СИНТЕЗ, СТРУКТУРА И ОПТИЧЕСКИЕ СВОЙСТВА ПЛЕНОК СИСТЕМЫ CDS–ZNS, ПОЛУЧЕННЫХ ИЗ РОДАНИДОВ КАДМИЯ И ЦИНКА

Т. В. Самофалова, А. В. Наумов, В. Н. Семенов, А. Н. Лукин

Воронежский государственный университет, Воронеж Поступила в редакцию 07.11.12 г.

Аннотация. Представлены результаты исследования пленок сульфида кадмия, полученных из роданида кадмия и его смешанных комплексов с тиокарбамидом. Исследованы спектры поглощения в области края фундаментального поглощения пленок CdS–ZnS, осажденных методом пиролиза аэрозоля растворов роданидов цинка и кадмия. Найдены зависимости оптической ширины запрещенной зоны от состава $E_{a}(x)$ пленок системы CdS–ZnS.

Ключевые слова: пленки, твердые растворы сульфидов кадмия-цинка, оптические спектры полупроводников, метод пиролиза аэрозоля.

Abstract: Results of investigation of cadmium sulfide films prepared from cadmium thiocyanate and its mixed thiourea complex compounds are presented. For the CdS–ZnS thin films, prepared by the spray pyrolysis of cadmium thiocyanate and zinc thiocyanate, the absorption spectrum near the absorption fundamental edge have been investigated. The dependencies of the band-gap energy (E_g) as a function of the film composition (x) have been determined.

Keywords: thin films, solid solutions of CdS–ZnS, optical spectra of semiconductors, spray pyrolysis method.

введение

Сульфиды кадмия и цинка и твердые растворы на их основе являются важным объектом современных исследований, что обусловлено возможностью их применения при изготовлении различных устройств: фотопреобразователей, светодиодов, электролюминесцентных экранов, лазеров, акустоэлектрических приборов (усилители и детекторы ультразвука), систем формирования и передачи изображения (медицинская диагностика и др.) [1, 2]. Поэтому особое значение имеет получение сульфидов и других полупроводниковых материалов, с возможностью целенаправленного варьирования их фотоэлектрических и спектральных характеристик путем изменения состава.

В проведенных ранее исследованиях было установлено, что использование тиокарбамидных координационных соединений (ТКС) для синтеза полупроводниковых сульфидов

 $\ensuremath{\mathbb{C}}$ Самофалова Т. В. , Наумов А. В., Семенов В. Н., Лукин А. Н. , 2013

позволяет варьировать их кристаллическую структуру и свойства путем создания ТКС различного состава и строения. В частности, были изучены свойства и структура пленок системы CdS–ZnS, осажденных методом пиролиза аэрозоля растворов тиомочевинных комплексов [M(thio)₂Cl₂], [M(thio)₂Br₂], [M(thio)₂(CH₃COO)₂], и[M(thio)₂(bi-SO₄)] (M = Cd, Zn; thio - N₂H₄CS) [3–6].

Кроме тиокарбамидных лигандов (NH₂)₂CS в качестве сульфидизирующих агентов получили распространение и тиоцианатные SCN- лиганды [7]. Однако влияние последних на строение и свойства образующихся сульфидов изучено недостаточно, особенно, если речь идет о совместном влиянии лигандов в смешанных тиокарбамиднотиоцианатных координационных соединениях. Поэтому в данной работе были исследованы пленки сульфида кадмия, полученные из роданида кадмия и его смешанных комплексов с тиокарбамидом, а также изучены оптические свойства пленок системы CdS–ZnS, синтезированных из растворов роданидов металлов M(CNS)₂.

МЕТОДИКА ЭКСПЕРИМЕНТА

Пленки системы CdS–ZnS синтезировали методом пиролиза аэрозоля водных растворов роданидов кадмия и цинка $M(CNS)_2$. Для синтеза пленок смешанного состава готовили раствор, содержащий соли металлов $M(CNS)_2$ в заданных молярных соотношениях C_{Cd} : C_{Zn} , который при помощи пневматической форсунки распыляли на нагретую подложку, где происходило формирование сульфида. Температуру синтеза (T_c) поддерживали равной 400°C. В качестве подложек использовали ситалл и кварц.

