РЕЦИКЛИЗАЦИЯ АЗЛАКТОНОВ ПРИ ВЗАИМОДЕЙСТВИИ С ЕНАМИНОКАРБОНИЛЬНЫМИ СОЕДИНЕНИЯМИ

Д. В. Пенина¹, П. С. Романов¹, Т. И. Степаненко¹, М. Ю. Крысин¹, М. А. Презент², Фам Тхи Хонг Зуен¹, А. С. Соловьев¹

¹ Воронежский государственный университет, ² Институт органической химии РАН им. Н. Д. Зелинского, г. Москва Поступила в редакцию 19.03.10 г.

Аннотация. Взаимодействием азлактонов с С,N-динуклеофильными енаминокарбонильными реагентами получены производные тетрагидропиридин-2-она и новые полифункциональные пиридо[2,3-d]пиримидины.

Ключевые слова: Азлактоны, енаминоны, рециклизация, динуклеофилы, домино-реакции.

Abstract. Tetrahydropyridin-2-ones and new polyfunctional pyrido[2,3-d]pyrimidines were obtained by the reaction of azlactones with C,N-dinucleofilic enaminocarbonylic reagents.

Keywords: Azlactones, enaminones, recyclization, dinucleofiles, domino-reactions.

Арилиденоксазолоны привлекают внимание исследователей главным образом в качестве удобных синтетических интермедиатов для получения ряда гетероциклических соединений [1,2]. Наш интерес к оксазолонам связан в первую очередь с изучением реакций рециклизации оксазолонового кольца при взаимодействии с 1,3-динуклеофилами, т.к. такие реакции на данный момент практически не исследованы.

С целью синтеза новых биологически важных гидрированных производных 2-оксопиридинов изучено взаимодействие экзоциклических α , β -непредельных оксазолонов с C,N-динуклеофильными реагентами, содержащими различно локализованный енаминокарбонильный фрагмент (эфирами β -аминокротоновой кислоты, δ -амино-4-оксопиримидинами).

Исходные азлактоны получены реакциями N-ароилпроизводных глицина с ароматическими альдегидами [3]. В ходе проведенного исследования было обнаружено, что при нагревании азлактонов с эфирами β-аминокротоновой кислоты в уксусной кислоте в течение 12—18 часов, приводит к раскрытию оксазолонового цикла и дальнейшей рециклизации в полифункциональные тетрагидропиридин-2-оны (схема 1).

Структура целевых N-(5-R-4-арил-6-метил-2-оксо-1,2,3,4-тетрагидропиридин-3-ил)бензамидов Ia,b однозначно установлена на основании данных ЯМР ¹Н — спектроскопии.

Образование 1,2,3,4-тетрагидропиридин-2-онов подтверждается наличием сигналов протонов H_3 и H_4 гетероцикла. Сигнал протона H_3 ($\delta \sim 5,1$ м.д.) является дублетом дублетов вследствие спинспинового взаимодействия с протонами H_4 цикла и $N\underline{H}$ амидного заместителя. Дублет протона H_4 наблюдается около 4,5 м.д. Отнесение сигналов протонов N-H, наличие которых также подтверждает рециклизацию азлактонов, сделано на осно-

[©] Пенина Д. В., Романов П. С., Степаненко Т. И., Крысин М. Ю., Презент М. А., Фам Тхи Хонг Зуен, Соловьев А. С., 2010

$$\begin{array}{c} Ar \\ Ar' \\ O \\ O \\ \end{array} \\ \begin{array}{c} AcOH \\ R \\ \end{array} \\ \begin{array}{c} AcOH \\ N \\ \end{array} \\ \begin{array}{c} Ar' \\ N \\ N \\ \end{array} \\ \begin{array}{c} Ar' \\ N \\ O \\ \end{array} \\ \begin{array}{c} Ar' \\ N \\ N \\ \end{array}$$

