ОСОБЕННОСТИ ИЗОЛИРОВАНИЯ И ОПРЕДЕЛЕНИЯ ТЕТРАЭТИЛТИУРАМДИСУЛЬФИДА В БИОЛОГИЧЕСКОМ МАТЕРИАЛЕ

А. П. Просветова¹, Е. П. Дурицын¹, Т. Н. Илюшина¹, В. К. Шорманов²

¹ Воронежская государственная медицинская академия им. Н. Н. Бурденко ² Курский государственный медицинский университет Поступила в редакцию 25.09.2009 г.

Аннотация. Определены оптимальные условия изолирования тетраэтилтиурамдисульфида из биологического материала (печень) этилацетатом. Для идентификации и количественного определения тетраэтилтиурамдисульфида в извлечениях из биологического материала предложен метод тонкослойной хроматографии с использованием нормальнофазных сорбентов и УФ-спектрофотометрия.

Ключевые слова: тетраэтилтиурамдисульфид, изолирование, идентификация и определение.

Abstract. Optimal conditions have been determined for tetraethylthyuramdisulphide isolation from biomaterial of liver by ethylacetate. Thin-layer chromatography with use of normalphase sorbates and UV-spectrophotometric methods are proposed for identification and quantitative determination of tetraethylthyuramdisulphide in extract from biomaterial.

Keywords: tetraethylthyuramdisulphide, isolation, identification and definition.

ВВЕДЕНИЕ

Тетраэтилтиурамдисульфид (тетурам, ТЭТД) по химическому строению является амидом дитиоугольной кислоты. По физическим свойствам представляет собой от белого с желтоватозеленоватым оттенком до светло-жёлтого с зеленоватым оттенком кристаллический порошок без характерного запаха и вкуса, с температурой плавления 70—73° С (после высушивания). Трудно растворим в спирте и эфире, практически нерастворим в воде, кислотах и щелочах, очень легко растворим в хлороформе [1, 2].

В лечебных целях он начал применяться с 1948 года.

В настоящее время ТЭТД продолжает использоваться в медицинской практике для лечения алкоголизма под названиями Антабус, Дисульфирам, Абстинил и т.д. [3].

ТЭТД при взаимодействии с алкоголем в организме человека вызывает у последнего резкую аллергическую реакцию, которая по природе и проявлениям близка к анафилактическому шоку. Вещество оказывает психотропное, гепатотоксическое действие; блокируя ферментную биотрансформацию алкоголя, приводит к увеличению концентрации ацетальдегида в крови после приема алкоголя [3]. Смертельная доза: без алкоголя в

крови около 30 г, при концентрации алкоголя в крови более 1% - 1 г. Описаны случаи отравления ТЭТД, в том числе с летальным исходом.

Широкое применение ТЭТД, его высокая токсичность, наличие случаев летального отравления, обусловливают необходимость изучения данного вещества в химико-токсикологическом отношении.

До настоящего времени остаются недостаточно разработанными вопросы изолирования данного вещества из объектов биологического происхождения, его очистки, обнаружения, идентификации и количественного определения. В литературе отсутствуют данные по сохраняемости ТЭТД в биологическом материале.

Целью исследования явилось изучение особенностей изолирования рассматриваемого вещества из биологического материала и разработка методики его определения в полученных извлечениях.

ЭКСПЕРИМЕНТ

В качестве объекта исследования рассмотрен тетурам — тетраэтилтиурамдисульфид, соответствующего требованиям ФС 42-0550630805 с содержанием основного вещества не менее 99 %.

В процессе исследования изучали особенности извлечения ТЭТД из биологического материала (печень) изолирующими агентами различной химической природы: карбоновыми кислотами (муравьиная кислота, ледяная уксусная кислота), спиртами (пропанол-2), гетероциклическими кис-

[©] Просветова А. П., Дурицын Е. П., Илюшина Т. Н., Шорманов В. К., 2009

лородсодержащими соединениями (диоксан-1,4), алканами (гексан), галагеналканами (хлороформ), аренами (толуол), простыми и сложными эфирами (этилацетат, диэтиловый эфир), нитрилами (ацетонитрил).

Для обнаружения и предварительной идентификации тетраэтилтиурамдисульфида, выделенного из биологического материала, использована возможность применения хроматографии в тонких слоях нормальнофазного сорбента [4].

Модельные смеси (5 г биологического материала (мелкоизмельченной ткани печени), содержащего определенное количество исследуемого вещества), выдерживали при температуре 18— 22° С в течение 1,5 часов после их приготовления. Затем каждую модельную смесь заливали 10 мл изолирующего агента и настаивали в течение 1 часа при периодическом перемешивании. Полученное извлечение отделяли, процесс настаивания повторяли по вышеописанной схеме. Отдельные извлечения объединяли. Часть извлечения (0,3 мл), полученного из каждой смеси наносили на пластину типа «Сорбфил» UV-254 и хроматографировали, используя в качестве подвижной фазы систему растворителей гексан — диоксан — пропанол-2 (15:5:1).

