ПОЛУЧЕНИЕ И СВОЙСТВА АМИНОАМИДОВ НА ОСНОВЕ ТРИГЛИЦЕРИДОВ ГОВЯЖЬЕГО ЖИРА И ИХ ФОСФАТНЫХ МОДИФИКАТОВ

3. Г. Асадов, Н. В. Саламова, Р. А. Рагимов, С. Ф. Ахмедбекова

Институт нефтехимических процессов НАН Азербайджана, г.Баку Поступила в редакцию 11.04.2014 г.

Аннотация. Взаимодействием триглицеридов говяжьего жира с диэтилентриамином (ДЭТА) получены аминоамиды. Синтезированные аминоамиды модифицированы ортофосфорной кислотой. Состав и структура синтезированных продуктов идентифицирована методом ИК-спектроскопии. Полученные соединения охарактеризованы рядом физико-химических показателей и испытаны в качестве нефтесобирающих и нефтедиспергирующих реагентов.

Ключевые слова: кислотная фракция говяжьего жира, диэтилентриамин, аминоамид, поверхностная активность, нефтесобирание, нефтедиспергирование

Abstract. Aminoamide of beef fat acid fraction has been obtained by interaction of beef fat triqliserides with diethylentriamine. Synthesized aminoamides have been modified with H₃PO₄. The composition and structure of the obtained compounds were identified by IR-spectroscopic method. The resulting compounds were characterized by a number of physical and chemical parameters and tested as petroleum-collecting and petroleum-dispersing reagentes.

Keywords: beef fat acid fraction, diethylentriamine, aminoamide, surfactant, petroleum-collecting, petroleum-dispersing.

В последнее время потребность в поверхностно-активных веществах (ПАВ) увеличивается в связи развитием промышленности. В том числе, изучение влияния морской воды на нефтесобирающие и диспергирующие свойства реагентов представляет большой интерес [1-7]. С этой целью в данной работе проведены исследования по получению изучению свойств новых высокоэффективных представителей таких реагентов.

МЕТОДИКА ЭКСПЕРИМЕНТА

ДЭТА использован в виде реактивного продукта марки «ч» Олайненского завода химреактивов (Латвия). Говяжий жир использовали в виде товарного продукта. Ортофосфорная кислота использована в виде реактивного продукта марки «ч» (86.4%-ный раствор) (Российская Федерация)

Регистрацию ИК-спектров осуществляли с помощью спектрофотометра ALPHA FT-IR (Bruker), используя диски из КВг.

© Асадов З. Г., Саламова Н. В., Рагимов Р. А., Ахмедбекова С. Ф. , 2014

Сталагмометрические измерения поверхностного натяжения (σ) на границе вода-керосин проводили по методике Ребиндера-Венстрема [8].

Модификацию аминоамида кислотной фракции говяжьего жира (КФГЖ) ортофосфорной кислотой проводили в стеклянных реакторах при температуре $50-55^{\circ}$ С в течение 15-17 часов.

Нефтесобирающая и диспергирующая способность полученных реагентов исследована по известной лабораторной методике, описанной в [1]. Испытания были осуществлены на примере тонких пленок (толщиной 0,17 мм) Раманинской нефти на поверхности трех видов вод: дистиллированной, пресной и морской. Реагенты испытывались в виде 100%-ного продукта и 5%-ного (мас.) водного раствора.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Взаимодействие триглицеридов говяжьего жира с ДЭТА проведено при мольном соотношении исходных реагентов 1:3.2 при 140-150°C в течение ~ 20 ч. Общую реакционную схему по-

лучения аминоамида КФГЖ можно представить следующим образом:

Конечный продукт является парафинообразным твердым веществом бежевого цвета. Аминное число аминоамида равно 8.6 мг HCl/г. Этот продукт хорошо растворяется в этиловом и изопропиловом спирте, частично - в воде, керосине и п-ксилоле, не растворяется в гексане и изооктане.

ИК-спектр аминоамида КФГЖ (рис.1) содержит полосы при 3295 см $^{-1}$ -от валентных колебаний NH группы, при 2917 и 2849 см $^{-1}$ – от валентных колебаний С-H связи в CH $_3$ -, CH $_2$ - и CH-группах, при 1635 см $^{-1}$ - от N-C=O-валентных, при 1549 см $^{-1}$ – от деформационных колебаний N-H связи, при 1462 и 1399 см $^{-1}$ – от деформационныхных колебаний С-H связи в CH $_2$ - и CH-группах, при 1119 см $^{-1}$ – от валентных колебаний С-N связи, при 1046 см $^{-1}$ - от С-O валентных колебаний С-OH

группы и при 719 см⁻¹—от внеплоскостных деформационных колебаний С-Н связи гетероцепи.