IIa-e: Ar, Ar'= Ph, R=NH₂,
$$N$$
, N Ph, N IIf: Ar=4-ClC₆H₄, Ar'=4-CH₃C₆H₄, R= N

Схема 2

$$\begin{array}{c} Ar \\ Ar' \\ O \\ O \\ \end{array} \begin{array}{c} O \\ Ar \\ NH_2 \\ \end{array} \begin{array}{c} O \\ Ar \\ NH_2 \\ \end{array} \begin{array}{c} O \\ Ar \\ N \\ H \\ \end{array} \begin{array}{c} O \\ Ar \\ N \\ O \\ \end{array} \begin{array}{c} Ar' \\ N \\ O \\ \end{array} \begin{array}{c} O \\ N \\ O \\ \end{array} \begin{array}{c} Ar' \\ N \\ O \\ \end{array} \begin{array}{c} O \\ N \\ O \\ \end{array} \begin{array}{c} Ar' \\ N \\ O \\ \end{array} \begin{array}{c} O \\ N \\ O \\ \end{array} \begin{array}{c} Ar' \\ N \\ O \\ \end{array} \begin{array}{c} O \\ N \\ O \\ \end{array} \begin{array}{c} Ar' \\ N \\ O \\ \end{array} \begin{array}{c} O \\ N \\ O \\ \end{array} \begin{array}{c} O \\ N \\ O \\ \end{array} \begin{array}{c} Ar' \\ N \\ O \\ \end{array} \begin{array}{c} O \\ N \\ \end{array} \begin{array}{c} O \\ N \\ O \\ \end{array} \begin{array}{c} O \\ N \\ \end{array} \begin{array}{$$

IIIa: Ar=Ph, Ar'=Ph,

IIIb: Ar=1-нафтил, Ar'=3-CH $_{3}$ C $_{6}$ H $_{4}$

IIIc: Ar=
$$\frac{O_{CH_2}}{O}$$
, Ar'=4-CH₃C₆H₄

Схема 3

вании литературных данных и мультиплетности. В более слабом поле (\sim 10 м.д.) вследствие большей кислотности находится сигнал $N_{\rm l}$ -H. Кроме того, значение химического сдвига для данного сигнала однозначно исключает возможность существования (в условиях съемки спектров) лактимной таутомерной формы I'а,b. Для подобных соединений ОН-группы проявляются в области > 12—13 м.д.

В литературе [4] приведен единичный пример рециклизации азлактонов при взаимодействии с 2,6-диаминопиримидин-4-онами. С целью синтеза новых полифункциональных пиридо[2,3-d]пиримидинов исследовано взаимодействие 6-амино-4-оксопиримидинонов, содержащих разнообразные аминогруппы или оксогруппу в положении 2, с азлактонами (схемы 2 и 3). Синтез проводили при нагревании реагентов в уксусной кислоте в течение 18—22 часов.

Можно предположить, что взаимодействие арилиденоксазолонов $\underline{3}$ с C,N — динуклеофилами протекает через последовательность реакций

(домино-процесс) С-присоединения по Михаэлю к экзоциклической С=С оксазолона и рециклизации с участием аминогруппы динуклеофила и оксазолонового кольца.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Контроль за ходом реакций, анализ реакционных смесей, определение индивидуальности и установление структуры полученных соединений осуществлялись методами ТСХ, ЯМР ¹Н-спектроскопии.

ТСХ проводилась на пластинах Merk UV — 254, элюенты — индивидуальные органические растворители (хлороформ, этилацетат, изопропиловый спирт и др.) и их смеси в различных соотношениях, проявитель — УФ-излучение, пары иода.

Спектры ЯМР 1 Н сняты на приборах Bruker AC-300 (300 МГц) в ДМСО- $_{6}$ относительно ТМС.

2-Арил-4-арилиден-4Н-оксазол-5-оны синтезированы по известной методике [3]. Температуры

Таблица 1

Характеристики соединений Ia,b, IIa-f, IIIa	
XANAVMONIICMIIVII COONIIUOUIIII IA N. IIA-T. IIIA	c

