НЕЛИНЕЙНОСТЬ СВОЙСТВ В РАЗБАВЛЕННЫХ ТВЕРДЫХ РАСТВОРАХ СИСТЕМЫ ЦИНК-КАДМИЙ

Ю. М. Бондарев, Е. Г. Гончаров, И. Е. Шрамченко

Воронежский государственный университет Поступила в редакцию 03.12.2013 г.

Аннотация. Измерением концентрационных зависимостей электро-физических свойств монокристаллических образцов системы цинк-кадмий определена область твердых растворов с экстремальным изменением физико-химических и электрофизических свойств, а также предложен возможный механизм ретроградной твердофазной растворимости в данной системе со стороны цинка.

Ключевые слова: твердые растворы, дефектообразование, ретроградная растворимость, малочастичные кластеры.

Abstract. Measurement of the concentration dependences of electro-physical properties of single-crystal samples of the zinc-cadmium defined range of solid solutions with extreme physical and chemical changes and electrical properties, and also proposed a possible mechanism of retrograde solid-solubility in the system by zinc.

Keywords: solid solutions, defect formation, retrograde solubility, small-particle clusters.

ВВЕДЕНИЕ

В течение многих десятилетий фазовые диаграммы с образованием ограниченных твердых растворов исследовались в интервале твердофазной растворимости в основном с шагом 5-10 мол. %. Данная методика не позволяла обнаружить эффекты взаимодействия атомов примеси с собственными точечными дефектами основного вещества (матрицы) в диапазоне концентраций до 5 мол. % легирующего компонента. В то же время, исследования последних лет показали, что в твердых растворах с небольшим содержанием примеси всегда наблюдаются отклонения практически любого структурно-чувствительного физического свойства от монотонной зависимости, выражающиеся в появлении ярко выраженных экстремумов. Такие отклонения наблюдались во всех исследованных нами системах с ограниченными твердыми растворами, независимо от типа доминирующей химической связи [1, 2].

В настоящей работе представлены экспериментальные результаты исследования твердых растворов в системе Zn–Cd. Они также свидетельствуют о существовании экстремумов свойств в разбавленных твердых растворах на основе цинка. Кроме того, в данных твердых растворах предполагается ретроградная твердофазная растворимость кадмия в цинке [3].

Таким образом в настоящей работе решались две основные задачи:

Определить интервал концентраций твердого раствора на основе цинка, в котором обнаруживаются экстремумы на изотермах свойств.

Предложить возможный механизм образования экстремумов на кривых состав-свойство в данной системе со стороны цинка.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Обе поставленные задачи решались методом исследования свойств на выращенных монокристаллах твердого раствора переменного состава. Для этого использовалась зонная перекристаллизация образцов, осуществляемая в неравновесных условиях [4]. Полученные результаты представлены на рис. 1-4.

На рис. 1а приведена концентрационная зависимость удельного сопротивления, измеренная вдоль продольной оси выращенного монокристалла. Процесс зонной перекристаллизации осуществлялся в два этапа. Сначала плавили шихту при температуре выше температуры плавления компонентов для достижения гомогенизации, и охлаждали ее вместе с печью. На втором этапе осуществляли выращивание монокристалла методом зонной перекристаллизации. В зоне шириной 10 мм поддерживалась температура 695 ± 2 К, скорость ее перемещения составляла 5 мм/ч. При выращивании монокристаллов

[©] Бондарев Ю. М., Гончаров Е. Г., Шрамченко И. Е., 2014

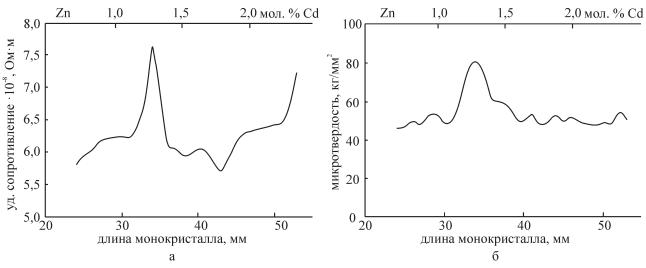


Рис. 1. Распределение уд. сопротивления (а) и микротвердости (б) вдоль монокристалла

