УДК 546.26

ВЛИЯНИЕ РАСТВОРИТЕЛЯ НА ЭЛЕКТРИЧЕСКИЕ И СПЕКТРАЛЬНЫЕ ХАРАКТЕРИСТИКИ ЭНДОЭДРАЛЬНЫХ МЕТАЛЛОФУЛЛЕРЕНОВ Li₂C₆₀ И Na₂C₆₀

Е. В. Бутырская, С. А. Запрягаев, А. А. Карпушин

Воронежский государственный университет Поступила в редакцию 25.10.10 г.

Аннотация. В настоящей работе представлены результаты компьютерного моделирования эндоэдральных металлофуллеренов Li_2C_{60} и Na_2C_{60} . Выполнен анализ ИК спектра, распределения зарядов на атомах по Малликену и величины дипольного момента рассматриваемых кластеров. Исследовано влияние растворителей толуол и тетрагидрофуран на значения рассчитанных параметров. Расчет и моделирование металлофуллеренов выполнено на основе программного комплекса Gaussian03 [1] и разработанного программного продукта для расширенных квантовых вычислений [2].

Ключевые слова: эндоэдральные металлофуллерены, квантово-химическое моделирование, толуол, тетрагидрофуран, ИК спектр, заряды по Малликену, дипольный момент.

Abstract. The results of IR spectrum computer modeling of endometallofullerens Li_2C_{60} and Na_2C_{60} are presented in the article. The calculation is obtained for three cases: metallofullerens without solvent, metallofullerens in the toluene solution and in the tetrahydrofurane solution. The influence of the solvent on dipole moments values, charge on atom and frequencies IR spectrum are analysed.

Keywords: endometallofullerens, quantum-chemical modeling, IR spectrum, toluene, tetrahydrofurane, Mulliken charges, dipole moment.

Открытие в 1985 году третьей аллотропной формы углерода — фуллеренов и активное изучение их свойств показало перспективность использования фуллеренов для создания новых материалов [3]. Большое число исследований, выполненных в этом направлении, позволило сделать вывод, что наиболее эффективной базой для конструирования материалов с новыми свойствами, являются не сами фуллерены, а их производные. Значительный интерес представляют эндоэдральные металлофуллерены с внедренными в них атомами металла, защищенными от химических воздействий благодаря наличию углеродного каркаса. Перспективными областями применения эндофуллеренов являются биология и медицина. Фуллерены способны достаточно легко проникать сквозь различные биологические мембраны, что важно для их использования в медико-биологических исследованиях. Изучается возможность использования эндоэдральных соединений с радиоактивными нуклидами металлов в качестве радиопрепаратов. Рассматривается возможность использования фуллеренов в качестве эффективного хранилища молекулярного водорода, что открывает возможности перехода на абсолютно экологически чистое и самое энергонасыщенное горючее — водород.

Спектральный анализ составляет основу достоверной информации о свойствах фуллеренов, характере процесса образования их производных и детектирования. Наиболее хорошо изучены эндоэдральные комплексы, образованные фуллереном С₆₀ с металлами лантаноидного ряда, переходными металлами третьей группы, щелочноземельными металлами. Из щелочных металлов наиболее хорошо изучены комплексы с калием, рубидием и цезием, менее исследованы комплексы с литием и натрием [4]. Работы по квантовохимическому изучению эндоэдральных фуллеренов щелочных металлов M_n@C₆₀ для M=Li, Na, посвящены исследованию их геометрического строения и электронной структуры. Для M = K, Rb, Cs изучались как электронные, так и колебательные спектры.

ОБЪЕКТЫ И МЕТОДЫ ИССЛЕДОВАНИЯ

В настоящей работе с использованием программы Gaussian 03 [1] методом Хартри-Фока в базисе 3-21G и разработанного программного продукта для расширенных квантовых вычислений [2] изучены колебательные спектры эндоэдральных

[©] Бутырская Е. В., Запрягаев С. А., Карпушин А. А., 2010

комплексов Li_2C_{60} и Na_2C_{60} . При моделировании ИК спектра C_{60} сохранялась симметрия системы, расчеты металлофуллеренов выполнены без сохранения симметрии. При выполнении оптимизиции без сохранения симметрии начальная структура металлофуллеренов выбиралась с атомами металла, расположенными на оси симметрии C_2 , соответствующей при оптимизации с сохранением симметрии более устойчивой структуре.