NC.	Γ 1	D 0/	T 00	3.4	Найдено/Вычислено, %		
№	Брутто-формула	Выход, %	$T_{_{\Pi\Pi}}$, °C	M	С	N	Н
Ia	C ₂₂ H ₂₂ N ₂ O ₄	65	204—206	378	69,83/69,90	5,86/5,80	7,40/7,45
Ib	$C_{26}H_{24}N_{2}O_{4}$	47	196—198	428	72,88/72,80	5,65/5,70	6,54/6,50
IIa	$C_{20}H_{17}N_5O_3$	64	>300	365	63,99/63,90	4,56/4,50	18,66/18,70
IIb	$C_{29}H_{25}N_5O_3$	53	>300	481	70,86/17,80	5,13/5,10	14,25/14,30
IIc	$C_{27}H_{23}N_5O_3$	48	>300	455	69,66/69,70	4,98/5,00	15,04/15,00
IId	$C_{24}H_{23}N_5O_3$	61	>300	419	67,12/67,00	5,40/5,45	16,13/16,10
IIe	$C_{28}H_{23}N_5O_3$	51	298—300	467	70,43/70,40	4,85/4,80	14,67/14,70
IIf	C ₂₅ H ₂₄ CIN ₅ O ₃	60	287—289	467,5	62,83/62,80	5,06/5,10	14,65/14,70
IIIa	$C_{22}H_{20}N_4O_4$	64	266—268	380	65,34/65,30	4,98/5,00	13,85/13,80
IIIb	$C_{27}H_{24}N_4O_4$	56	179—181	444	69,22/69,10	5,16/5,20	11,96/11,80
IIIc	$C_{24}H_{22}N_4O_6$	48	254—256	454	62,33/62,20	4,79/4,70	12,12/12,10

Таблица 2 Данные спектрального анализа соединений Ia,b, IIa-f, IIIa-c

Соединение	Химический сдвиг, δ, м.д
1	2
Ia	$1,14$ т(3H, $\underline{\text{MeCH}}_2$, $J=7,8$ Γ Π); $2,40$ с(3H, Me - C_6); $4,05$ с(2H, Me - $\underline{\text{CH}}_2$, $J=7.8$ Γ Π); $4,52$ Π (1H, H_4 - Π
Ib	2,38c(3H, Me-C ₆ H ₄); 2,43c(3H, Me-пирид); 3,76c(3H, MeO); 4,43д(1H, H ₄ -пирид,J-6,8Гц); 5,24 дд(1H, H ₃ -пирид, J=7,3; 6,8 Гц); 7,12—8,05 м(11H, H-аромат); 8,06 д (1H, N-H амид, J=7,3 Гц); 10,05 с(1H, N-H пирид)
IIa	4,47 д(1H, $\rm H_4$ -пирид, $\rm J$ =6,6 $\rm \Gamma u$); 5,03 дд (1H, $\rm H_3$ -пирид, $\rm J$ =6,6; 7,1 $\rm \Gamma u$); 6,70 с (2H, $\rm NH_2$); 7,08—7,72 м (10H, ароматич); 7,85 д (1H, NH амид, $\rm J$ =7,1 $\rm \Gamma u$); 10,55 с (1H, NH пирид); 10,83 с (1H, NH пиримид)
IIb	2,89 т (2H, $\underline{\text{CH}}_2\text{CH}_2\text{N}$, J=5,9 Γ ц); 3,88 т (2H, $\underline{\text{CH}}_2\text{N}$, J=5,9 Γ ц); 4,58 д (1H, $\underline{\text{H}}_4$ -пирид, J=6,8 Γ ц); 4,81 с (2H, $\underline{\text{CH}}_2\text{N}$);5.09 д (1H, $\underline{\text{H}}_3$ -пирид, J=6,8; $\overline{7}$,7 Γ ц); 7,00—7,67 м (14H ароматич); 7,72 д (1H, NH амид, J=7,7 Γ ц); 10,70 с (1H, NH пирид); 11,15 с (1H, NH пиримид)
IIc	4,50 д (1H, H ₄ -пирид, J=6,7Гц); 4,55 д (1H, CH ₂ Ph, 2 J=13.1 Гц); 4,61 д (1H, CH ₂ Ph, 2 J=13.1 Гц); 4,97 дд (1H, H ₃ -пирид, J=6,7; 7,4Гц); 7,03—7,80; 8,26 м (15H, ароматич +NH); 8,17 д (1H, NH амид, J=7,4 Гц); 10,40 с (1H, NH пирид); 10,55 с (1H, NH пиримид)

