СОСТАВ ЛИПОФИЛЬНОЙ ФРАКЦИИ КОРНЕВИЩ АРИЗЕМЫ ЕДИНОКРОВНОЙ

Нгуен Тхи Ким Нган¹, Д.В. Курилов², В.А. Ермакова¹, И.А. Самылина¹

¹ Первый Московский государственный медицинский университет им И.М. Сеченова. ² Институт органической химии им. Н.Д. Зелинского РАН, г. Москва. Поступила в редакцию 20.06.2014 г.

Аннотация. Аризема единокровная (Arisaema consanguineum Schott.) распространена во Вьетнаме и используется в народной медицине в качестве противовоспалительного, отхаркивающего, спазмолитического, противосудорожного средства. Химический состав ариземы единокровной изучен недостаточно. Проведено определение суммы экстрактивных веществ из корневищ ариземы единокровной, извлекаемых 96%-ным этанолом. Посредством метода газовой хромато-массспектрометрии, изучен состав липофильной фракции корневищ ариземы единокровной. В много-компонентной смеси спиртового экстракта идентифицированы 16 соединений.

Ключевые слова: экстрактивные вещества, липофильная фракция, газовая хромато-массспектрометрия, корневища ариземы единокровной, Arisaema consanguineum

Abstract. Arisaema consanguineum distributed in Vietnam and used in traditional medicine as an anti-inflammatory, expectorant, antispasmodic, anti-convulsant agent. Chemical composition arisaema consanguineum insufficiently studied. The lipophilic fraction composition of Arisaema consanguineum rhizomes was studied. By the method of gas-chromato-mass-spectrometry the relative content (%) of the extractive compounds, which extracted with 96% ethanol, was investigated. The identification of 16 compounds was carried out.

Keywords: extractive compounds, lipophilic fraction, gas chromato-mass-spectrometry, Arisaema consanguineum.

(Arisaema Аризема единокровная consanguineum Schott.) сем. Ароидные (Araceae) произрастает на территории Вьетнама: Лаокай, Хазанг, Каобанг. Растение используется в народной медицине в качестве отхаркивающего, противосудорожного, антибактериального, спазмолитического и противоопухолевого средства. Данные литературы свидетельствуют о том, что химический состав этого растения практически не изучен. Необходимо отметить, что имеются сведения о содержании в других видах ариземы (амурской и японской) эфирного масла, а также представителей таких классов природных соединений, как тритерпеновых сапонинов, флавоноидов, полисахаридов, алкалоидов и проч. [1,2]

Аризема амурская, аризема красноватая и аризема разнолистная включены в Фармакопею КНР и применяются в сочетании с корневищем имбиря

© Нгуен Тхи Ким Нган, Курилов Д. В., Ермакова В. А., Самылина И. А., 2014

(после соответствующей обработки) для лечения заболеваний органов дыхания [3].

Принимая во внимание распространенность ариземы единокровной во Вьетнаме и возможность расширения сырьевой базы для производства лекарственных средств противовоспалительного, отхаркивающего и седативного действия, мы сочли целесообразным провести изучение химического состава и фармакологических свойств ариземы единокровной.

Целью настоящей работы явилось исследование липофильной фракции корневищ ариземы единокровной.

МЕТОДИКА ЭКСПЕРИМЕНТА

Объектом исследования послужило сырье – корневища ариземы единокровной, собранное во Вьетнаме в районе г. Шапа.

Из сырья выделяли сумму экстрактивных веществ (экстрагент – 96%-ный этанол) по методике $\Gamma\Phi$ XI [4]. Сумма экстрактивных веществ состави-

ла 5.85% (среднее из 3-х определений). Полученный этанольный экстракт изучали посредством метода газовой хромато-масс-спектрометрии.