Роданид цинка был получен по обменной реакции между сульфатом цинка и роданидом бария. Осадок образовавшегося сульфата бария удаляли из реакционной смеси фильтрованием под вакуумом. Концентрация роданида цинка в полученном растворе была определена методом комплексонометрического титрования по ионам цинка [8].

Спектры поглощения пленок, осажденных на кварце, регистрировали на спектрофотометре Lambda 650 относительно чистой подложки в диапазоне 190–1000 нм. Ширину запрещенной зоны определяли по краю собственного поглощения из спектральной зависимости D = f(hv) (D – оптическая плотность) в предположении прямых разрешенных переходов для сульфидов кадмия и цинка [9].

Рентгенофазовый анализ (РФА) пленок, синтезированных на кварцевых подложках, проводили на рентгеновском дифрактометре ARL XTRA Thermo Scientific (излучение $CuK_{\alpha l}$). Полученные из дифрактограмм значения межплоскостных расстояний сравнивали со справочными из базы данных [10]. Локальный рентгеноспектральный микроанализ (ЛРСМА) слоев проводили на электронном микроскопе JSM-6380 LV с усреднением результата анализа по поверхности образца.

ИК спектроскопические исследования проводили методом нарушенного полного внутреннего отражения на ИК спектрометре VERTEX-70 в диапазоне 500-4000 см⁻¹.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

С целью выяснения особенностей строения роданидов кадмия, цинка и смешанных тиокарбамидно-тиоцианатных координационных соединений были проведены ИК спектроскопические исследования. Для этого из водных растворов, содержащих 0,05 моль/л Cd(SCN)₂ и тиокарбамид (N₂H₄CS; thio) при молярных соотношениях $C_{\text{Cd}^{2+}}$: C_{thio} от 1:1 до 1:4 были получены кристаллы малорастворимого соединения. Выявлено, что инфракрасные спектры этих кристаллов практически совпадают независимо от соотношения $C_{\rm Cd^{2+}}$: $C_{\rm thio}$ в исходном растворе (табл. 1). Это позволяет утверждать, что происходит образование одного и того же комплекса, которому по данным ЛРСМА можно приписать состав [Cd(thio)₂(NCS)₂]

Сравнение частот колебаний в спектрах свободной тиомочевины и образцов, выделенных из растворов роданида кадмия с тиомочевиной, показало, что валентные колебания связей С – N и N – Н тиомочевины смещены в высокочастотную область, а связи C – S – в низкочастотную область (табл. 1). Это указывает на координацию тиомочевины к атому кадмия через атом серы (NH₂)₂CS [11]. Кроме того, ИК спектр смешанного роданиднотиокарбамидного комплекса кадмия (рис. 1а) содержит интенсивную несимметричную полосу при 2056 см⁻¹, которая относится к валентным колебаниям v(CN) роданид-иона. Смещение этой полосы в низкочастотную область относительно частот тиоцианата кадмия указывает на координацию роданид-иона через атом азота, так как для S-координированного иона характерно волновое число v(CN) 2100 см⁻¹ [11]. На N-координацию указывает также смещение полосы v(CS) в высокочастотную область (от 756 до 798 см⁻¹). Таким образом, строение смешанного координационного соединения можно передать схемой:

ВЕСТНИК ВГУ, СЕРИЯ: ХИМИЯ. БИОЛОГИЯ. ФАРМАЦИЯ, 2013, № 1

Таблица 1.

Отцесецие	(NH) CS	Cd(SCN)	Zn(SCN)	$Cd(SCN)_2$: $(NH_2)_2CS$			
Отнессние	$(111_2)_2$ CS		$\Sigma \Pi(S C N)_2$	1:1	1:2	1:3	1:4
	3364	—	_	3362	3364	3364	3364
	3258	_	_	3286	3283	3283	3283
v(NH)	3148	_	_	3186	3184	3184	3182
	3088	_	_	3135	3135	3134	3135
v(CN)	—	2139	2087	2056	2054	2054	2052
?	_	_	1607	_	_	_	_
δ(HNH)	1599	_	_	1626	1626	1626	1626
v(CN)	1462	_	_	1512	1512	1512	1512
v(HNC)	1404	1406	_	1418	1418	1418	1416
				1389	1389	1389	1389
v(CN)	1078	1070	—	1095	1086	1078	1076
?	_	893	889	964	964	964	964
		874	935	920	918	914	914
v(CS)	—	756	785	798	798	798	798
v(CS)	729	_	_	729	729	729	729
				702	702	702	702
δ(NCN)	621	609		604	604	604	604

