ФАРМАЦИЯ

УДК 615.322 : 574.24

ИЗУЧЕНИЕ НАКОПЛЕНИЯ ФЛАВОНОИДОВ ТРАВОЙ ГОРЦА ПТИЧЬЕГО, СОБРАННОГО В РАЗНЫХ С ЭКОЛОГИЧЕСКОЙ ТОЧКИ ЗРЕНИЯ РАЙОНАХ ГОРОДА ВОРОНЕЖА И ЕГО ОКРЕСТНОСТЕЙ

Н. А. Великанова, А. И. Сливкин, С. П. Гапонов

Воронежский государственный университет Поступила в редакцию 04.12.2012 г.

Аннотация. Изучены особенности накопления флавоноидов в траве горца птичьего, собранного в различных с экологической точки зрения территориях города Воронежа и его окрестностей. **Ключевые слова.** *Горец птичий*, флавоноиды

Annotation. Features of accumulation of the flavonoids in the grass of Polygonum aviculare, collected in various environmental terms territories of Voronezh city and its surroundings.

Key words. Polygonum aviculare, flavonoid

ВВЕДЕНИЕ

Растения являются неисчерпаемым источником сырья для получения лекарственных средств. Безопасность использования получаемых из лекарственного растительного сырья лекарственных средств напрямую связана с экологическим состоянием мест произрастания используемой флоры. В связи с этим изучение влияния антропогенного загрязнения на состав данных лекарственных растений, в частности, в городе Воронеже и его окрестностях и выявление наиболее экологически неблагоприятных районов указанной территории, является актуальной задачей фармации.

Цель настоящего исследования - изучение содержания биологически активных веществ в растениях, собранных в разных с экологической точки зрения районах города Воронежа и его окрестностей. Были выбраны 10 мест сбора образцов почв и лекарственного растительного сырья, разнообразных в экологическом плане: химическое предприятие

© Великанова Н. А. , Сливкин А. И. , Гапонов С. П., 2013

ОАО «Воронежсинтезкаучук», теплоэлектроцентраль Вогрэс, Нововоронежская атомная электростанция, железнодорожные пути сообщения, аэропорт «Чертовицкое», трасса М4, улица города, линии электропередач, водохранилище города и в качестве сравнения заповедная зона (Воронежский биосферный заповедник). Растительный объект исследования - горец птичий (Polygonum aviculare). Это наиболее характерный представитель как естественных растительных сообществ, так и урбанофлоры, обладающий рядом ценных свойств, и пользующийся высоким спросом у населения в качестве мочегонного, противовоспалительного, капилляроукрепляющего, антиоксидантного, кровоостанавливающего средства. Наиболее значительной группой соединений в траве горца птичьего являются флавоноиды (до 9,4%). В цветущем растении обнаружено около 30 гликозидов флавоноидной природы, агликонами которых являются рамнетин, кемпферол, кверцетин и мирицетин. Важнейшим флавоноидом в траве горца птичьего считается авикулярин, именно на него производится пересчет при количественном

определении флавоноидов в сырье спорыша, согласно действующей нормативной документации [1].

МЕТОДИКА ЭКСПЕРИМЕНТА

Определение количественного содержания флавоноидов в пересчете на авикулярин проводили методом спектрофотометрии на спектрофотометре HitachiU-1900 при длине волны 410±2 нм по стандартной фармакопейной методике [1]. В таблице 1 приведены средние значения трех количественных определений (доверительная вероятность (Р) 0,95, коэффициент Стьюдента (t) 4,303).

Таблица 1 Результаты количественного определения содержания флавоноидов в пересчете на авикулярин в траве горца птичьегов Воронежском регионе

Место сбора травы горца птичьего	Содержание флавоноидов в пересчете на авикулярин,%
Заповедная зона	1,81±0,08
Вдоль железной дороги	0,84±0,05
Улица города(улица Димитрова)	0,92±0,09
Вдоль автомобильной трассы М4	0,54±0,02
Вблизи ТЭС «Вогресс»	0,86±0,04
Аэропорт "Чертовицкое"	0,77±0,06
Вблизи ОАО «Воронежсинтезкау- чук»	0,66±0,06
Вблизи Нововоронежской АЭС	1,00±0,03
Вдоль водохранилища	1,19±0,05
Вдоль высоковольтных линий электропередач	0,64±0,03

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Нормативная документация установила требование к количественному содержанию флавоноидов в пересчете на авикулярин в траве горца птичьего не менее 0,5 % [1]. Полученные нами результаты показывают, что в отобранных образцах количество флавоноидов колеблется в диапазоне от 0,54% до 1,81%. Таким образом, по анализируемому показателю, все образцы травы горца птичьего могут быть признаны удовлетворительными.

