ОПРЕДЕЛЕНИЕ НОВОКАИНА, ЛИДОКАИНА В ВОДНЫХ РАСТВОРАХ И ЛЕКАРСТВЕННЫХ ФОРМАХ С ИСПОЛЬЗОВАНИЕМ ПОТЕНЦИОМЕТРИЧЕСКИХ ПД-СЕНСОРОВ И ТИТРИМЕТРИЧЕСКИХ МЕТОДИК

К. А. Полуместная, С. А. Путинцева, К. Ю. Янкина, А. В. Паршина, О. В. Бобрешова

Воронежский государственный университет Поступила в редакцию 14.12.11 г.

Аннотация. Разработаны ПД-сенсоры на основе ПСП мембран в K^+ -форме для количественного определения новокаина, лидокаина в водных растворах и лекарственных формах с ошибкой не более 7 % в диапазоне концентраций $1,0\cdot10^{-4}\div7,3\cdot10^{-2}$ и $1,0\cdot10^{-4}\div3,7\cdot10^{-1}$ М соответственно. Проведено сравнение результатов определения новокаина, лидокаина в лекарственных формах с помощью потенциометрических ПД-сенсоров и стандартных титриметрических методик. Показано, что использование разработанных ПД-сенсоров позволяет снизить ошибку определения новокаина, лидокаина в лекарственных формах по сравнению со стандартными титриметрическими методиками от 39 до 7 %.

Ключевые слова: потенциометрия, титриметрия, водные растворы лекарственных веществ, перфторсульфокатионообменники, потенциал Доннана.

Abstract. The PSP-based K+-type PD-sensors were developed for the quantitative determination of novocaine, lidocaine in aqueous solutions with error less then 7 % in the range of concentrations $1,0\cdot10^{-4}\div7,3\cdot10^{-2}$ and $1,0\cdot10^{-4}\div3,7\cdot10^{-1}$ M accordingly. The comparison of results of novocaine, lidocaine determination in modeling aqueous solutions and medicinal forms by using of potentiometric PD-sensors and standard titrimetric methods is spent. It was shown that using of the developed PD-sensors reduces error of novocaine, lidocaine determination in modeling aqueous solutions and medicinal forms in comparison with standard titrimetric techniques from 39 to 7 %.

Keywords: potentiometry, titrimetry, aqueous solutions of drugs, ion-exchange polymers, Donnan potential.

ВВЕДЕНИЕ

Известны пластифицированные ионоселективные электроды (ИСЭ), селективный к катионам новокаина и лидокаина в водных растворах, на основе ионных ассоциатов лекарственное вещество — тетрафенилборат [1]. Недостатком данных ИСЭ является малый срок эксплуатации, кроме того время отклика сенсора зависит от концентрации лекарственного вещества и увеличивается с разбавлением растворов.

В [2, 3] предложено использование нового типа потенциометрических сенсоров (ПД-сенсоров, аналитическим сигналом которых является потенциал Доннана) для экспрессного количественного определения органических и неорганических электролитов в многокомпонентных водных растворах сложного ионно-молекулярного состава. В

[4] разработаны и исследованы ПД-сенсоры на основе перфторированных сульфокатионитовых полимерных (ПСП) мембран в K^+ -форме для количественного определения новокаина и лидокаина в водных растворах.

Целью данной работы явилось сравнение метрологических характеристик разработанных ПД-сенсоров для количественного определения новокаина и лидокаина в водных растворах и лекарственных формах и стандартных титриметрических методик.

МЕТОДИКА ЭКСПЕРИМЕНТА

ОБЪЕКТЫ ИССЛЕДОВАНИЯ

Для разработки ПД-сенсоров исследовали индивидуальные водные растворы гидрохлоридов новокаина NovHCl (гидрохлорид в-диэтиламиноэтиловый эфир *пара*-аминобензойной кислоты) и лидокаина LidHCl (гидрохлорид б-диэтиламино-2,6-диметилацетанилида) с концентрациями ком-

[©] Полуместная К. А., Путинцева С. А., Янкина К. Ю., Паршина А. В., Бобрешова О. В., 2012