РЕЗУЛЬТАТЫ ИСЛЕДОВАНИЯ И ИХ ОБСУЖДЕНИЕ

КОЛЕБАТЕЛЬНЫЕ МОДЫ С

 C_{60} имеет 174 колебательных моды, из которых 46 различны. При этом 4 колебательные моды (T_{1u}) активны в ИК и 10 (2 моды A_g и 8 мод H_g) — в КР спектрах. Остальные 32 «молчащие» моды про-

являются в колебательном спектре при изменении симметрии системы. Рассчитанные частоты колебаний фуллерена и их отнесение, выполненное программой Gaussian03 (метод Хартри-Фока, базис 3-21G) представлены в табл. 1.

Самое большое относительное отклонение δ рассчитанных частот от экспериментальных 6,3 % имеет место для A_u колебания. Имеется 6 колебаний с $\delta > 5$ %. Для остальных типов колебаний согласование настоящего расчета и эксперимента является удовлетворительным. Сравнение с частотами полученными методом функционала плотности в [6] показывает, что метод и базис, использованные в настоящей работе обеспечивают для большинства полос немного лучшее согласие с экспериментом, чем в [6]. Из наблюдаемых частот худшее согласование с экспериментом получено для v($T_{lu}(3)$) (1130)

Таблица 1

Колебательные частоты С₆₀ рассчитанные с использованием программы Gaussian 03 методом Хартри-Фока в базисе 3-21G

Тип сим.	Частота см ⁻¹ , наст. раб	Экспери- мент, см ⁻¹ , [5]	δ, %	Частота, см ⁻¹ [6]	Тип сим.	Частота см ⁻¹ , наст. раб	Экспери- мент, см ⁻¹ [5]	δ, %	Частота см ⁻¹ [6]
A_{g}	470 1457	495 1470	5,1 0,9	481 1489	A _u	1010	1078	6,3	973
T_{1g}	562 853 1244	565 904 1290	0,5 5,6 3,6	563 826 1241	T_{Iu}	522 557 1130 1410	526 577 1180 1433	0,8 3,5 4,2 1,6	514 569 1143 1457
T _{2g}	578 637 823 1319	614 668 831 1340	5,9 4,6 1,0 1,6	543 788 800 1277	<i>T</i> _{2u}	342 695 903 1102 1553	340 716 955 1142 1567	0,6 2,9 5,4 3,5 0,9	343 725 945 1131 1546
G _g	481 587 715 994 1294 1514	485 592 758 1040 1348 1497	0,8 0,8 5,7 4,4 4,0 1,1	480 570 772 1037 1287 1501	G _u	355 670 780 936 1276 1419	354 707 797 970 1315 1429	0,3 5,2 2,1 3,5 3,0 0,7	348 756 790 937 1259 1420
H_{g}	268 432 692 752 1075 1204 1405 1610	267 431 711 775 1101 1251 1427 1576	$0,4 \\ 0,2 \\ 2,7 \\ 3,0 \\ 2,4 \\ 3,8 \\ 1,5 \\ 2,2$	263 422 717 763 1080 1198 1422 1580	H _u	413 533 684 721 1199 1313 1600	403 535 694 737 1214 1343 1567	2,5 0,4 1,4 2,2 1,2 2,2 2,1	388 527 661 750 1176 1291 1566

В столбце «Эксперимент» приведена частота, рекомендованная в [5] как лучшая экспериментальная частота. В столбце частота [5] приведены данные расчета *ab initio* (метод функционала плотности) [6], δ — относительное отклонение частот, полученных в настоящей работе от эксперимента. T_{1u} мода активна в ИК, моды A_g , H_g , — активны в КР.

Влияние растворителя на электрические и спектральные характеристики эндоэдральных...

см⁻¹ — расчет и 1180 см⁻¹ — эксперимент), и для $v(H_g(6))$ (1204 см⁻¹ — расчет и 1251 см⁻¹ — эксперимент).

АНАЛИЗ ЭЛЕКТРИЧЕСКИХ И ЭНЕРГЕТИЧЕСКИХ ХАРАКТЕРИСТИК С₆₀, Li₂C₆₀, Na₂C₆₀

Электрические и энергетические характеристики рассчитанных систем приведены в табл. 2.

Анализ табл. 2 показывает, что дипольный момент Na_2C_{60} приблизительно в 5 раз больше дипольного момента Li_2C_{60} и дипольный момент всех систем увеличивается при помещении их в растворитель. Как следствие, система Na_2C_{60} более чувствительна к влиянию растворителя, чем Li_2C_{60}

Растворитель практически не оказывает влияния на заряд на атоме металла, т. е. при изменении полярности растворителя не происходит перенос заряда с металла на фуллерен.