использовались кадмий и цинк марок Кд000 (ГОСТ22860-93) и ЦВ (ГОСТ-94) соответственно. Цинк дополнительно очищался вакуумной перегонкой. Оба исходных компонента представляли собой поликристаллические слитки без внесенных посторонних примесей (нелегированные), что особенно важно при анализе результатов измерения свойств образцов. Исходная концентрация кадмия (C_0 =1.5 мол. %) в загружаемой шихте выбиралась с учетом того, чтобы концентрационная область 1-1.5 мол. % кадмия соответствовала нелинейному участку теоретического распределения примеси. Расчет распределения проводили по уравнению:

$$C_{x} = C_{0} \cdot \left[1 - \left(1 - k_{Sb} \right) \cdot \exp\left(\frac{-k_{Cd} \cdot x}{l} \right) \right] \tag{1}$$

Точность взятия навески исходных компонентов составляла ± 5·10⁻⁵ г при общей массе монокристалла 50 г. Шихту загружали в кварцевую лодочку, которую помещали в вакуумированную до остаточного давления 1.7·10-3 Па ампулу. Выращенный монокристалл подвергали шлифовке и травлению для удаления поверхностного слоя с дефектной структурой и создания плоскопараллельных граней. При этом, с учетом эффективного коэффициента распределения кадмия в цинке, равного 0.25, и в условиях полного перемешивания жидкости в зоне, полученная кривая распределения примеси Cd в Zn приведена на рис. 2. Из представленной кривой распределения следует, что при длине монокристалла 100 мм более 60 мм составляет монокристалл переменного состава. В соответствии с этим обнаруженные экстремумы на рис. 1 можно интерпретировать с учетом непрерывного возрастания примеси (кадмия) в этом диапазоне концентраций.

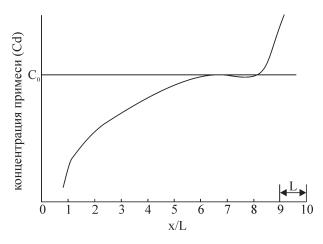
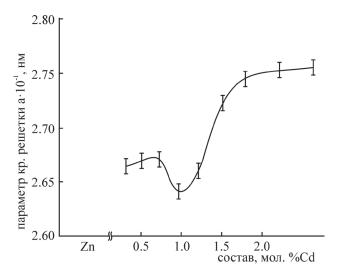


Рис. 2. Кривая распределения примеси в твердой фазе после двух проходов зоны в условиях полного перемешивания в зоне L, где L – ширина зоны

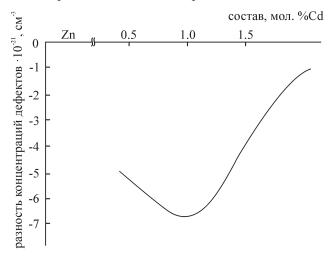
Химический анализ образцов проводили по методике, описанной в работе [5]. Анализу подвергались образцы, соответствующие составам экстремумов. Результаты анализа приведены на рисунках 1, 3, 4. Это позволяет оценить интервал составов, в которых возникает экстремум, соответствующий 1.4 мол. % Cd.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Образование экстремума (максимума) на изотерме удельного сопротивления можно трактовать с позиций процесса кластерообразования в разбавленном твердом растворе. Этот процесс связан с взаимодействием атомов примеси с собственными точечными дефектами основного компонента


(матрицы). Известно, что при температуре выращивания монокристалла последний содержит определенную концентрацию точечных дефектов (вакансий, междоузельных атомов). Кроме того, при легировании цинка кадмием с большим атомным радиусом образуется дополнительная (стимулированная) концентрация точечных дефектов, природа которых связана с деформационными явлениями в решетке матрицы. При этом снижается энтальпия образования дефектов [6], в результате чего их концентрация будет также экспоненциально расти с температурой.