понентов $1,0\cdot 10^{-4} \div 7,3\cdot 10^{-2}$ М и $1,0\cdot 10^{-4} \div 3,7\cdot 10^{-1}$ М. Значения рН исследуемых растворов NovHCl, Lid-HCl составляли соответственно $(3,87 \div 4,94) \pm 0,03$ и $(5,18 \div 5,82) \pm 0,03$. В работе использовали реактивы марки ч.д.а. Растворы готовили на дистиллированной воде с сопротивлением 0,35 МОм×см. Реальными объектами анализа были лекарственные формы гидрохлорида новокаина (0,5 и 2 % растворы для инъекций) и гидрохлорида лидокаина (0,5 и 10 % растворы для инъекций).

При разработке ПД-сенсоров использовали гомогенные ПСП трубки и мембраны (МФ-4СК) в K^+ -форме. Гидрофобность политетрафторэтиленовой матрицы и отсутствие макропор в структуре ПСП мембран обусловливает более высокие величины откликов, чувствительность и точность по сравнению с гидрофильными углеводородными полимерами [5].

ОПИСАНИЕ МЕТОДИК ТИТРОВАНИЯ НОВОКАИНА И ЛИДОКАИНА

Для количественного определения новокаина и лидокаина в водных растворах и лекарственных формах используют ряд стандартных титриметрических методик.

Кислотно-основное титрование (метод вытеснения) [6]. Метод вытеснения основан на непосредственном титровании новокаина, лидокаина в водно-спиртовой среде гидроксидом натрия в присутствии индикатора. Навеску соли алкалоида (0,03—0,04 г) растворяют в 10 мл воды, прибавляют 15 мл 96 % спирта, 3—4 капли раствора фенолфталеина и титруют 0,1 М раствором гидроксида натрия. Конечную точку титрования устанавливали по изменению цвета индикатора либо потенциометрически. При титровании лидокаина к 5 мл препарата прибавляют 50 мл 96 % спирта и 5 мл 0,01М раствора соляной кислоты и титруют 0,1 М раствором натрия гидроксида [7]. Титрование повторяют 3—5 раз.

Окислительно-восстановительное титрование (метод нитритометрии) [8]. Метод нитритометрии основан на титровании новокаина нитритом натрия в присутствии индикатора тропеолина 00. К 1 мл раствора новокаина прибавляют 2—3 мл воды, 1 мл 10^{-2} М раствора соляной кислоты, 0,2 г калия бромида, 2 капли раствора тропеолина 00, 1 каплю раствора метиленового синего и при 18—20 °С титруют 0,02 моль/л раствором натрия нитрита, добавляя его в начале по 0,2—0,3 мл через 1 мин, а в конце титрования (за 0,1—0,2 мл до точки эквивалентности) по 1—2 капли через 1 мин до перехода красно-фиолетовой окраски в голубую [8].

Титрование повторяют 3—5 раз. Следует отметить, что данный метод не применим для определения лидокаина, т.к. в его структуре отсутствует свободная аминогруппа, способная участвовать в реакциях азосочетания.

Обработку результатов титрования проводили по методике, описанной в [9]. Для более точного нахождения конечной точки титрования были получены первые производные кривых титрования растворов NovHCl, LidHCl. Для получения первой производной кривой титрования строили график зависимости $\Delta E/\Delta V$ от объема титранта V. Данная зависимость является кривой с максимумом, который соответствует объему титранта V_{κ} в конечной точке титрования. Расчет концентрации новокаина, лидокаина в исследуемом растворе проводили по формуле (1).

$$C = \frac{C_{\rm r} \cdot V_{\rm r}}{V_{\rm mp}} \tag{1}$$

где C — концентрация новокаина, лидокаина в растворе; $V_{_{np}}$ — объем пробы; $C_{_m}$ — концентрация титранта; $V_{_m}$ — объем раствора титранта, израсходованный для достижения конечной точки титрования.