Максимумы полос поглощения (см⁻¹) ИК спектров координационных соединений, полученных из водных растворов роданида кадмия и тиомочевины

Обращает на себя внимание тот факт, что для роданида кадмия $Cd(SCN)_2$ в твердой фазе наблюдается полоса v(CN) 2139 см⁻¹ (рис. 1б), относящаяся к S-координированному роданид-иону [11], более интенсивная, чем аналогичная полоса в [Cd(thio)₂(NCS)₂]. Можно думать, что в этом случае лиганд SCN⁻ в тиоцианатной форме действует непосредственно как координированный сульфидизирующий агент, подобно тиомочевине.

Рентгенофазовый анализ показал, что из растворов тиоцианата кадмия $Cd(SCN)_2$ при всех используемых температурах ($T_c = 350-500^{\circ}C$) формируются пленки CdS вюртцитной структуры (табл. 2). Это согласуется с данными работы [12], в которой установлено, что нагревание роданида кадмия в воздушной атмосфере в диапазоне температур 300–500°C приводит к образованию твердой фазы CdS и газообразных продуктов SO₂, CO₂ и N₂.

Отдельного обсуждения заслуживают пленки сульфида кадмия, осажденного из растворов смешанного тиокарбамиднороданидного комплекса $[Cd(thio)_2(NCS)_2]$ ($T_c = 400^{\circ}C$). На дифрактограмме такого образца присутствуют рефлексы, максимумы которых располагаются при углах $2\theta = 26,6$ и 43,9 со значениями $d_{hkl} = 0,3351$ и 0,2062 нм, что соответствует гексагональной структуре CdS. Таким образом, несмотря на изотиоцианатное строение соединения [Cd(thio)₂(NCS)₂] при его пиролизе осаждается слой сульфида кадмия в кристаллической модификации вюрцита.

В ИК спектре чистого роданида цинка наблюдается полоса при 2087 см⁻¹, относящаяся к валентным колебаниям v(CN) тиоцианогруппы, и, кроме того, полоса при 785 см⁻¹ (табл. 1, рис. 2). При этом последняя может быть отнесена к валентным колебаниям v(CS) N-координированного роданид-иона по данным [11], так и S-координированного роданид-иона по результатам работы [13]. Обращает на себя внимание плечо полосы поглощения, максимум которой наблюдается при 2087 см⁻¹, проявляющийся в области 2140-2150 см-1. Такие особенности могут быть связаны с тем, что в полученном нами соединении имеет место как N-координация, так и S-координация роданид-иона, посколь-

Рис. 1. ИК спектры пропускания изотиоцианатно-тиокарбамидного комплекса кадмия (а) и роданида кадмия (б).

Таблица 2.

межплоскостные расстояния пленок w-Cas, полученных из Ca(SCN)2 при разных температурах									
350°C		400°C		450°C		500°C		Отноронно	
<i>d,</i> нм	I, %	<i>d,</i> нм	I, %	<i>d,</i> нм	I, %	<i>d</i> , нм	I, %	Отнессние	
_	_	0,3579	15,9	0,3562	26	0,3576	7	100	
0,3358	100	0,3351	100	0,3351	100	0,3351	100	002	
0,3155	16,1	0,3164	22	0,3153	42	0,3153	15	101	
_	—	0,2449	14	—	_	0,2442	8	102	
0,2070	25,8	0,2067	8	0,2067	30	0,2067	5	110	
0,1898	31,2	-	_	0,1892	16	0,1892	20	103	
_	_	0,1759	10	0,1759	28	0,1762	5	112	
_	_	0,1678	6	_	_	0,1675	8	004	

Межплоскостные расстояния пленок w-CdS, полученных из Cd(SCN)2 при разных температурах

ВЕСТНИК ВГУ, СЕРИЯ: ХИМИЯ. БИОЛОГИЯ. ФАРМАЦИЯ, 2013, № 1

ку полоса при v(CN) 2139 см⁻¹ отвечает S-координации. По данным [14], для роданида цинка не исключено, что часть атомов металла может быть окружена только атомами серы, другая часть только атомами азота родинидных групп. Это позволяет предположить, что часть лигандов, находящихся в тиоцианатной форме SCN⁻, будет являться источником серы при образовании сульфида металла. Как показали результаты рентгенофазового анализа, при распылении раствора роданида цинка при температуре 400°C формируется пленка, содержащая сульфид цинка вюртцитной модификации и роданид цинка (табл. 3).