Максимальное количество флавоноидов накопилось в траве горца птичьего, собранного в заповедной зоне (более, чем в три раза превышает установленный нормативной

документацией показатель), высокие концентрации флавоноидов отмечены в сырье, произрастающем вблизи водохранилища и вблизи Нововоронежской АЭС (в два раза превышают нормативный показатель). Низкие концентрации флавоноидов в пересчете на авикулярин, однако, удовлетворяющие требованиям ГФ XI, определены в спорыше, собранном вблизи автомобильной трассы, вдоль высоковольтных линий электропередач, вблизи ООО «Гипрокаучук», вблизи аэропорта. Автотрасса, химическое предприятие и аэропорт - территории, подвергающиеся интенсивному антропогенному воздействию, и снижение биосинтеза действующих веществ, вероятно, результат воздействия на растение поллютантов. Интересным является снижение продукции флавоноидов в горце птичьем, произрастающем вдоль высоковольтных линий электропередач. Возможная причина подавление активности биосинтетических процессов в растении под влиянием электромагнитного поля [2].

Ввиду того, что для горца птичьего, собранного в экологически чистых районах и даже в зонах, подвергшихся антропогенному воздействию, показатель количественного содержания действующих веществ значительно превышает установленный нормативной документацией, целесообразно изменить числовой показатель «суммы флавоноидов в пересчете на авикулярин не менее 0,5%» на «суммы флавоноидов в пересчете на авикулярин и абсолютно сухое сырье не менее 1,0%». Это позволит повысить эффективность и безопасность на стадии контроля качества поступившего лекарственного растительного сырья и избежать реализации населению сырья, собранного в экологически неблагоприятных районах.

Образование и накопление в лекарственных растениях биологически активных веществ является динамическим процессом, зависящим от многочисленных факторов окружающей среды, в том числе антропогенных. Причина резкого различия в содержании флавоноидов в траве горца птичьего, собранной в заповедной зоне и на территориях, ис-

пытывающих антропогенную нагрузку, кроется в негативном воздействии хозяйственной деятельности человека. Сильнейшими ингибиторами фотосинтеза, благодаря которому происходит образование различных органических соединений, в том числе и биологически активных, являются тяжелые металлы [3,4]. Последить зависимость биосинтеза флавоноидов от загрязнения лекарственных растений тяжелыми металлами можно с помощью коэффициента ранговой корреляции Спирмена. Результаты расчета коэффициента корреляции приведены в таблице 2.

Анализ данных таблицы 2 показывает, что связь между содержанием тяжелых металлов и флавоноидов в траве горца птичьего для всех определяемых элементов отрицательная. Это говорит о том, что все тяжелые металлы ингибируют биосинтез флавоноидов: чем выше концентрация элементов-металлов в траве горца птичьего, тем меньше в ней образуется флавоноидов.

Особенно тесная корреляционная зависимость наблюдается для флавоноидов в траве горца птичьего с такими металлами, как медь, кадмий и цинк: чем выше концентрация указанных элементов в растении, тем меньше в них обнаружено авикулярина. Объясняется это токсическим действием металлов на биологический синтез действующих веществ в лекарственном растении.В высоких концентрациях медь может оказывать токсическое действие, которое вдвое выше, чем у цинка. При избытке меди в окружающей среде появляется хлороз [5].Избыток цинка также проявляется хлорозом и ослаблением роста[6]. Кадмий ингибирует ферменты, замещая цинк, например, в ДНК-полимеразе, играющей важную роль в репликации и репарации ДНК [7,8].

Динамика накопления флавоноидов в различные фазы вегетации в траве горца птичьего разных мест произрастания представляет интерес для более глубокого понимания ан-

тропогенного воздействия на растения на трех территориях города Воронежа и его окрестностей, различных с экологической точки зрения: заповедная зона, улица города, автомобильная трасса М4. Были проведены сборы травы спорыша в 2012 году в различные фазы вегетации при среднем интервале отбора образцов один месяц. Также считали прирост содержания флавоноидов в последующий период по сравнению с предыдущим для изучения интенсивности биосинтетических процессов в горце птичьем, произрастающем в разных экологических условиях. Расчет вели по формуле 1:

$$X = \frac{\left(C_2 - C_1\right)}{C_1} \cdot 100 \tag{1}$$

X — величина прироста содержания флавоноидов в пересчете на авикулярин в траве горца птичьего в последующий период по сравнению с предыдущим, %;

 C_1 — содержание флавоноидов в пересчете на авикулярин в траве горца птичьего в предыдущий период;

 ${\rm C_2}$ - содержание флавоноидов в пересчете на авикулярин в траве горца птичьего в последующий период.