На полученных хроматограммах в УФ-свете наблюдали пятно ТЭТД темно-фиолетового цвета. Анализируемое вещество идентифицировали по величине Rf, совпадающей с таковой веществасвидетеля. Пятно ТЭТД вырезали из хроматограм-

мы вместе с участком пластинки, помещали в пробирку и элюировали вещество из сорбента ацетонитрилом в течение 15 минут. Оптическую плотность полученного элюата измеряли при длине волны 280 нм на спектрофотометре СФ-46 в кювете с толщиной рабочего слоя 10 мм. Измерения проводили на фоне раствора, полученного в контрольном опыте. По величине оптической плотности определяли количество ТЭТД, изолированного из биологического материала, используя при этом уравнение градуировочного графика [4]. Рассчитывали степень извлечения ТЭТД, изолированного из биологического объекта, по отношению к навеске вещества предварительно внесенной в модельную смесь.

В дальнейшем исследовали зависимость степени извлечения тетраэтилтиурамдисульфида оптимальным изолирующим агентом из биологического материала от продолжительности контакта изолирующей жидкости с биологическим материалом, кратности настаивания и количественного соотношения изолирующего агента и биологического материала.

Изучена зависимость степени изолирования тетраэтилтиурамдисульфида от его концентрации в биоматериале.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

В табл. 1 представлены результаты извлечения ТЭТД из биологического материала различными изолирующими агентами. Сравнение результатов

Таблица 1 Зависимость изолирования тетраэтилтиурамдисульфида от природы изолирующего агента (экстрагент — ацетонитрил)

№ пластины	Изолирующий агент	Содержание ТЭТД в навеске, мг	Найдено ТЭТД	
			МΓ	%
1	Этилацетат	5,00	4,91	98,36
2	Хлороформ	5,00	4,46	89,26
4	Гексан	5,00	1,19	23,13
5	Ацетонитрил	5,00	2,15	43,09
6	Диоксан-1,4	5,00	1,33	26,65
7	Ледяная уксусная кислота	5,00	0,51	10,28
8	Толуол	5,00	3,13	62,64
10	Эфир	5,00	2,26	45,28
13	Пропанол-2	5,00	1,28	25,69

Зависимость степени извлечения тетраэтилтиурамдисульфида от продолжительности контакта изолирующей жидкости и биоматериала (экстрагент — ацетонитрил)

Навеска	Содержание ТЭТД	Продолжительность контакта изолирующей жидкости и биоматериала, мин	Найдено ТЭТД	
биоматериала, г	в навеске, мг		МΓ	%
5,00	5,00	15	4,15	82,95
5,00	5,00	30	4,23	84,62
5,00	5,00	45	4,67	93,32
5,00	5,00	60	4,75	94,99
5,00	5,00	75	4,78	95,66

изолирования тетраэтилтиурамдисульфида (при содержании его в биологическом объекте 0,1%) указанными изолирующими жидкостями показывает, что максимальные значения степени извлечения достигнуты при использовании в качестве изолирующего агента этилацетата.

Механизм изолирующего эффекта данного растворителя связан, вероятно, с тем, что, во-первых, обладая липофильными свойствами, он хорошо проникает через липидный слой клеточных мембран, частично разрушая их, во-вторых, в определенной степени смешивается с водой межклеточного пространства и цитоплазматического матрикса, обезвоживая биологическую ткань. Высокий процент извлечения тетраэтилтиурамдисульфида этилацетатом можно также объяснить хорошей растворимостью вещества в данном изолирующем агенте.

При изучении зависимости степени извлечения антабуса от продолжительности контакта изолирующей жидкости и биоматериала (табл. 2) выяснилось, что для получения степени извлечения не менее 90%, время контакта биологического объекта с изолирующим агентом при каждом отдельном настаивании должно составлять не менее 45 мин.

Исследование зависимости степени извлечения ТЭТД от кратности настаивания и количества изолирующего агента показало, что для достаточно полного извлечения анализируемого соединения из биологического материала достаточно двукратного настаивания биологического объекта с изолирующим агентом при условии, что количество изолирующего агента в каждом случае должно превышать количество биологического материала по массе как минимум в 2 раза (табл. 3).

Как свидетельствуют полученные данные, увеличение содержания тетраэтилтиурамдисульфида в модельных смесях (печень) в интервале концентраций (1—15 мг) при постоянной массе биологического материала (5 г) сопровождалось лишь незначительным изменением среднего значения степени извлечения, не превышающим 3,0% (табл. 4).

Это позволяет предположить, что взаимодействие тетраэтилтиурамдисульфида со структурными фрагментами биологической ткани не приводит к образованию достаточно прочных связей.

