостатировали при 100°С в дистиллированной воде в течение 50 ч.

Для проведения экспериментов по регистрации флуктуационной картины интерференционных полос на границе мембрана-раствор использовали метод лазерной интерферометрии с применением гелий-неонового лазера ЛГН-503 (λ =632,8 нм) и интерферометрической установки типа Маха-Цендера. Эксперименты были проведены в гальваностатическом режиме при горизонтальной ориентации семисекционного электродиализатора в гравитационном поле (устойчивая концентрационно-температурная стратификация). Высота мембранного канала *l* составляла 4,1·10⁻² м, ширина 1,8·10⁻² м, межмембранное расстояние *h* в исследуемой секции 2,0·10⁻³ м. Растворы хлорида натрия С₀(NaCl) $= 2,0.10^{-2}$ М подавали в исследуемую секцию, состоящую из однотипных мембран МК-40, со скоростью 1,3.10-3 м/с. Для одновременной регистрации оптических шумов и вольтамперной характеристики (ВАХ) в смежных секциях, разделенных исследуемой мембраной, устанавливались два хлоридсеребряных зонда, расположенных на расстоянии 1 мм от ее поверхности.

Результаты измерений флуктуаций интерференционных полос (оптические шумы) записывали в виде временных рядов. При исследовании оптических шумов применялся Фурье-анализ, позволивший сделать заключение о частотном составе шума, усредненного по всему времени записи колебательного процесса.

Характеристику морфологии поверхности мембран проводили с использованием растровой электронной (РЭМ) и атомно-силовой (АСМ) микроскопии. Применение микроскопа JSM-6380 LV (Япония) с регулируемым давлением в камере с исследуемым образцом позволило исследовать в низковакуумном режиме поверхность мембран в набухшем состоянии [13]. Количественная оценка доли ионообменного материала и порового состава на поверхности мембран проводилась с помощью авторского программного комплекса [14, 15], в котором реализованы методы цифровой обработки электронно-микроскопических фотографий мембран, позволяющие проводить автоматизированный анализ их морфологии.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Температурное воздействие приводит к значительному изменению формы и параметров ВАХ мембраны МК-40 (рис.1).

Рис.1. ВАХ катионообменной мембраны МК-40 в растворе хлорида натрия при устойчивой стратификации системы в гравитационном поле. Образцы мембраны: после кондиционирования (1) и после термообработки в воде при 100°С в течение 50ч (2).

После температурного воздействия установлено увеличение предельной диффузионной плотности тока i_{lim} , уменьшение потенциала φ_2 и тока i_2 наступления сверхпредельного состояния, сокращение длины плато предельного тока $\Delta \varphi_{plal}$, значительное падение сопротивления мембранной системы в области плато (\mathbf{R}_2) и третьего участка ВАХ (табл.1).

Таблица 1.

Характеристики BAX и структурные параметры
мембраны МК-40 после термообработки при 100°С
(50μ)

Образцы мем- бран	i _{lim} ,MA/CM ²	$arDelta arphi_{plat'} B$	$R_{I'} OM cM^2$	$R_2, OM \cdot CM^2$	$R_{3'} OM \cdot CM^2$	\mathbf{f}_2		
до температур- ного воздей- ствия	1,47	2,05	214	3286	682	0,09		
после тем- пературного воздействия	1,70	2,25	231	1857	375	0,28		

Рост величины *i*_{lim} можно объяснить одновременным действием нескольких факторов, одним из которых является возрастание влагосодержания вследствие увеличения доли межгелевого раствора в фазе мембраны f₂. Для образцов, подвергшихся термохимическому воздействию, выявлены изменения микроструктуры поверхности (табл. 2): увеличение общей пористости Р в 3 раза за счет известного эффекта «декапсулирования» частиц ионообменника в результате изменения их объема из-за нагревания и воздействия и гидролитического окисления полиэтилена [16-18], а также рост доли ионообменника S и проводящей поверхности S на 17 и 40%, соответственно, вследствие уменьшения степени сшивки полимерной матрицы из-за частичного разрушения поперечных связей [18].

	Таблица 2
Микроструктура поверхности набухше	гй мембраны
МК-40 после термообработки в воде пр	и 100°С (50 ч.

1 1	-	(/	
Образцы	<i>S</i> , %	P, %	S _c , %
до температурного воздействия	13.2 ± 0.9	1.9±0.2	14.8 ± 0.9
после температурного воздействия	15.5 ± 0.9	6.5 ± 0.3	20.8 ± 0.9

Расширение пор и микротрещин, а также изменение формы и геометрии зерен ионообменника после температурного воздействия вызывают возрастание геометрической неоднородности (микрорельефа) поверхности мембран (рис. 2). Максимум распределения высот на поверхности мембраны МК-40 после термообработки сдвигается от 200-300 нм до 400-500 нм, средняя арифметическая шероховатость поверхности увеличивается более чем в полтора раза. Изменения морфологии и микрорельефа поверхности мембраны со стабильными фиксированными сульфогруппами после термовоздействия являются причиной изменения флуктуационной картины профиля концентрации (рис. 3).