Результаты определений количественного содержания флавоноидов в пересчете на авикулярин и рассчитанные значения прироста содержания флавоноидов в последующий период по сравнению с предыдущим приведены в таблице 3.

Динамика накопления флавоноидов в траве горца птичьего, произрастающего в заповедной зоне и на территориях, испытывающих антропогенную нагрузку, отличается (таблица 3). Для сырья, собранного в заповедной зоне, отмечено постепенное увеличение содержания флавоноидов от периода бутонизации до цветения, максимальное содержание действующих веществ наблюдается в период цветения (что полностью соответствует рекомендациям заготовки травы горца птичьего), после чего происходило уменьше-

Таблица 2 Расчет коэффициентов ранговой корреляции (коэффициентов Спирмена) содержания тяжелых металлов и флавоноидов в пересчете на авикулярин в траве горца птичьего

Металл	Pb	Hg	Zn	Cu	Cr	Ni	Cd	Co	As
Коэффициент Спирмена для травы	-0.44	-0.34	-0.53	-0.64	-0.42	-0.19	-0.59	-0.31	-0.20
горца птичьего	-0,	-0,54	-0,33	-0,04	-0,42	-0,17	-0,57	-0,51	-0,20

Таблица 3 Содержание флавоноидов в пересчете на авикулярин (%) и прирост содержания флавоноидов (%) в различные фазы вегетации в траве горца птичьего

пыс физы всестиции в триве горци птичьсго				
Место		Содержа-	Прирост	
сбора		ние флаво-	содер-	
травы	Фаза сбора	ноидов в	жания	
горца	Фаза соора	пересчете	флаво-	
пти-		на авикуля-	ноидов,	
чьего		рин, %	%	
30 а а лесто	бутонизация	1,30±0,05		
36 38	начало цветения	1,63±0,03	0,25	
ДНК	цветение	1,83±0,04	0,12	
OBe	плодоношение	1,67±0,05	-0,09	
начало цветения цветение плодоношение Среднее		1,61	0,10	
4	бутонизация	$0,89\pm0,03$		
Улица города	начало цветения	1,10±0,02	0,23	
(a rc	цветение	0,91±0,06	-0,17	
Пип	плодоношение	$0,84\pm0,07$	-0,08	
	Среднее	0,93	0,00	
ная 1	бутонизация	0,64±0,03		
Автомобильная трасса М4	начало цветения	0,69±0,02	0,08	
	цветение	$0,52\pm0,02$	-0,25	
	плодоношение	0,47±0,03	-0,10	
AB	Среднее	0,58	-0,09	

ние концентрации флавоноидов. Для сырья, отобранного с территорий, испытывающих антропогенную нагрузку, максимальное количество биологически активных веществ отмечено в траве в период начала цветения, после чего выявлено снижение концентрации авикулярина. Объяснить это можно двумя причинами. Во-первых, в процессе вегетации происходит постепенное накопление тяжелых металлов, тормозящих биосинтетические процессы в растительном организме, а накопленные к тому моменту органические вещества используются растением на обеспечение собственных физиологических потребностей. Во-вторых, для травы горца птичьего, испытывающего антропогенную нагрузку, раньше, чем для сырья заповедной зоны, наблюдаются процессы увядания, также стимулируемые поллютантами среды.

Наиболее интенсивное снижение темпов прироста содержания флавоноидов в изучаемых образцах наблюдается для сырья, собранного вдоль автомобильной трассы, о чем свидетельствуют отрицательные значения

среднего прироста концентрации. Кроме того, к фазе плодоношения ряд показателей этой травы перестает удовлетворять требованиям нормативной документации по численному содержанию действующих веществ.

Нами также прослежены динамика изменений содержания флавоноидов в траве горца птичьего, произрастающего на разных с экологической точки зрения территориях, в разные годы вегетации растения в период цветения. Для анализа были выбраны три территории: заповедная зона, улица города, автомобильная трасса, - по причинам, указанным выше, и проанализировано изменение содержания действующих веществ в траве спорыша в 2011-2012 годах. Рассчитывали годовые изменения содержания флавоноидов в пересчете на авикулярин в траве горца птичьего по формуле:

чьего по формуле:
$$X = \frac{\left(C_2 - C_1\right)}{C_1} \cdot 100 ,$$

где X — годовые изменения содержания флавоноидов в пересчете на авикулярин в траве горца птичьего, %; C_1 — содержание флавоноидов в пересчете на авикулярин в траве горца птичьего в 2011 году; C_2 - содержание флавоноидов в пересчете на авикулярин в траве горца птичьего в 2012 году.

Сводные данные о динамике годовых изменений содержания флавоноидов в пересчете на авикулярин в траве горца птичьего приведены в таблице 4.