ВЛИЯНИЕ РАСТВОРИТЕЛЯ И ЗАКОНОМЕРНОСТИ В КОЛЕБАТЕЛЬНЫХ СПЕКТРАХ С₆₀, Li₂C₆₀, Na₂C₆₀

Частоты колебаний наиболее интенсивных линий в оптимизированных структурах Li_2C_{60} и Na₂C₆₀ приведены в табл. 3 и 4.

Для каждой из рассмотренных систем характерно:

• уменьшение частоты колебаний при увеличении полярности растворителя ~ на 1—10 см⁻¹;

Таблица 2

Система	Полная энергия, <i>а.е.</i>	Энергия связи М ₂ , <i>а.е</i> .	Дипольный момент, <i>а.е</i> .	Заряд на атоме металла	
C ₆₀	-2259.047674		0		
C ₆₀ Tol	-2259.048907		0,0021		
Li ₂ C ₆₀	-2273,841841	-14,794166	0,0551	1,230 — атом1 1,241 — атом2	
Li ₂ C ₆₀ Tol	-2273,8435064	-14,794599	0,0787	1,230 — атом1 1,240 — атом2	
Li ₂ C ₆₀ THF	-2273.8451604		0,1063	1,229 — атом1 1,240 — атом2	
Na ₂ C ₆₀	-2580,7941832	-321,746509	0,3071	1,372 — атом1 1,378 — атом2	
Na ₂ C ₆₀ Tol	-2580,7960348	-321,747127	0,4212	1,371 — атом1 1,377 – атом2	
Na ₂ C ₆₀ THF	-2580.7978992		0,5551	1,370 — атом1 1,376 — атом2	

Характеристики систем C_{60} , Li_2C_{60} , Na_2C_{60}

Примечание: Tol — растворитель толуол, THF — растворитель тетрагидрофуран.

Таблица 3

Частоты колебаний наиболее интенсивных линий в оптимизированной структуре Li_2C_{60} ($v \in (500-1500)$ см⁻¹)

Расчет	502* 497** 492***	555 555 555	581 580 578	637 625 612	664 662 658	899 899 898	$925_{(3)} \\ 921_{(3)} \\ 917_{(3)}$
Эксперимент [4]	516	526	576	_	_	890	916
Расчет	1044 1034 1022	1054 1038 1023	$1138_{(3)}\\1132_{(3)}\\1130_{(3)}$	1213 1209 1206	1229 1226 1224	1307 1306 1306	
Эксперимент [4]	1045	1045	1183				

* — без растворителя, ** — растворитель толуол, *** — растворитель тетрагидрофуран. В скобках в последнем столбце приведены рассчитанные в настоящей работе частоты колебаний C₆₀ (табл. 1). Индекс в круглых скобках рядом с частотой означает число интенсивных линий с близкими частотами (если этих линий несколько), прочерк — не наблюдались в эксперименте [3].

				2 00	. , , ,
Расчет	496* 490** 483***	535 533 533	555 554 553	637 627 614	658 _{IR RS} 651 _{IR RS} 644 _{IR RS}
Эксперимент [4]	516	526	576		
	895 _{IR RS} 894 _{IR RS} 891 _{IR RS}	923 920 _{(2) IR RS} 920 _{(2) IR RS} 918 _{(2) IR RS}	1011 _{(2) IR RS} 1010 _{(2) IR RS} 1007 _{(2) IR RS}	1049 _{(2) IRK P} 1037 _{(2) IR RS} 1025 _{(2) IR RS}	1037 1055 _{(2) IR RS} 1041 _{(2) IR RS}
	890	916		1045	1045
Расчет	1037 _{(2) IR RS} 1055 _{(2) IR RS} 1041 _{(2) IR RS}	1142 _{(2) IR RS} 1139 _{(3) IR RS} 1138 _{(3) IR RS}	1236 _{(2) IR RS} 1233 _{(2) IR RS} 1230 _{(2) IR RS}	1307 _{IR RS} 1306 _{IR RS} 1306 _{IR RS}	
Эксперимент [4]	1045	1183		1345	

Таблица 4 Частоты колебаний наиболее интенсивных линий в оптимизированной структуре Na_2C_{60} ($v \in (500-1500)$ см⁻¹)

* — без растворителя, ** — растворитель толуол, *** — растворитель тетрагидрофуран. Индекс в в круглых скобках рядом с частотой означает число интенсивных линий с близкими частотами (если этих линий несколько), прочерк — не наблюдались в эксперименте [4].