Исследование проводили на приборе «Agilent Technologies», состоящем из : 1) газового хроматографа 7890 (колонка HP-5, 50 м \times 320 мкм \times 1.05 мкм) и 2) масс-селективного детектора 5975 С с квадрупольным масс-анализатором. Температурная программа хроматографирования: при 40°С – изотерма 2 мин; далее программируемый нагрев до 250°C со скоростью 5°C/ мин; при 250°C - изотерма 15 мин; далее программируемый нагрев до 320°C со скоростью 25°C/ мин; при 320°C – изотерма 5 мин. Инжектор с делением потока 1:50. Температура инжектора 250°C. Температура интерфейса 280°C. Газ-носитель – гелий; скорость потока – 1мл/мин. Хроматограмма образцов - по полному ионному току. Условия масс-спектрометрического анализа: энергия ионизирующих электронов 70 эВ; регистрация масс-спектров в положительных ионах в диапазоне (m/z) от 20 до 450 со скоростью 2.5 скан/ сек. Программное обеспечение - ChemStation E 02.00. Идентификация компонентного состава (качественный анализ) проведена по библиотеке полных масс-спектров NIST-05 и соответствующим значениям хроматографических линейных индексов удерживания ($I_{\rm lin}$). Относительное содержание (%) компонентов смеси (коли-чественный анализ) вычислено из соотношения площадей хроматографических пиков методом простой нормировки.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

В результате проведенных исследования посредством метода газовой хромато-массспектрометрии в этанольном экстракте корневищ ариземы единокровной идентифицированы 16 соединений липофильного характера: спирты, эфиры, фенолы, терпеноиды и др. (таблица 1). По относительному количественному содержанию (%) преобладающими (мажорными) компонентами оказались: этиловой эфир пальмитиновой кислоты (41.85), *п*-цимол (10.41), ментон (9.14), бутановая кислота (5.70), *н*-цетиловый спирт (5.01), *п*-мент-3-ен (4.72), ментол (4.32) и камфора (3.54).

Таблица 1. Состав липофильной фракции корневищ ариземы единокровной

Соединение	Структурная формула	Хроматографи- ческий индекс удерживания (линейный), I _{lin}	Относи- тельное содержа- ние, %	Масс-спектр, m/z (I, %)
Бутановая кислота	OH	792	5.70	M+ 88(2), 73(42), 60(100), 55(11), 45(52), 28(32)
2,2-Диметил- 1,3-пропандиол	но	938	2.06	73(100), 56(88), 45(79), 31(71)
Фенол	но	983	0.69	M ⁺⁺ 94(100), 66(34), 55(7), 39(25)
п-Мент-3-ен	\	997	4.72	M ⁺⁺ 138(34), 123(25), 105(9), 95(100), 81(92), 67(34), 55(41), 43(48)
4,4-Диметил- 2-пентанол) OH	1030	1.67	83(21), 70(25), 57(100), 45(64)
п-Цимол;		1039	10.41	M ⁺⁺ 134(28), 119(100), 103(5), 91(29), 77(8), 65(7), 51(4), 39(7)
о-Гваякол	OH OMe	1108	1.57	M ⁺⁺ 124(81), 109(100), 95(8), 81(73), 65(12), 53(17), 39(15)
Камфора	0	1178	3.54	M ⁺⁺ 152(30), 137(7), 121(6), 108(38), 95(100), 81(68), 69(45), 55(42), 41(81)

Таблица 1 (Продолжение).