Использование этилацетата в качестве изолирующего агента и предложенные условия изолирования позволяют достичь достаточно высокой степени извлечения анализируемого соединения из биологического материала. Разработанная ме-

Таблица 4 Зависимость степени изолирования тетраэтилтиурамдисульфида от его концентрации в биоматериале (экстрагент — ацетонитрил), (n = 5; P = 0,95)

Внесено ТЭТД (мг)	Найдено ТЭТД		
на 5 г печени	МΓ	%	
0,50	0,38	76,93	
1,00	0,89	89,02	
2,00	1,82	91,11	
5,00	4,59	91,98	
10,00	9,01	90,05	
15,00	13,80	92,00	

Таблица 3 Зависимость степени извлечения тетраэтилтиурамдисульфида из ткани печени от количественного соотношения изолирующего агента и биологического материала и кратности изолирования (экстрагент — ацетонитрил)

Навеска	Содержание	Количество	Порядковый номер настаивания	Найдено ТЭТД	
биоматериа- ла, г	ТЭТД в навеске, мг	изолирующего агента, г		МΓ	%
		5,00	1	2,31	46,25
		5,00	2	1,76	35,18
			1+2	4,07	81,43
5,00	5,00	5,00	3	0,51	10,19
			1+2+3	4,58	91,62
		5,00	4	0,19	3,92
			1+2+3+4	4,78	95,54
		10,00	1	2,31	46,28
		10,00	2	1,95	39,07
			1+2	4,27	85,35
5,00	5,00	10,00	3	0,56	11,12
			1+2+3	4,82	96,47
		10,00	4	0,14	2,76
			1+2+3+4	4,96	99,23
	5,00		1	2,0275	40,55
		12,50	2	1,923	38,46
		12,50	1+2	3,9505	79,01
5,00			3	0,836	16,72
		12,50	1+2+3	4,7865	95,73
		12,50	4	0,1635	3,27
			1+2+3+4	4,95	99
		15,00	1	2,436	48,72
		15,00	2	1,806	36,12
	5,00		1+2	4,242	84,84
5,00		15,00	3	0,678	13,56
			1+2+3	4,92	98,4
		15,00	4	0,0615	1,23
			1+2+3+4	4,9815	99,63
		20,00	1	2,267	45,34
5,00		20,00	2	1,9575	39,15
	5,00		1+2	4,2245	84,49
		20,00	3	0,5045	10,09
			1+2+3	4,729	94,58
		20,00	4	0,224	4,48
			1+2+3+4	4,953	99,06

тодика хорошо воспроизводима и отличается достаточной простотой выполнения (относительная ошибка 2,96 %).

Определяемый минимум ТЭТД составляет 1 мг на 100 г биологического материала.

ЗАКЛЮЧЕНИЕ

На основании проведенных исследований для выделения тетраэтилтиурамдисульфида из биологического материала предложен этилацетат.

Оптимальное соотношение изолирующего агента и биологического материала составляет 2 : 1, продолжительность контакта 45 мин, при двукратном настаивании.

Разработана методика идентификации и количественного определения тетраэтилтиурамдисульфида в извлечениях из биологического материала с применением методов ТСХ и УФ-спектрофотометрии.

Просветова Анастасия Петровна — аспирант кафедры фармацевтической химии и клинической фармации Воронежской государственной медицинской академии

Дурицын Евгений Петрович — доцент кафедры фармацевтической химии и клинической фармации Воронежской государственной медицинской академии; тел.: (4732) 530249

Илюшина Татьяна Николаевна — ассистент кафедры фармацевтической химии и клинической фармации Воронежской государственной медицинской академии; e-mail: ilyushina_t@mail.ru

Шорманов Владимир Камбулатович — профессор кафедры фармацевтической, токсикологической и аналитической химии Курского государственного медицинского университета

СПИСОК ЛИТЕРАТУРЫ

- 1. Иванова И.П., Гойзман М.С., Виноградов Л.Х. О корреляции чистоты тетурама и его цветовой характеристики. Химико-фармацевтический журнал. Том XXII, март 3, 1988г. С. 371—376.
- 2. *Мельников Н.Н. Новожилов К.В., Белан С.Р., Пылова Т.Н.* Справочник по пестицидам. М.: Химия, 1985. С. 352
- 3. РЛС. Энциклопедия лекарств. 15-й вып./Гл. ред Г.Л. Вышковский. М.: «РЛС-2007», 2006. С. 1488.
- 4. Дурицын Е.П., Шорманов В.К., Илюшина Т.Н., Васильковская Т.В., Просветова А.П. Определение тетраэтилтиурамдисульфида методом УФ-спектрофотометрии. Материалы Всероссийской научно-практической конференции, посвященной 10-летию биотехнологического факультета Курского государственного медицинского университета, Курск, 2008. С. 160—163.
- 5. Химический энциклопедический словарь / Под ред. И. Л. Кнунянца. М.: Советская энциклопедия, 1983. 792 с.

Prosvetova Anastasiya P. — post-graduated student of pharmaceutical chemistry and clinical pharmacy department, Voronezh State Medical Academy

Duritcin Evgeniy P. — assistant professor of pharmaceutical chemistry and clinical pharmacy department, Voronezh State Medical Academy; tel.: (4732) 530249

Ilyusina Tatiana N. — assistant professor of pharmaceutical chemistry and clinical pharmacy department, Voronezh State Medical Academy e-mail: ilyushina_t@mail.ru

Shormanov Vladimir K. — professor of of pharmaceutical, toxicological and analytical chemistry department, Kyrsk State Medical University