• более сильное влияние растворителя на спектр $Na_{2}C_{60}$ по сравнению с влиянием на спектр $Li_{2}C_{60}$;

• увеличение интенсивности линий при увеличении полярности растворителя;

• неэквивалентность атомов металла внутри фуллерена;

• увеличение числа наблюдаемых полос в спектре при введении металла внутрь фуллерена.

Смещение максимумов полос на незначительную величину ~ (1—10) ст⁻¹ при изменении полярности растворителя объясняется тем, что рассматриваемые системы обладают либо нулевым (С₆₀), либо не очень большим дипольным моментом (табл. 2), а влияние растворителя можно описать через учет взаимодействия всех мультиполей растворенного вещества с полем, индуцированным сольватом в сольвенте [7, 8], (такой подход реализован в программе Gaussian), при этом наибольший вклад дает дипольный член. Рост интенсивности линий при помещении системы в растворитель можно объяснить поляризующим действием растворителя. Как известно, коэффициент поглощения k, определяющий интенсивность основной полосы і-го нормального колебания в инфракрасном спектре определяется по формуле

$$k = \frac{\pi}{3cm_i} N_k \left(\frac{\partial \mu}{\partial Q_i}\right)^2,$$

где N_k — число поглощающих центров, $\frac{\partial \mu}{\partial Q_i}$ — производная вектора дипольного момента по нормальной координате Q_i .

Поляризующее действие растворителя приводит к росту $\frac{\partial \mu}{\partial Q_i}$, и, как следствие к росту интенсивности линий. Более полярный растворитель тетрагидрофуран (дипольный момент d=1,87D [9], диэлектрическая проницаемость $\varepsilon=7,58$) оказывает более сильное влияние на характеристики системы, чем менее полярный растворитель толуол

(d=0,63 D [9], ε=2,379).
Анализ формы колебаний металлофуллеренов,
выполненный с помощью программы Gaussview и системы расширенных квантово-механических вычислений [2], показал, что все 180 колебаний можно разбить на две группы: — колебания, в которых принимают участие атомы металла и колебания углеродного скелета, при которых атомы металла неподвижны. Колебания первой группы — это низкочастотные колебания, с частотой, менее 350 см⁻¹. Это обусловлено малостью энергии связи атомов металла (табл. 2) в фуллерене.

Для колебаний фуллерена кроме мод T_{lu} в структуре Li₂C₆₀ (без растворителя) появляются колебания, отсутствующие в C₆₀: 637, 664, 899, 925, 1044, 1055, 1213, 1229, 1307 см⁻¹. Результаты расчета ИК спектров сравнивались с экспериментальным спектром, полученным в работе [4] для систем Li₂C₆₀ и Na₂C₆₀ в тетрагидрофуране. В рассчитанном спектре имеется большее число линий по сравнению с экспериментальным спектром (4]. Из табл. 4 видно достаточно хорошее согласование для тех частот, которые имеются и в рассчитанном и в экспериментальном спектре

систем Li_2C_{60} и Na_2C_{60} [4] имеются частоты 890, 916, 1045 см⁻¹, однако в этой области лежат полосы поглощения тетрагидрофурана и авторы работы [4] относят их полосам поглощения растворителя. Расчет показывает, что эти полосы близки к размороженным модам C_{60} и по данным расчета достаточно интенсивны. Авторы работы [4] интерпретируют экспериментальный спектр металлофуллеренов используя только 4 активные в ИК $T_{l_{\mu}}$ полосы C₆₀, однако вследствие введения атомов металла симметрия системы понижается. Известно, что в таких системах как димеры фуллерена, металлофуллерены число наблюдаемых полос в ИК спектре больше четырех [10—12]. На основании этого мы полагаем, что в этой области имеет место наложение полос тетрагидрофурана и металлофуллерена. В литературе отсутствуют работы по изучению колебательных спектров Li₂C₆₀, кроме [4], поэтому сравнение результатов расчета проведено только с данными работы [4]. Результаты расчета ИК спектра Na₂C₆₀ сравнивались с экспериментальным спектром, полученным в работе [2]. В рассчитанном спектре Na_2C_{60} , также как для Li_2C_{60} имеется большее число линий по сравнению с экспериментальным спектром [2] (табл. 5). Все отмеченное выше по поводу сопоставления спектра Li_2C_{60} с экспериментом [4] относится и к структуре Na₂C₆₀.