Состав липофильной фракции корневищ ариземы единокровной

	Состив линофилоной фракции корневищ ириземы соинокровной						
Соединение	Структурная формула	Хроматографи- ческий индекс удерживания (линейный), I _{lin}	Относи- тельное содержа- ние, %	Масс-спектр, m/z (I, %)			
Ментон (стереоизомеры)		1190 *	9.14	M ⁺⁺ 154(33), 139(44), 112(100), 97(35), 83(38), 69(71), 55(64), 41(70)			
Ментол (стереоизомеры)	HO	1193 *	4.32	M ⁺⁺ 156(10), 138(13), 123(37), 109(19), 95(87), 81(100), 71(95), 55(61), 41(68)			
Ванилин	MeO HO	1436	1.18	M ⁺⁺ 152(99), 151(100), 137(7), 123(12), 109(18), 91(15), 81(25), 65(13), 53(17), 39(12)			
2,6-Ди-трет-бутил- п-крезол (антиоксидант КВ)	OH	1534	следы	M ⁺⁺ 220(26), 205(100), 189(4), 177(8), 161(6), 145(12), 133(7), 115(7), 105(8), 91(9), 81(6), 77(6), 67(5), 57(17), 41(8)			
1-[2-(Изобу- ти-рилокси)- 1-метилэтил]-2,2- диме-тилпропил- 2-метил-пропаноат	1	1612	4.62	243(4), 173(5), 159(4), 155(5), 143(3), 127(2), 111(8), 97(3), 83(5), 71(100), 56(8), 43(50)			
Гексагидрофарне- зилацетон		1850	3.54	250(4), 225(1), 210(2), 193(1), 179(3), 165(5), 151(2), 137(6), 123(13), 109(25), 95(26), 85(26), 71(47), 58(91), 43(100)			
н-Цетиловый спирт		1886	5.01	125(11), 111(28), 97(70), 83(87), 69(85), 57(100), 43(91)			
Этиловый эфир пальмитиновой кислоты		1995	41.85	157(19), 149(11), 143(8), 129(8), 115(9), 101(54), 88(100), 83(10), 73(23), 70(20), 61(12), 55(28), 43(34)			
T				•			

^{*} Примечание: для совокупности стереоизомерных форм ментона и ментола приведены усреднённые величины хроматографических линейных индексов удерживания

ЗАКЛЮЧЕНИЕ

Таким образом, в корневищах ариземы единокровной определено содержание 5.85% экстрактивных веществ (экстрагент 96%-ный этанол). Методом газовой хромато-масс-спектрометрии в этанольном экстракте идентифицированы 16 соединений липофильной природы. Найдено, что по относительному количественному содержанию

(%) доминирующими компонентами липофильной фракции являются этиловый эфир пальмитиновой кислоты (41.85), n-цимол (10.41) и ментон (9.14).

СПИСОК ЛИТЕРАТУРЫ

1. Vo Van Chi. Dictionary of medicinal plants in Vietnam/ Vo Van Chi. — Ho Chi Minh edition medicine, 2007. — 1500 p.

- 2. Шретер, А.И. Лекарственная флора советского Дальнего Востока/ А.И. Шретер. М.: Медицина, 1975. 326 с.
 - 3. Фармакопея КНР. Народное медицинское

издательство, 2005. — Вып. 1. — 975 с.

4. Государственная фармакопея СССР. — 11-е изд. — М.: Медицина, 1989. — Вып. 2: Лекарственное растительное сырьё. — 400 с.

Нгуен Тхи Ким Нган — Первый Московский государственный медицинский университет им И.М. Сеченова; e-mail: giangsinh1986@yahoo.com

Nguyen Thi Kim Ngan — First Moscow State Medical University I.M. Sechenov; e-mail: giangsinh1986@yahoo.com

Ермакова Валентина Алексеевна — докт. фарм. наук, проф., Первый Московский государственный медицинский университет им И.М. Сеченова; e-mail: ermakova1701@yandex.ru

Ermakova Valentina A. — Doctor. pharm. sciences, prof., First Moscow State Medical University I.M. Sechenov; e-mail: ermakova1701@yandex.ru

Самылина Ирина Александровна — докт. фарм. наук, проф., Член-корр РАМН., Первый Московский государственный медицинский университет им И.М. Сеченова.

Samylina Irina A. — doctor. pharm. sciences, pers.-corr. RAS, professor, First Moscow State Medical University I.M. Sechenov; e- mail: laznata@mail.ru

Курилов Дмитрий Вадимович — канд. хим. наук., научный сотрудник лаборатории асимметрического катализа, Институт органической химии им. Н.Д. Зелинского РАН, г. Москва.

Kurilov Dmitry V. — PhD. chem. sciences, researcher, laboratory of asymmetric catalysis, Institute of Organic Chemistry. N.D. Zelinsky RAS, Moscow; e-mail: kur-dv@mail.ru