Высота рельефа, 10-9 м

Рис.2. Микрорельеф поверхности мембраны МК-40, полученный методом АСМ. Образцы мембраны: после кондиционирования (1) и после термообработки в воде при 100°С в течение 50ч (2).

Рис. 3. Смещение интерференционной полосы во времени в растворе на границе с катионообменной мембраной МК-40 до (а) и после (б) температурного воздействия при устойчивой стратификации системы в гравитационном поле. Кратность превышения предельной диффузионной плотности тока $i/i_{\rm lim}$: 1,1 (1); 3,2 (2); 9,2 (3).

ВЕСТНИК ВГУ, СЕРИЯ: ХИМИЯ. БИОЛОГИЯ. ФАРМАЦИЯ, 2015, № 3

Амплитуда и средняя частота колебаний интерференционной полосы для мембраны после температурного воздействия превышали соответствующие величины для исходного кондиционированного образца (рис. 4).

В диапазоне токов $1,0 < i/i_{lim} < 12,0$ амплитуда колебаний была больше в $2,5 \pm 0,4$ раз. Средняя частота колебаний интерференционной полосы при токах, не превышающих $2i_{lim}$, после термообработки мембраны увеличивалась незначительно, а в диапазоне токов $2,0 < i/i_{lim} < 12,0$ превышала соответствующую величину для кондиционированного образца мембраны в $2,1 \pm 0,3$ раз.

Параметр n, характеризующий согласно методологии фликкер-шумовой спектроскопии [19, 20] переход движения жидкости от ламинарного к предельно турбулизованному, определялся как тангенс угла наклона высокочастотного участка спектра (рис. 5а). Величина n = 3 характеризует хаотическое объемное турбулентное перемешивание раствора.

У поверхности мембраны после температурного воздействия установлено более интенсивное перемешивание раствора, а максимальная степень турбулизованности достигалась при меньшей степени поляризации системы (рис. 5б).

ЗАКЛЮЧЕНИЕ

Структурные изменения поверхности мембраны со стабильными фиксированными группами после термохимического воздействия являются причиной усиления электроконвективного перемешивания раствора на межфазной границе. В связи с этим, более высокая шумовая составляющая колебаний концентрационного поля в растворе установлена на границе с мембраной МК-40 после температурного воздействия, характеризующейся большей долей проводящей поверхности и более развитым микрорельефом.

Работа выполнена при финансовой поддержке гранта РФФИ (проект № 15-08-05031).

СПИСОК ЛИТЕРАТУРЫ

1. Basic mathematical model of overlimiting transfer enhanced by electroconvection in flow-through electrodialysis membrane cells / M.K. Urtenov [et al.] // J. Memb. Sci. — 2013. — V. 447. — P. 190-202.

Диффузионные пограничные слои на границе мембрана-раствор при высоко-интенсивных режимах электродиализа / В.И. Васильева [и др.] // Сорбционные и хроматографические процессы. — 2005. — Т.5, № 4. — С.545-560.

3. Шапошник В.А. Диффузионные пограничные слои при электродиализе / В.А. Шапошник, В.И. Васильева, О. В. Григорчук // Электрохимия. — 2006. — Т. 42, № 11. — С. 1340-1345.

4. The membrane-solution interface under high-performance current regimes of electrodialysis by means of laser-interferometry /

Рис. 4. Средняя амплитуда (а) и частота (б) колебаний интерференционной полосы в растворе на границе с катионообменной мембраной МК-40 при устойчивой стратификации системы в гравитационном поле. Образцы мембраны: после кондиционирования (1) и после термообработки в воде при 100°С в течение 50ч (2).

Рис. 5. Сравнение спектров мощности (а) и параметра n (б) флуктуаций интерференционных полос в растворе у поверхности катионообменной мембраны МК-40 при устойчивой стратификации системы в гравитационном поле. Образцы мембраны: после кондиционирования (1) и после термообработки в воде при 100°С в течение 50ч (2).

V.I. Vasil'eva [et al.] // Desalination. — 2006. — Vol. 192. — P. 408-414.

5. The oscillation of concentration field at the membrane-solution interface and transport mechanisms under overlimiting current / V. Vasi1'eva [et al.] // Desalination and water treatment. — 2010. — Vo1.14. — P. 214-219.

6. Перенос ионов электролита и диссоциация воды в анионообменных мембранах при интенсивных токовых режимах / В.И. Заболоцкий [и др.] // Электрохимия. — 2012. — Т. 48, №6. — С.721-731.

7. Rubinstein I. Electro-osmotically induced convection at a permselective membrane / I. Rubinstein, B. Zaltzman // Phys. Rev. E. — 2000. — Vol. 62, № 2. — P.2238-2251.