1	2
IId	1,95 м (4H, $-\text{CH}_2\text{CH}_2$ —); 3,47 м (4H, $-\text{CH}_2\text{CH}_2$ —); 4,59 д (1H, H_4 -пирид, $\text{J}=6,8$ Гц); 5,06 дд (1H, H_3 -пирид, $\text{J}=6,8$; 7,5 Гц); 7,03; 7,21; 7,41—7,58 все-м (10H, ароматич); 10,50 (1H, NH пирид); 10,75 с (1H, NH пиримид)
IIe	3,34 т (2H, <u>CH</u> ₂ CH ₂ N, J=8,1 Γ ц); 4,11 т(2H, CH ₂ <u>CH</u> ₂ N, J=8,1 Γ ц); 4,60 д (1H, H ₄ -пирид, J=6,7 Γ ц); 5,08 дд (1H, H ₃ -пирид, J=6,3 ; 7,3 Γ ц); 6,97— $\bar{7}$,70 м (14H, ароматич); 7,83 д (1H, NH амид, J=7,3 Γ ц); 10,65 с(1H, NH пирид); 10,93 с (1H, NH пиримид)
IId	1,95 м (4H, $-\text{CH}_2\text{CH}_2$ —); 3,47 м (4H, $-\text{CH}_2\text{CH}_2$ —); 4,59 д (1H, H_4 -пирид, $\text{J}=6,8$ Гц); 5,06 дд (1H, H_3 -пирид, $\text{J}=6,8$; 7,5 Гц); 7,03; 7,21; 7,41—7,58 все-м (10H, ароматич); 10,50 (1H, NH пирид); 10,75 с (1H, NH пиримид)
IIe	3,34 т (2H, $\underline{\text{CH}}_2\text{CH}_2\text{N}$, J=8,1 Γ ц); 4,11 т(2H, $\underline{\text{CH}}_2\text{CH}_2\text{N}$, J=8,1 Γ ц); 4,60 д (1H, $\underline{\text{H}}_4$ -пирид, J=6,7 Γ ц); 5,08 дд (1H, $\underline{\text{H}}_3$ -пирид, J=6,3 ; 7,3 Γ ц); 6,97—7,70 м (14H, ароматич); 7,83 д (1H, NH амид, J=7,3 Γ ц); 10,65 с(1H, NH пирид); 10,93 с (1H, NH пиримид)
IIf	2,02 м (4H, -CH ₂ CH ₂ -); 2,38 с (3H, Me); 3,62 м м (4H, -CH ₂ CH ₂ -); 4,50 д (1H, H ₄ -пирид, J=6,7 Гц); 5,08 дд (1H, H ₃ -пирид, J=6,7 ; 7,3 Гц); 6,95—7,65 м (8H, ароматич); 7,72 д (1H, NH амид, J=7,3 Гц); 10,45 с (1H, NH пирид); 10,72 с (1H, NH пиримид)
IIIa	3,25 с (3H, CH ₃); 3,46 с (3H, CH ₃); 4,62 д(1H, H ₄ -пирид, J=7,2 Γ ц); 5,17 дд (1H, H ₃ -пирид, J=6,5 ; 7,2 Γ ц); 7,04—7,45 м (8H, ароматич); 7,48 д (1H, NH амид, J=6,5 Γ ц); 7,85 м (2H, ароматич); 11,03 с (1H, NH пирид);
IIIb	2,28 с (3H, Ar- <u>Me</u>); 3,26 с (3H, Me-пиримид); 3,45 с (3H, Me-пиримид); 4,56 д (1H, $\rm H_4$ -пирид, $\rm J$ =7,2 $\rm \Gamma$ и); 5,09 дд (1H, $\rm H_3$ -пирид, $\rm J$ =6,5 ; 7,2 $\rm \Gamma$ и); 7,10—8,02 м (11H, ароматич+NH-амид); 10,92 с (1H, NH пирид);
IIIc	2,32 с (3H, Ar- <u>Me</u>); 3,28 с (3H, Me-пиримид); 3,41 с (3H, Me-пиримид); 4,53 д (1H, $\rm H_4$ -пирид, $\rm J$ =7,1 $\rm \Gamma$ $\rm u$); 5,10 дд (1H, $\rm H_3$ -пирид, $\rm J$ =6,4 ; 7,1 $\rm \Gamma$ $\rm u$); 7,00—7,74 (7H, ароматич); 7,79 д (1H, NH амид, $\rm J$ =6,4 $\rm \Gamma$ $\rm u$); 10,85 с (1H, NH пирид);

плавления и спектральные характеристики соответствуют литературным данным.