Таблица 4 Содержание флавоноидов в пересчете на авикулярин (%) в различные года в траве горца птичьего и годовые его изменения

Место сбора		Содержание	Годовые
травы горца	Год	флавонои-	измене-
птичьего		дов, %	ния, %
Заповедная	2011	1,81±0,08	1,19
зона	2012	1,83±0,04	1,19
V	2011	0,92±0,09	0.29
Улица города	2012	0,91±0,06	-0,38
Автомобиль-	2011	0,56±0,02	6.00
ная трасса М4	2012	0,52±0,02	-6,88

Анализ данных таблицы 4 показывает, что различия содержания флавоноидов в пересчете на авикулярин в траве горца птичьего в период цветения в 2011 и в 2012 годах отлича-

ются незначительно для сырья, собранного в заповедной зоне и на улице города (различия менее 2%). Для образцов, отобранных вдоль автомобильной трассы М4, годовые изменения содержания действующих веществ в траве спорыша к рекомендуемому периоду заготовки (стадии цветения) составили более 6%, что является значительным снижением концентрации флавоноидов. Полученные данные предположительно можно объяснить при сравнении их с расчетами годовых изменений содержания тяжелых металлов, которые также показывали весомые приросты концентраций в лекарственном растительном сырье токсичных элементов в этом районе заготовки травы горца птичьего. Это указывает на значительную зависимость горца птичьего от антропогенной нагрузки на место произрастания и недостаточную приспособленность к хозяйственной деятельности человека.

СПИСОК ЛИТЕРАТУРЫ

- 1. Государственная Фармакопея СССР: Вып. 2. Общие методы анализа. Лекарственное растительное сырье / МЗ СССР. 11-е изд. М.: Медицина, 1989. 398 с.
- 2. Богатина, Н. И. Влияние электрических полей на растения / Богатина Н. И., Шейкина Н .В. // Ученые записки Таврического национального университета им. В. И. Вернадского: Серия «Биология, химия». 2011. N 1. С. 10-17.

- 3. Лотош, В. Е. Экология природопользования / В.Е. Лотош. Екатеринбург: Полиграфист, 2001. 540 с.
- 4. Пахарькова, Н. В. Оценка состояния древесных растений в условиях промышленного загрязнения воздуха / Н. В. Пахарькова, Г. А. Сорокина, Ю.С. Григорьев // Материалы Всероссийской научно-практической конференции «Проблемы экологии и развития городов». Красноярск, 2001. Т. 1. С. 116-120.
- 5. Попова, Е. И. Plantago major L. и Plantago media L.— тест объекты воздушного и почвенного бассейна г. Тобольска и его окрестностей/Е. И. Попова// Менделеевские чтения— 2007: Материалы XXXVIII региональной научно-практической конференции молодых ученых и студентов. Тобольск, 2007. С. 163-165.
- 6. Алексеев, Ю. В. Тяжелые металлы в почвах и растениях / Ю. В. Алексеев. Л.: Агропромиздат, 1987. 170 с.
- 7. Кефели, В. И. Природные ингибиторы роста / В. И. Кефели // Физиология растений. 1997. Т. 44. с. 471-475.
- 8. Полякова, В. А. Изменение основных морфометрических и некоторых биохимических показателей высшего наземного растения подорожника большого (Plantago major) в зависимости от степени загрязнения почв города Самары тяжелыми металлами / В. А. Полякова, О. Н. Макурина // В мире научных открытий. 2010. №5. с. 53-57.

Великанова Нина Алексеевна — ассистент кафедры фармацевтической химии и фармацевтической технологии фармацевтического факультета, Воронежский государственный университет; e-mail: ninochka v89@mail.ru

Сливкин Алексей Иванович — зав. кафедрой фармацевтической химии и фармацевтической технологии ВГУ, доктор фармацевтических наук, профессор; e-mail: slivkin@pharm.vsu.ru

Гапонов Сергей Петрович — доктор биологических наук, профессор, заведующий кафедрой зоологии и паразитологии Воронежского государственного университета; e-mail: gaponov2003@mail.ru

Velikanova Nina A. — Assistant Professor of pharmaceutical chemistry and pharmaceutical technology, Voronezh State University; e-mail ninochka_v89@mail.ru

Slivkin Alexsey Y. — Full Professor, PhD, DSci, head of the Department of pharmaceutical chemistry and pharmaceutical technology, Voronezh State University; e-mail: slivkin@pharm.vsu.ru

Gaponov Sergey P. — Full Professor, PhD, DSci, head of the Department of Zoology and Parasitology of Voronezh State University; e-mail: gaponov2003@mail.ru