ОБОРУДОВАНИЕ И МЕТОДЫ ИССЛЕДОВАНИЯ

Все потенциометрические измерения выполняли на жидкостном анализаторе Эксперт-0013 (0.1). Относительная погрешность прибора для измерения рН и ЭДС составляет 2,5 % и 1,5 % соответственно. Для контроля рН растворов использовали стеклянный электрод марки ЭЛС-43-07 и хлоридсеребряный электрод сравнения марки ЭВС-1М3.1.

Электрохимическая ячейка для определения новокаина, лидокаина в водных растворах и лекарственных формах включает ПД-сенсор, рН-СЭ, хлоридсеребряный электрод сравнения и высокоомный электронный вольтметр (рис. 1). Конструкция ПД-сенсора состоит из двух корпусов, в верхнем (объем 5 см³) из которых установлен хлоридсеребряный электрод, в нижнем (объем 0,5 см3) установлена трубка, или мембрана, или стержень из ПСП в K^+ -форме длиной 6—8 см, таким образом, что один ее конец размещен в верхнем корпусе, а другой выступает за пределы нижнего корпуса. Верхний корпус ПД-сенсора заполнен раствором сравнения (1 М раствор КСІ). Нижний корпус ПДсенсора в рабочем состоянии освобождается от раствора и предохраняет ионообменник от пересыхания. Отклик ПД-сенсора определяется относительно хлоридсеребряного электрода сравнения с помощью высокоомного вольтметра через 5—7

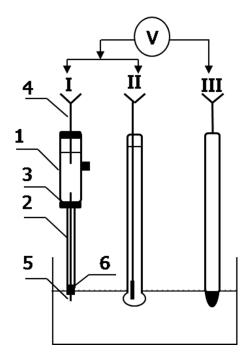


Рис. 1. Схема электрохимической ячейки для определения органических электролитов в мультиионных растворах: I — ПД-сенсор; 1, 2 — пластиковый корпус; 3, 6 — резиновая пробка; 4 — внутренний электрод сравнения Ag/AgCl; 5 — ПСП мембрана в K⁺-форме; II — стеклянный электрод; III — электрод сравнения; V — высокоомный вольтметр

минут (время установления квазиравновесия [2, 3]). Аналитическим сигналом ПД-сенсора является потенциал Доннана на границе ионообменный полимер/ исследуемый раствор. Схема ячейки и электрохимическая цепь для определения отклика ПД-сенсора описаны в [2, 3]. Количественные оценки скачков потенциала на отдельных межфазных границах, а также оценки диффузионных потенциалов в электрохимической цепи для определения отклика ПД-сенсора представлены в [2].

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Потенциал определяющими реакциями ПД-сенсора на основе ПСП мембран в K^+ -форме в растворах NovHCl и LidHCl являются ионообменные реакции, протекающие по эквивалентному механизму.

Коэффициенты селективности ПД-сенсора, организованного на основе ПСП в К⁺-форме, к катионам NovH⁺, LidH⁺ в присутствии ионов гидроксония оценивали методом соответственных потенциалов [10]. Данный эмпирический метод позволяет получить относительные коэффициенты селективности ПД-сенсоров к определяемым катионам NovH⁺, LidH⁺ в присутствии ионов гидрок-

сония в конкретных условиях проведения эксперимента [11], в частности, в случае, когда концентрации определяемого и мешающего ионов являются взаимозависимыми величинами. Коэффициенты селективности $K_{\text{NovH}^+/\text{H}^+}$ и $K_{\text{LidH}^+/\text{H}^+}$ ПД-сенсоров в исследуемых растворах рассчитывали как отношение концентраций катионов NovH+, LidH+ к величине добавки ионов гидроксония, при которой отклики ПД-сенсоров в индивидуальных растворах HCl и исследуемых растворах NovHCl, LidHCl равны. Показано, что в разбавленных растворах NovHCl, LidHCl (в интервале концентраций 1,0·10-4ч1,0·10⁻³ М) ПД-сенсоры более селективным к ионам гидроксония ($K_{\text{H}^+/\text{XH}^+}$ = $8\cdot 10^{-2}\div 3\cdot 10^{-1}$ и $K_{\text{H}^+/\text{XH}^+}$ = $6\cdot 10^{-3}\div 1,0\cdot 10^{-1}$), а при концентрациях NovHCl, LidHCl в интервале 1,0·10⁻³÷7,3·10⁻² М и $1,0\cdot 10^{-3}$ ÷ $3,7\cdot 10^{-1}$ М — к катионам NovH+, LidH+ соответственно ($K_{XH^+/H^+} = 1,6 \div 6 \cdot 10^{-2}$ и $K_{\text{H}^+/\text{XH}^+}=6\div 3\cdot 10^{-1}$). Таким образом, в исследуемых растворах ПД-сенсоры являются перекрестно чувствительными, т.е. характеризуются относительно невысокой селективностью и обладают чувстви-