Взаимодействием аминоамида КФГЖ с ортофосфорной кислотой получен фосфатный модификат. Синтез осуществлен при эквимолярном соотношении реагентов и температуре 55 °C. Время реакции — 15-16 ч. Конечный продукт — твердое пастообразное вещество коричневого цвета. Осуществляемые реакции сопровождаются выделением теплоты.

Химизм реакции может быть представлен следующей схемой:

Кислотное число фосфатного модификата аминоамида КФГЖ равно 128.92 мг КОН/г. Этот продукт хорошо растворяется в этиловом и изопропиловом спирте, частично растворяется в воде, керосине и п-ксилоле, не растворяется в гексане и изооктане.

ИК-спектр фосфатного модификата аминоамида КФГЖ (рис.2) содержит полосы при 1031 и 981 см $^{-1}$ – от Р–О–Н валентных колебаний.

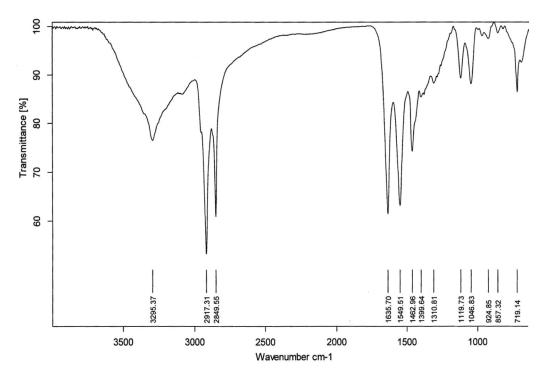
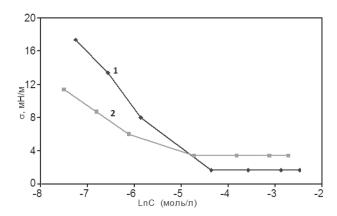



Рис. 1. ИК-спектр аминоамида КФГЖ.

ВЕСТНИК ВГУ, СЕРИЯ: ХИМИЯ. БИОЛОГИЯ. ФАРМАЦИЯ, 2014, № 4

Сталагмометрическим методом исследованы поверхностно-активные свойства аминоамида и его фосфатного модификата (25°С). Значения межфазного натяжения (σ), измеренные на границе керосин-вода в присутствии различных количеств продуктов, свидетельствуют об их высокой поверхностной активности. Надо отметить, что межфазное натяжение на границе керосин-вода в отсутствие ПАВ равно 46.5 мН/м. Были построены изотермы поверхностного натяжения аминоамида и его фосфата (рис.3).

Puc.~3.~ Изотермы поверхностного натяжения аминоамида КФГЖ (1) и его фосфатного модификата (2).

Сталагмометрическим методом показана высокая поверхностная активность синтезированных фосфатов. Результаты этих исследований сведены в табл.1. Как видно, на границе керосинвода поверхностная активность фосфата выше, чем у аминоамида при 0.025, 0.05, 0.1 и 0.5% концентрации.

Коллоидно-химические показатели поверхностной активности аминоамида и его фосфатного модификата представлены в табл. 2.

Адсорбцию Γ (моль•см-2) рассчитывали по уравнению:

 $\Gamma = (1/RT)(-d\sigma/dlnc)$,

где -d σ /dlnc – поверхностная активность (тангенс угла наклона зависимости σ -lnc при постоянной температуре T), R – универсальная газовая постоянная (8.314 Дж \bullet моль- $^{-1}$ \bullet град- $^{-1}$).

Значения $\Gamma_{\text{макс}}$ использовали для расчета минимальной площади поперечного сечения молекулы $A_{\text{мин}}$ (Ų) на межфазной поверхности по уравнению:

$$\begin{split} A_{_{\rm MИH}} &= A_{_{\rm KKM}} = 10^{16}/N_{_A}\Gamma_{_{\rm MAKC}}\,, \\ \text{где } N_{_A} &- \text{число Авогадро (6.023•10^{23})}. \end{split}$$

Эффективность понижения поверхностного натяжения π_{KKM} определяли по формуле:

$$\boldsymbol{\pi}_{KKM}^{} = \boldsymbol{\sigma}_{\!_{0}}^{} \boldsymbol{\cdot} \boldsymbol{\sigma}_{KKM}^{} \,,$$

где $\sigma_{\text{ккм}}$ – поверхностное натяжение раствора при ККМ [9].