8. Спектральные свойства флуктуаций концентрационного поля в стратифицированных электромембранных системах с катионообменной мембраной МК-40 / В.И. Васильева [и др.] // Сорбционные и хроматографические процессы. — 2009. — Т.9, Вып.2. — С. 196-207.

9. Колебательная неустойчивость стратифицированных электромембранных систем при высокоинтенсивных токовых режимах / В.И. Васильева [и др.] // Сорбционные и хроматографические процессы. — 2008. — Т.8. — Вып.3. — С. 359-379. 10. Колганов В.И. Влияние природы фиксированных групп анионообменных мембран на спектральный состав оптических шумов электроконвективной нестабильности в электромембранных системах / В.И. Колганов, А.В. Жильцова, Э.М. Акберова // Конденсированные среды и межфазные границы, 2013. — Т. 15, №4. — С. 413-417.

11. Колганов В.И. Влияние гидрофобности поверхности сульфокатионообменной мембраны МК-40 на спектральный состав оптических шумов в растворе при интенсивных токовых режимах / В.И. Колганов, Э.М. Акберова, А.В. Жильцова // Сорбционные и хроматографические процессы, 2014. — Т. 14. Вып. 3. — С. 232-237.

12. Спектральный состав оптических шумов в растворе на границе с гетерогенными ионообменными мембранами при интенсивных токовых режимах / В.И.Колганов [и др.] // Сорбционные и хроматографические процессы, 2014. — Т. 14. Вып. 4. — С. 630-634.

13. РЭМ-диагностика поверхности гетерогенных ионообменных мембран МК-40 и МА-40 в набухшем состоянии после температурного воздействия / В.И. Васильева [и др.] // Поверхность. Рентгеновские, синхротронные и нейтронные исследования. — 2013. — № 9. — С. 27-34. Колганов В. И., Акберова Э. М., Малыхин М. Д., Бабичев С. В.

14. Разработка и экспериментальная апробация программного комплекса для определения доли ионопроводящей поверхности мембран по данным растровой электронной микроскопии / Е.А. Сирота [и др.] // Вестник ВГУ, Серия: Химия. Биология. Фармация. — 2011. — № 2. — С. 53-59.

15. Оценка поверхностной и объемной неоднородности гетерогенных ионообменных мембран по электронно-микроскопическим снимкам: свидетельство о гос. регистрации программы для ЭВМ / Е.А. Сирота, В.И. Васильева, Э.М. Акберова; ФГБОУ ВПО ВГУ .— № 2012617310 29.08.2012; зарегистр. 26.10.2012 .— 2 с.

16. Электрохимические свойства и структура ионообменных мембран при термохимическом воздействии / В.И. Васильева [и др.] // Электрохимия. – 2014. – Т. 50, № 8. – С. 875–883.

17. Васильева В.И. Влияние термохимического воздействия на морфологию и степень гидрофобности поверхности гетерогенных ионообмен-

Воронежский государственный университет Колганов В. И., магистрант кафедры аналитической химии

E-mail: vladimirigorevich91@mail.ru Тел.: (473)2208828

Акберова Э. М., ведущий инженер кафедры аналитической химии E-mail: elmara_09@inbox.ru Teл.: (473)2208828

Малыхин М. Д., к.х.н., старший научный сотрудник кафедры аналитической химии

Бабичев С. В., студент химического факультета

ных мембран / В.И. Васильева [и др.] // Журн. физ. химии. – 2014. – Т. 88, № 8. – С.1114-1120.

18. Васильева В.И. Микроскопический анализ морфологии поверхности ионообменных мембран / В.И. Васильева [и др.] // Сорбционные и хроматографические процессы. – 2008. – Т. 8, Вып. 2. – С. 260-271.

19. Тимашев С.Ф. Фликкер-шумовая спектроскопия в анализе флуктуационной динамики электрического потенциала в электромембранной системе при "запредельной" плотности тока / С. Ф. Тимашев, В. В. Григорьев, Е. Ю. Будников // Журн. физ. химии. – 2002. – Т. 76. – № 3. – С. 554-561.

20. Колюбин А.В. Использование Фликкершумовой спектроскопии для изучения механизма запредельного тока в системе с катионообменной мембраной / А. В. Колюбин, А. В. Максимычев, С. Ф. Тимашев // Электрохимия. – 1996. – Т.32. – № 2. – С. 227-234.

Voronezh State University

Kolganov V. I., the competitor for science degree of Master Sci. Chem. of the Department of Analytical Chemistry,

Ph.: (473)2208828 E-mail: vladimirigorevich91@mail.ru

Akberova E. M., the leading engineer of the Department of Analytical Chemistry E-mail: elmara_09@inbox.ru Ph.: (473)2208828

Malykhin M. D., PhD in chemistry, senior researcher of the Department of Analytical Chemistry

Babichev S. V., the student of chemical faculty