тельностью к нескольким компонентам анализируемого раствора одновременно [12]. Поэтому получены градуировочные уравнения (2) ПД-

сенсоров в растворах NovHCl, LidHCl в диапазонах

рН $(3,8744,94)\pm0,03$ и $(5,1845,82)\pm0,03$, учитываю-

щие взаимовлияние ионов NovH+, LidH+ и гидрок-

сония на отклик сенсоров.

$$\Delta \varphi_D = b_0 + b_1 pC + b_2 pH \tag{2}$$

где $\Delta \phi_{\!\scriptscriptstyle D}$ — аналитический сигнал ПД-сенсора (мВ); C — концентрация катионов NovH $^+$, LidH $^+$ (M); b_{0} — свободный член градуировочного уравнения (мВ); b_1 — предлогарифмические коэффициенты (мВ/рС), характеризующие чувствительность определения ионов NovH+, LidH+с помощью данного градуировочного уравнения; b, — предлогарифмические коэффициенты (мВ/рС), характеризующие чувствительность определения ионов гидроксония с помощью данного градуировочного уравнения, значения которых представлены в табл. 1. Оценки коэффициентов градуировочных уравнений рассчитывали методом наименьших квадратов по неортогональным схемам эксперимента. Экспериментальными данными для вывода градуировочных уравнений служат задаваемые значения отрицательного логарифма аналитической концентрации NovHCl, LidHCl, контролируемые значения pH и средние значений откликов ПД-сенсоров, измеренных относительно электрода сравнения в соответствующих растворах. Оценки погрешностей определения коэффициентов градуировочных уравнений Δb_i проводили по стандартным формулам [13].

Таблица 1 Коэффициенты градуировочных зависимостей ПД-сенсора в растворах NovHCl, LidHCl

Характеристика	NovHCl	LidHCl	
$b_{_0}\pm\Delta b_{_0}$, мВ	-23 ± 2	-5 ± 2	
$b_I \pm \Delta b_I$, мВ/рС	-62 ± 3	-49±3	
b_2 $\pm \Delta b_2$, мВ/рС	19±3	3±1	

Разброс между рассчитанными с помощью градуировочных уравнений (2) значениями отклика сенсора и экспериментальными значениями отклика сенсора, измеренными в соответствующих растворах NovHCl, LidHCl, не превышал 7 и 6 % соответственно.

В качестве реальных объектов анализа использовали 0,5 и 2% растворы новокаина (что соответствует молярным концентрациям NovHCl $1.8\cdot10^{-2}$ и $7.3\cdot10^{-2}$ М соответственно) и 0,5 и 10% растворы лидокаина (что соответствует молярным концентрациям LidHCl $1.8\cdot10^{-2}$ и $3.7\cdot10^{-1}$ М соответственно) для инъекций.

Для определения новокаина, лидокаина в лекарственных формах проводили потенциометри-

ческое титрование 0,5 и 2 % растворов новокаина и 0,5 и 10 % растворов лидокаина для инъекций по методикам кислотно-основного и окислительновосстановительного титрования, описанным ранее. Данные методики используются в аптечных учреждениях для количественного контроля качества лекарственных средств, изготавливаемых в аптеках [8].