На определенном этапе легирования суммарная концентрация собственных и стимулированных дефектов возрастает до значений, сопоставимых с концентрацией примеси. При этом расстояние между дефектами и атомами примеси становятся достаточно малыми для осуществления их взаимодействия между собой, что приводит к образованию малочастичных комплексов (кластеров). Образование неупорядоченно расположенных в решетке кластеров резко увеличивает рассеяние носителей тока, что и приводит к возрастанию удельного сопротивления в небольшом интервале концентраций системы цинк-кадмий (рис. 1-а). Процесс формирования кластеров достигает определенного предела, когда их концентрация становится значительной, и их взаимодействие может приводить к упорядочению кристаллической структуры. Последний эффект соответствует резкому уменьшению сопротивления на кривой состав-свойство. Далее процесс формирования кластеров становится энергетически невыгодным и протекает обычный процесс кристаллизации твердого раствора замещения.


Объективность существования экстремума подтверждает изотерма микротвердости (рис. 1-б). В том же интервале концентраций наблюдается резкий скачок микротвердости (максимум), связанный с нарастанием деформационных искажений. Соответственно уменьшается величина постоянной решетки (рис. 3).

Приведенная на рис. 4 разностная концентрация вакансий и междоузельных атомов ΔN [6], полученная сопоставлением величин плотности и постоянной решетки твердого раствора в концентрационном интервале экстремумов, свидетельствует о вакансионном механизме взаимодействия, приводящего к образованию кластеров.

С позиций процесса кластерообразования также возможно объяснить ретроградную растворимость - расширение области твердого раствора

Puc. 3. Изменение параметра «а» кристаллической решетки вдоль монокристалла

Puc. 4. Изменение разностной концентрации дефектов вдоль монокристалла

выше эвтектической линии, где обычно область твердофазной растворимости уменьшается вследствие растворения кристаллов в образовавшемся расплаве. Можно предположить, что при температуре выше эвтектической горизонтали твердый раствор в определенной степени стабилизирован кластерной структурой, которая препятствует растворению кристаллов вплоть до температуры максимальной растворимости, после чего под влиянием энтропийного фактора кластерная структура разрушается и начинается интенсивное растворение кристаллов твердого раствора. Это и приводит к уменьшению области твердофазной растворимости.

СПИСОК ЛИТЕРАТУРЫ

1. Бондарев Ю.М. Формирование разбавленных твердых растворов в системе Cu-Zn / Ю.М.

- Бондарев, Е.Г. Гончаров, А.П. Левенец, Л.И. Соколов // Вестник ВГУ. Серия: Химия. Биология. Фармация. 2005. № 1. С. 7-12.
- 2. Бондарев Ю.М. Физико-химическая природа формирования разбавленных твердых растворов медь-никель / Ю.М. Бондарев, Е.Г. Гончаров, И.И. Редина // Конденсированные среды и межфазные границы. 2005. Т.7, N 4. С. 378-381.
- 3. Хансен М. Структура двойных сплавов / М. Хансен, К. Андерко. М.: Металлургия, 1962. —

- T.1. C. 473-475.
- 4. Чалмерс Б. Теория затвердевания / Б. Чалмерс. М.: Металлургия, 1968. 288 с.
- 5 Микроанализ и растровая электронная микроскопия / под ред. Ф. Морис, Л. Мени, Р. Тиксье. М. : Металлургия, 1985. 407 с.
- 6. Соловьева Е.В. Особенности дефектообразовании в полупроводниках при изовалентном легировании / Е.В. Соловьева, М.Г. Мильвидский // Φ TП. 1983. Т.17, №11. С. 2022-2024.

Гончаров Евгений Григорьевич — д.х.н., профессор, Воронежский государственный университет

Бондаре Юрий Максимович — к.х.н., доцент, Воронежский государственный университет; e-mail: bondarev@chem.vsu.ru

Шрамченко Ирина Евгеньевна — к.х.н., доцент, Воронежский государственный университет *Goncharov Eugeny G.* — Dr. Sci. (Chem.), Full Professor, Voronezh State University

Bondarev Yury M. — Cand. Sci. (Chem.), Associate Professor, Voronezh State University; e-mail: bondarev@chem.vsu.ru

Shramchenko Irina E. — Cand. Sci. (Chem.), Associate Professor, Voronezh State University