Изменение свободной энергии мицеллообразования ($\Delta G_{_{\mathrm{MII}}}$) рассчитывали по уравнению

∆Gмиц = RTlnKKM

Изменение свободной энергии для процесса адсорбции вычисляли по уравнению:

$$\Delta G_{aa} = RTlnKKM - 0.6023\pi_{KKM} A_{KKM}$$

В табл. 3 показаны результаты исследований нефтесобирающей и диспергирующей способности аминоамида КФГЖ и его фосфатного модификата.

Нефтесобирающая и диспергирующая способность аминоамида КФГЖ и его фосфатного

Таблица 1. Значения межфазного натяжения на границе керосин-вода в присутствии аминоамида КФГЖ и его фосфатного модификата (25 °C)

	Концентрация продуктов, % (мас.)							
Продукт	0.025	0.05	0.1	0.5	1.0	2.0	3.0	
	Межфазное натяжение на границе керосин-вода, мН/м							
Аминоамид	17.2	13.4	8.0	4.3	1.7	1.7	1.7	
Фосфат аминоамида	11.4	8.7	6.0	3.4	3.4	3.4	3.4	

Таблица 2. Коллоидно-химические показатели аминоамида КФГЖ и его фосфатного модификата

ПАВ	ККМ•10 ² , мол•дм ⁻³	Г _{макс} •10 ¹⁰ , мол•см ⁻²	A _{мин} •10², нм²	σ _{κκм} , мН•м-1	π _{ккм} , мН•м-1	ΔG _{миц} , кДж•мол ⁻¹	ΔG _{ад} , кДж•мол ⁻¹
Аминоамид	1.30	2.20	75.3	1.7	44.9	-10.76	-12.80
Фосфатный модификат аминоамида	0.45	1.57	105.6	3.4	43.2	-13.39	-16.14

Таблица 3. Результаты исследований нефтесобирающих и нефтедиспергирующих свойств аминоамида и его фосфатного модификата.

Реагент	Состояние реагента	Дистиллированная вода		Пресная вода		Морская вода	
	при подаче на нефтя- ную пленку	Время, часы	К	Время, часы	К	Время, часы	К
Аминоамид	100%-ный продукт	0 1-215	9.4 Дисп.	0-215	Дисп.	0-143 215	Дисп. Разл.
	5%-ная (мас.) водная дисперсия	0 1 5-215	10.1 15.2 Дисп.	0-215	Дисп.	0-215	Дисп.
Фосфатный модификат аминоамида	100%-ный продукт	0 0.5 2-196	3.8 16.0 Дисп.	0 0.5 2 21-196	4.7 8.2 12.4 Дисп.	0 0.5 2-108 196	3.2 8.6 19.0 Дисп.
	5%-ная (мас.) водная дисперсия	0 0.5-2 21-196	4.2 16.0 Дисп.	0 0.5-2 21-196	4.6 12.4 Дисп.	0-196	Дисп.

модификата, а также их 5%-ных водных растворов изучена на примере тонкой пленки раманинской нефти на поверхности трех типов вод — дистиллированной, пресной и морской.

Как видно из таблицы 2, в дистиллированной воде аминоамид КФГЖ в обеих видах применения оказывает нефтесобирающее действие (максимальное значение коэффициента собирания—К, вычисляемого как отношение исходной площади нефтяной пленки к площади образовавшегося нефтяного пятна, равно 15.2). Этот реагент при использовании в среде пресной и морской воды в обеих формах показывает нефтедиспергирующую способность.

Аминоамидофосфат КФГЖ в обеих формах применения в среде дистиллированной и пресной вод показывает смешанный эффект нефтесобирания-диспергирования ($K_{\text{макс.}}$ соответственно 16.0 и 12.4). Этот случай наблюдается и в случае 100%ного продукта в среде морской воды ($K_{\text{макс.}}$ 19.0). В морской воде реагент в виде 5%-ного водного раствора действует как диспергатор.

Из сопоставления данных, полученных с фосфатным производным аминоамида и с самим аминоамидом, становится ясным, что после введения фосфатной группы диспергирующая способность аминоамида в пресной и морской воде (в обеих видах применения) заменяется смешанным нефтесобиранием-диспергированием (соответственно $K_{\text{макс.}}$ -12.4 и 19.0). В дистиллированной воде собирательная способность этого раствора незначительно увеличивается (значение $K_{\text{макс.}}$ возрастает от 15.2 до 16.0).