Для определения новокаина, лидокаина в лекарственных формах измеряли значения откликов ПД-сенсора на основе ПСП в K^+ -форме в 0,5 и 2 % растворах новокаина и в 0,5 и 10 % растворах лидокаина для инъекций. Контролируемые значения рН составляли 4,00 и 3,87 единиц и 5,74 и 5,81 соответственно. Для расчета концентраций NovHCl, LidHCl пользовались градуировочной зависимостью отклика ПД-сенсора (2). Число определений составляло 3—5. Погрешность ($\Delta C/C$) определения NovHCl и LidHCl, рассчитанную как отношение разности ($\Delta C = C_{\text{onp}} - C_{\text{ист}}$) определенной и истинной (введенной) концентраций к истинной концентрации ($C_{\text{ист}}$), оценивали с помощью метода «введено-найдено». В качестве характеристики воспроизводимости определения NovHCl, LidHCl использовали относительное стандартное отклонение *s*_.. Число определений составляло 6—8. Статистическую обработку экспериментальных данных проводили при доверительной вероятности 0,95. Результаты определения новокаина и лидокаина в лекарственных формах с использованием стандартных титриметрических методик и ПДсенсора представлены в табл. 2.

Таблица 2 Определение новокаина и лидокаина в лекарственных формах с использованием потенциометрического ПДсенсора и стандартных титриметрических методик

Определяемое лекарственное вещество		NovHCl		LidHCl	
Содержание лекарственного вещества в препарате C_{ucm} , М		1,8·10 ⁻²	7,3·10 ⁻²	1,8·10 ⁻²	3,7·10 ⁻¹
Потенциометрический ПД- сенсор	C_{onp} , M	1,7·10-2	7,5·10-2	1,7·10-2	3,6·10-1
	S_r	0,03	0,01	0,03	0,01
	ДС/С, %	6	3	6	3
Потенциометрическое кислотно-основное титрование	C_{onp} , M	1,2·10 ⁻²	7,0.10-2	1,5·10 ⁻²	3,5·10 ⁻¹
	S_r	0,04			
	ДС/С, %	33	4	17	5
Потенциометрическое окислительно- восстановительное титрование	C_{onp} , M	1,7·10 ⁻²	7,1·10 ⁻²		
	S_r	0,02		_	
	ДС/С, %	6	3		

Средняя погрешность определения новокаина, лидокаина в лекарственных формах с помощью разработанных потенциометрических ПД-сенсоров (5 %) не превышала соответствующее значение (7 %), найденное в модельных водных растворах. Таким образом, использование ПД-сенсоров на основе ПСП в K^+ -форме позволяет проводить экспрессное (5—7 мин) количественное определение новокаина и лидокаина в лекарственных формах.

ЗАКЛЮЧЕНИЕ

Разработаны ПД-сенсоры на основе ПСП в К+форме для количественного определения новокаина, лидокаина в водных растворах и лекарственных формах. ПД-сенсоры аппробированы при определении новокаина, лидокаина в лекарственных формах для инъекций с различной концентрацией действующего вещества. Сравнение метрологических характеристик определения новокаина, лидокаина в водных растворах и лекарственных формах (растворы для инъекций) с использованием ПДсенсоров и соответствующих стандартных методик показало преимущества разработанных сенсоров за счет малого времени анализа, большей воспроизводимости аналитического сигнала и меньшей ошибки определения в области концентраций менее $1,0.10^{-3}$ М.

Авторы выражают благодарность к.х.н. зав. лабораторией мембранных процессов ОАО «Пластполимер» (г. Санкт-Петербург, Россия) Тимофееву Сергею Васильевичу за предоставление образцов перфторированных сульфокатионитовых полимеров.

Работа поддержана Российским фондом фундаментальных исследований (грант 09-03-97505 р_центр_а, 12-08-00743-а), программой «У.М.Н.И.К.» Фонда содействия развитию малых форм предприятий в научно-технической сфере (проекты № 8080p/12604 от 30.04.2010; №9591p/14212 от 01.08.2011; № 8960p/14035 от 19.04.2011; № 9590p/14213 от 01.08.2011).

СПИСОК ЛИТЕРАТУРЫ

1. *Кулапина Е. Г.* Ионселективные электроды для определения азотсодержащих лекарственных веществ / Е. Г. Кулапина, О. В. Баринова // Журнал аналитической химии. — 2001. — Т. 56, № 5. — С. 518—522.