Формирование сульфидов кадмия и цинка одинаковой кристаллической модификации из растворов роданидов металлов $M(CNS)_2$ ($T_c = 400^{\circ}C$) способствует образованию неограниченных твердых растворов в системе CdS–ZnS на основе вюртцита. Об этом свидетельствует и смещение края поглощения пленок в область более высоких энергий фотона при увеличении содержания сульфида цинка (рис. 3). Следует отметить, что близкие по составу к сульфиду кадмия образцы имеют более резкий край поглощения по сравнению с пленками, близкими по составу к сульфиду цинка.

Tao	лица З.
Межплоскостные расстояния пленок w-ZnS, по	элучен-
ных из роданида иинка при температуре 40	$0^{\circ}C$

*	, 1	1 11
<i>d,</i> нм	<i>I,</i> %	Отнесение
0,2931	50	101
0,1910	21	110
0,1841	33	$Zn(CNS)_{2}$
0,1661	26	$Zn(CNS)_{2}$
0,1593	29	201
0,1414	36	104
0,1293	21	203
0,1255	21	210
0,1225	29	211

Оптическая ширина запрещенной зоны пленок системы CdS–ZnS плавно и непрерывно повышается с ростом концентрации в них сульфида цинка (рис. 4), что также позволяет сделать вывод о неограниченной растворимости компонентов.

Следует отметить, что ширина запрещенной зоны пленок CdS, полученных из растворов чистого роданида кадмия Cd(SCN)₂ при температурах $350 - 450^{\circ}$ C, а также из смешанного комплекса [Cd(thio)₂(NCS)₂] составляет 2,42 эВ. Указанное значение близко к значению ширины запрещенной зоны для чистого нелегированного вюртцитного CdS (2,4 эB [15]). Для пленок CdS, синтезирован-

Рис. 4. Концентрационная зависимость ширины запрещенной зоны пленок системы CdS–ZnS, осажденных при 400°С из растворов соединений M(CNS)₂.

ных из роданида кадмия при 500°С, оптическая ширина запрещенной зоны составляет 2,39 эВ. Небольшое изменение ширины запрещенной зоны пленок CdS с увеличением температуры синтеза связано с незначительным изменением содержания в них кислорода, что подтверждается данными элементного анализа.

ЗАКЛЮЧЕНИЕ

Проведены исследования кристаллической структуры и оптических свойств пленок CdS, полученных из растворов роданида кадмия и его смешанного комплекса с тиокарбамидом. Установлено, что в смешанном комплексе $[Cd(thio)_2(NCS)_2]$ тиомочевина координируется к катиону металла через атом серы, а роданид-ион – через атом азота. По данным ИК спектроскопических исследований кристаллов, выделенных из раствора роданида кадмия, роданид-ион связан с катионом металла через атом серы (v_{CN} при 2139 см⁻¹ и v_{CS} при 756 см⁻¹).

Из растворов роданида кадмия при любой температуре осаждения и комплекса $[Cd(thio)_2(NCS)_2]$ при 400°С выделяется CdS вюртцитной модификации. Из растворов роданида цинка при 400°С осаждается *w*-ZnS, содержащий примесь Zn(CNS)₂.

Выявлено, что оптическая ширина запрещенной зоны пленок системы CdS–ZnS, полученных из растворов M(CNS)₂, плавно повышается с ростом концентрации в них сульфида цинка, что характерно для неограниченной растворимости компонентов.

СПИСОК ЛИТЕРАТУРЫ

1. Оптоэлектронные свойства пленок CdS для солнечных элементов с тонким абсорбирующим слоем / С.А. Гаврилов [и др.] // Российские нанотехнологии. — 2006. — Т. 1. — № 1-2. — С. 228–232.

2. Слоистое строение пленок Zn_{1-x}Cd_xSe, выращенных газофазной эпитаксией из металлорганических соединений на подложках Cd_{0.92}Zn_{0.08}S (0001) / Мартовицкий В. П. [и др.] // Физика и техника полупроводников. — 2003. — Т. 37. — Вып. 3. — С. 310–317.