СПИСОК ЛИТЕРАТУРЫ

- 1. Гумбатов Г.Г. Применение ПАВ для ликвидации аварийных разливов нефти на водной поверхности / Г.Г. Гумбатов, Р.А. Дашдиев. Баку: Элм, 1998. 210 с.
- 2. Chemical reagents and petroleum production. Reference Book. Vol.II. / H.H. Humbatov [et al.]. Baku: Elm, 2001. 448p.
- 3. Асадов 3.Г. Получение, физико-химические характеристики, нефтесобирающие и диспергирующие свойства новых поверхностно-активных веществ на основе триглицеридов растительных масел и этаноламинов / 3.Г. Асадов // Процессы нефтехимии и нефтепереработки. 2008. №1. С. 20-29.
- 4. Новые нефтесобирающие и диспергирующие реагенты на основе этаноламинов, ортофосфорной кислоты, кукурузного и оливкового масел / З.Г. Асадов [и др.] // Нефтепереработка, нефтехимия, катализ (Сборник трудов ИНХП НАНА). Баку: Элм, 2010. С.271.
- 5. Получение, физико-химические характеристики, нефтесобирающие и диспергирующие свойства оксипропиловых эфиров фракции кислот рыбьего жира и их фосфатов / 3.Г. Асадов [и др.] // Журнал естественных и технических наук. 2009. №3. С. 64-68.
- 6. Исследование влияния толщины нефтяной пленки и ударной дозы оксипропилата кислотной фракции говяжьего жира на его нефтесобирающие и диспергирующие свойства / $3.\Gamma$. Асадов [и др.] // Азербайджанское нефтяное хозяйство. 2011. No.3. C. 61-63.

- 7. Asadov Z. H. Synthesis of animal fats ethylolamides, ethylolamide phosphates and their petroleum-collecting and dispersing properties / Z. H. Asadov, R.A. Rahimov, N.V. Salamova // J. Amer. Oil. Chem. Soc. 2012. Vol. 89. P. 505-511.
- 8. Практикум по коллоидной химии / В.И. Баранова [и др.]; под ред. И.С. Лаврова. Москва: Высшая школа,1983. 216с.
- 9. Milton J.Rosen. Surfactants and interfacial phenomena / J.Rosen Milton. Canada: John Wiley & Sons, Inc., 2004. 444p.

Асадов Зияфеддин Гамид оглы — д.х.н., профессор, член-корр. НАНА, заведующий лабораторией поверхностно-активных реагентов и препаратов, Института Нефтехимических Процессов Национальной Академии Наук Азербайджана, г.Баку; тел. (994 12) 372-51-02; e-mail: z-asadov@mail.ru

Саламова Наргиз Валех кызы — к.х.н., вед. науч. сотр. лаборатории поверхностно-активных реагентов и препаратов Института Нефтехимических Процессов Национальной Академии Наук Азербайджана, г. Баку; тел. (994 12) 428-05-04; e-mail: e nargiz@mail.ru

Рагимов Раван Абдуллятиф оглы — к.х.н., вед. науч. сотр. лаборатории поверхностно-активных реагентов и препаратов Института Нефтехимических Процессов Национальной Академии Наук Азербайджана, г. Баку; тел. (994 12) 428-05-04; e-mail: revan chem@mail.ru

Ахмедбекова Саида Фуад кызы — к.х.н., вед. науч. сотр. лаборатории нефтяных люминофоров и фотохимии, Института Нефтехимических Процессов Национальной Академии Наук Азербайджана, г. Баку; e-mail: saida_ahmadbayova@yahoo.com

Asadov Ziyafaddin H. — Doctor of Chemical Sciences, professor, corr. member of ANAS, head of the Laboratory of Surface-active Reagents and Preparations, Institute of Petrochemical Processes of Azerbaijan National Academy of Sciences, Baku; Ph. (994 12) 372-51-02; e-mail: z-asadov@mail.ru

Salamova Nargiz V. — candidate of chemical sciences, leading scientific researcher, Laboratory of Surface-active Reagents and Preparations, Institute of Petrochemical Processes of Azerbaijan National Academy of Sciences, Baku. Ph. (994 12) 428-05-04. E-mail: e-nargiz@mail.ru

Rahimov Ravan A. — candidate of chemical sciences, leading scientific researcher of Laboratory of Surface-active Reagents and Preparations, Institute of Petrochemical Processes of Azerbaijan National Academy of Sciences, Baku; Ph. (994 12) 374-88-49; e-mail: revan_chem@mail.ru

Ahmadbayova Saida F. – candidate of chemical sciences, leading scientific researcher of Laboratory of Oil Luminophors and Photochemistry, Institute of Petrochemical Processes of Azerbaijan National Academy of Sciences, Baku; e-mail: saida_ahmadbayova@yahoo.com