- 2. *Бобрешова О. В.* Определение аминокислот, витаминов и лекарственных веществ в водных растворах с использованием новых потенциометрических сенсоров, аналитическим сигналом которых является потенциал Доннана / О. В. Бобрешова, А. В. Паршина, М. В. Агупова, К. А. Полуместная // Электрохимия. 2010. Т. 46, № 11. С. 1338—1349.
- 3. Бобрешова О. В. Потенциометрические сенсоры нового типа на основе перфторированных сульфокатионитовых мембран для количественного анализа многокомпонентных водных сред / О. В. Бобрешова, А. В. Паршина, К. А. Полуместная, С. В. Тимофеев // Мембраны и мембранные технологии. 2011. Т.1, N = 1. С. 27—36.
- 4. Сенсоры на основе перфторированных сульфокислотных мембран, модифицированных оксидом циркония(IV), чувствительные к органическим анионам в мультиионных водных растворах / О. В. Бобрешова и [др.] // Мембраны и мембранные технологии. 2012. Т.2, № 2. С. 67—74.
- 5. *Заболоцкий В. И.* Перенос ионов в мембранах / В. И. Заболоцкий, В. В. Никоненко. М.: Наука, 1996. 395 с.
- 6. Перельман Я. М. Анализ лекарственных форм (практическое руководство) / Я. М. Перельман. Спб. : Медгиз, 1961. 616 с.
- 7. Государственная фармакопея Российской Федерации / Издательство «Научный центр экспертизы средств медицинского применения», 2008. 704 с.
- 8. *Кулешова М. И.* Анализ лекарственных форм, изготовляемых в аптеках / М. И. Кулешова, Л. Н. Гусева, О. К. Сивицкая. М. : Медицина, 1989. 288 с.
- 9. *Кристиан* Г. Аналитическая химия: в 2т. / Г. ристиан; пер. с англ. // Т. 1: Аналитическая химия. М.: БИНОМ. Лаборатория знаний, 2009. (Лучший зарубежный учебник).
- 10. *Umezawa Y.* Selectivity coefficients for ion-selective electrodes: Recommended methods for reporting $K_{A,B}^{pot}$ values (Technical Report) / Y. Umezawa, K. Umezawa, H. Sato // Pure and Applied Chemistry. 1995. Vol. 67, N = 3. P. 507—518.
- 11. *Horvai G*. The matched potential method, a generic approach to characterize the differential selectivity of chemical sensors / G. Horvai // Sensors and Actuators B. 1997. Vol. 43, № 1—3. P. 94—98.
- 12. Химические сенсоры и их системы / Ю.Г. Власов [и др.] // Журнал аналитической химии. 2010. Т. 65, № 9. С. 900—919.
- 13. Вершинин В. И. Планирование и математическая обработка результатов химического эксперимента / В. И. Вершинин, Н. В. Перцев. Учебное пособие. Омск : ОмГУ, 2005. 215 с.

Полуместная Ксения Андреевна — аспирант 3-ого г/о кафедры аналитической химии химического факультета Воронежского государственного университета

Polumestnaya Ksenia A. — the post-graduate student of analytical chemistry department of chemical faculty, Voronezh State University

Путинцева Светлана Алексеевна — магистрант кафедры аналитической химии химического факультета Воронежского государственного университета

Янкина Кристина Юрьевна — аспирант 1-ого г/о кафедры аналитической химии химического факультета Воронежского государственного университета

Паршина Анна Валерьевна — к.х.н., н.с. кафедры аналитической химии химического факультета Воронежского государственного университета

Бобрешова Ольга Владимировна — д.х.н., профессор кафедры аналитической химии химического факультета Воронежского государственного университета

Putinzeva Svetlana A. — the undergraduate student of analytical chemistry department of chemical faculty, Voronezh State University

Parshina Anna V. — the cand. chem. sci. of analytical chemistry department of chemical faculty, Voronezh State University

Yankina Kristina Yu. — the post-graduate student of analytical chemistry department of chemical faculty, Voronezh State University

Bobreshova Olga V.—d.c.s., the professor of analytical chemistry department of chemical faculty, Voronezh State University