Работа выполнена при поддержке ФЦП «Научные и научно-педагогические кадры инновационной России» на 2009—2013 годы, ГК № П846 от 25.05.2010.

СПИСОК ЛИТЕРАТУРЫ

1. Frisch M. J., Trucks G. W., Schlegel H. B., Gill P. M. W., Johnson B. G., Robb M. A., Cheeseman J. R., Keith T. A., Petersson G. A., Montgomery J. A., Raghavachari K., Al-Laham M. A., Zakrzewski V. G., Ortiz J. V., Foresman J. B., Cioslowski J., Stefanov B. B., Nanayakkara A., Challacombe M., Peng C. Y., Ayala P. Y., Chen W., Wong M. W., Andres J. L., Replogle E. S., Gomperts R., Martin R. L., Fox D. J., Binkley J. S., Defrees D. J., Baker J., Stewart J. J. P., Head-Gordon M., Gonzalez C., Pople J. A. Gaussian 03, Revision C.2, Gaussian Inc.: Pittsburgh PA. 2003.

Бутырская Елена Васильевна — профессор каф. аналитической химии ВГУ; тел.: (4732) 208932

Запрягаев Сергей Александрович — профессор каф. цифровых технологий ВГУ; тел.: (4732) 208932

Карпушин Андрей Александрович — аспирант каф. цифровых технологий ВГУ; тел.: (4732) 208932

2. Система расширенных квантово-механических вычислений на базе результатов расчета программы Gaussian03: Свидетельство №2009611277 / С. А. Запрягаев, А. А. Карпушин. — 3с. — (Заявка №20009610020, 11.01.09. Зарегистрировано в Реестре программ для ЭВМ 2.03.09). — 0,1 п.л.

3. Сидоров Л. Н., Юровская М. А., Борщевский А. Я., Трушков И. В., Иоффе И. Н. Фуллерены. М.: Экзамен, 2005. — 688с.

4. Титова С. Н., Домрачев Г. А., Хоршев С. Я., Объедков А. М., Калакутская Л. В., Кетков С. Ю., Черкасов В. К., Каверин Б. С., Жогова К. Б., Лопатин М. А., Карнацевич В. Л., Горина Е. А. Стехиометрический синтез соединений фуллерена с литием и натрием, анализ их ИК и ЭПР спектров.ФТТ. — 2004. — Vol. 46. Р. 1323.

5. *Nagase S., Kobayashi K., Akasaka T. J., Wakahara T.* In: Fullerens: Chemistry, Physics, and Technology / Eds. K. M. Kadish, R. S. Ruoff. John Wiley and Sons, N. Y. — 2000. — P. 395.

6. *Bohnen K.-P., Heid R., Ho K.-M., Chan C. T.* Ab initio investigation of the vibrational and geometrical properties of solid C60 and K3C60. Phys. Rev. 1995. — Vol. B51. — P. 5805.

7. Foresman J. B., Keith T. A., Wiberg K. B., Snoonian J., Frisch M. J. Parametrization of the PCM model for calculating solvation free energy of anions in dimethyl sulfoxide solutions. J. Phys. Chem. — 1996. — Vol. 100. — P. 16098.

8. *Foresman J. B., Frisch E.* Exploring Chemistry with Electronic Stracture Methods. Gaussian Inc.: Pittsburgh PA. — 1995. — P. 302.

9. Осипов О. А., Минкин В. И., Гарновский А. Д. Справочник по дипольным моментам. Высшая школа, М. 1971. — С.416.

10. *Martin M. C., Du X., Kwon J., Mihaly L.* Observation and assignment of silent and higher-order vibrations in the infrared transmission of C60 crystals. Phys. Rev. 1994. — Vol. B. 50. — P. 173.

11. Давыдов В. А., Кашеварова Л. С., Рахманинов А. В., Сенявин В. М., Агафонов В., Своля Р., Шварк А. Индуцированная давлением димеризация фуллерена С60. Письма в ЖЭТФ. — 1998. — Т. 68. С. 881.

12. *Martin M. C., Koller D.* Phys. Rev. Infrared and Raman evidence for dimers and polymers in RbC60. — 1995. — Vol.B. 51. — P. 321.

Butyrskaya Elena V. — professor of Voronezh State University; tel.: (4732) 208932

Zapryagaev Sergey A. — professor of Voronezh State University, tel.: (4732) 208932

Karpushin Andrew A. — post gradueter student of Voronezh State University, tel.: (4732) 208932