3. Наумов А.В. Свойства пленок CdS, полученных из координационных соединений кадмия с тиомочевиной / А.В. Наумов, В.Н. Семенов, Е.Г. Гончаров // Неорган. материалы. — 2001. — Т. 37, № 6. — С. 647-652.

4. Тиокарбамидные координационные соединения в процессах синтеза твердых растворов Cd_xZn_{1-x}S / А.В. Наумов [и др.] // Журнал неорганической химии. — 2011. — Т. 56, № 4. — С. 666-672.

5. Влияние температуры осаждения на оптические свойства и фазовый состав пленок Cd_{1-x}Zn_xS / Т.В. Самофалова [и др.] // Конденсированные среды и межфазные границы. – 2010. – Т. 12, № 3. – С. 247-257.

6. Люминесценция, фотопроводимость и оптические свойства пленок Cd_xZn_{1-x}S / Т.В. Самофалова [и др.] // Известия ВУЗов: Физи-ка. — 2011. — Т. 54, № 2/2. — С. 211-215.

7. Самофалова Т.В Формирование пленок CdS с использованием тиолигандов / Т.В. Са-

мофалова, А.В. Наумов, В.Н. Семенов // Нелинейные процессы и проблемы самоорганизации в современном материаловедении (индустрия наносистем и материалы): 7 Всерос. конф.-шк.: материалы конф. — Воронеж, 2009. — С. 252-254.

8. Основы аналитической химии: в 2-х кн. / Ю.А. Золотов [и др.]. - 2-е изд., перераб. и доп. — М., Высшая школа, 2002. — Кн. 2. — 494 с.

9. Уханов Ю.И. Оптические свойства полупроводников / Ю.И. Уханов. — М.: Наука, 1977. — 367 с.

10. Powder Diffraction File. Swarthmore: Joint Committee on Powder Diffraction Standards. — 1996.

11. Накамото К. ИК-спектры и спек-

тры КР неорганических и координационных соединений / К. Накамото. — М.: Мир, 1991. — 536 с.

12. Ptaszyñski B. Thermal decomposition of Bi(III), Cd(II), Pb(II) and Cu(II) thiocyanates / B. Ptaszyñski, E. Skib, J. Krystek // Journal of thermal analysis and calorimetry. — 2001. — Vol. 65. — P. 231-239.

13. Кукушкин Ю.Н. Химия координационных соединений / Ю.Н. Кукушкин. — М. : Высшая школа, 1985. — 455 с.

14. Голуб А.М. Химия псевдогалогенидов / А.М. Голуб, Х. Келер, В.В. Скопенко. – Киев: Вища школа, 1981. — 359 с.

15. Угай Я.А. Введение в химию полупроводников / Я.А. Угай. — М. : Высш. шк., 1975. – 302 с.

Самофалова Татьяна Владимировна — к.х.н., ассистент кафедры общей и неорганической химии Воронежского государственного университета; e-mail: tsamofalova@bk.ru.

Наумов Александр Владимирович — к.х.н., доцент кафедры общей и неорганической химии Воронежского государственного университета; e-mail: aither@bk.ru.

Семенов Виктор Николаевич — д.х.н., заведующий кафедрой общей и неорганической химии Воронежского государственного университета; e-mail: office@chem.vsu.ru

Лукин Анатолий Николаевич — к.ф.-м.н., доцент кафедры физики твердого тела и наноструктур Воронежского государственного университета; e-mail: alukin@phys.vsu.ru Samofalova Tatiana V. – Ph.D in Chemistry, assistant professor of general and inorganic chemistry department of Voronezh State University; e-mail: tsamofalova@bk.ru.

Naumov Alexander V. – Ph.D in Chemistry, the senior lecturer of general and inorganic chemistry department of Voronezh State University; e-mail: aither@bk.ru.

Semenov Victor N. – doctor of chemical sciences, Head of general and inorganic chemistry department of Voronezh State University; e-mail: office@chem. vsu.ru

Lukin Anatoliy N. – Ph.D in Mathematics and Physics, the senior lecturer of solid state physics and nanostructures of Voronezh State University; e-mail: alukin@phys.vsu.ru