N-(5-R-4-гетерил-6-метил-2-оксо-1,2,3,4-тетрагидропиридин-3-ил)бензамиды Ia,b

Смесь 0,002 моль азлактона и 0,002 моль эфира β-аминокротоновой кислоты в 5—7 мл уксусной кислоты в течение 12—18 часов. Выпавший после охлаждения и/или добавления петролейного эфира осадок отфильтровывали и перекристаллизовывали из изопропилового спирта.

N-[2-гетерил-4,7-диокси-5-арил-3,4,5,6,7,8-гексагидро пиридо[2,3-d]пиримидин-6-ил]бензиламиды Па-f

Эквимолярное количество (по 0,002 моль) соответствующих С,N-динуклеофила и 4-арилиден-2-арил-1,3-оксазол-5(4H)-она кипятили в 3—5 мл уксусной кислоты в течение 18—22 ч. Выпавший после охлаждения и/или добавления петролейного

эфира осадок отфильтровывали и перекристаллизовывали из изопропилового спирта.

Соединения **Ша-с** получены по аналогичной методике.

СПИСОК ЛИТЕРАТУРЫ

- 1. Application of α -(2-chloroaroyl) thioacetanilides in synthesis: an unusual and highly efficient access to thiochromeno[2,3-b]pyridine derivatives / Li-Rong Wen, [et al] // J. Org. Chem. 2008. V. 73 № 5. P. 1852—1863.
- 2. The use of 4-hetaryliden- and 4-aryliden-5(4H)-oxazolones as dienophiles / A. Avenoza, [et al] // J. Heterocycl. Chem. 1997. V.34. № 4. P.1099—1100.
- 3. Органические реакции / под ред. Р. Адамса. М.: Изд-во иностр. лит-ры, 1951. Сб. 3. С. 190—229.
- 4. An efficient route for the synthesis of a new class of pyrido[2,3-d]pyrimidine derivatives / Sh. Tu, [et al] // Org. Biomol. Chem. 2007. № 5. P. 1450—1453.

Пенина Дарья Владимировна — аспирант кафедры органической химии; Воронежский государственный университет; тел.: (4732) 208433; e-mail: darya.gress@mail.ru

Penina Darya V. — PhD student, organic chemistry department, Voronezh State University, tel.: (4732) 208433; e-mail: darya.gress@mail.ru

Романов Павел Сергеевич — аспирант кафедры органической химии; Воронежский государственный университет; тел.: (4732) 208433; e-mail: kaf261@rambler.ru

Romanov Pavel S. — PhD student, organic chemistry department, Voronezh State University, tel.: (4732) 208433; e-mail: kaf261@rambler.ru

Степаненко Татьяна Ивановна — студент кафедры органической химии; Воронежский государственный университет; тел.: (4732) 208433; e-mail: kaf261@rambler.ru

Stepanenko Tatyana I. — student, organic chemistry department, Voronezh State University, tel.: (4732) 208433; e-mail: kaf261@rambler.ru

Крысин Михаил Юрьевич — профессор кафедры органической химии; Воронежский государственный университет; тел.: (4732) 208433; e-mail: kaf261@rambler.ru

Krysin Mikhail Yu. — professor, organic chemistry department, Voronezh State University, tel.: (4732) 208433, e-mail: kaf261@rambler.ru

Презент Михаил Абрамович — научный сотрудник; Институт органической химии РАН им. Н. Д. Зелинского, г. Москва; тел.: 8(903)7938962; e-mail: pre1962@mail.ru

Prezent Mikhail A. — researcher, N.D. Zelinsky Institute of Organic Chemistry RAS, Moscow, tel. 8(903)7938962; e-mail: pre1962@mail.ru

Фам Тхи Хонг Зуен — студент кафедры органической химии; Воронежский государственный университет; тел.: (4732) 208433; e-mail: kaf261@rambler.ru

Fam Tkhi Khong Zuen — student, organic chemistry department, Voronezh State University, tel.: (4732) 208433; e-mail: kaf261@rambler.ru

Соловьев Александр Сергеевич — к.х.н., доцент кафедры органической химии; Воронежский государственный университет; тел.: (4732) 208433; e-mail: kaf261@rambler.ru

Solovyev Alexandr S. — associate professor, organic chemistry department, Voronezh State University, tel.: (4732) 208433, e-mail: kaf261@rambler.ru