ОПРЕДЕЛЕНИЕ 2,4,6-ТРИНИТРОМЕТИЛБЕНЗОЛА В КРОВИ

В. К. Шорманов, В. А. Омельченко

Курский государственный медицинский университет Поступила в редакцию 11.04.2008 г.

Аннотация. Проведено изолирование 2,4,6-тринитрометилбензола из крови человека смесью растворителей ацетонитрил-ацетон. Разработана методика определения 2,4,6-тринитрометилбензола в извлечениях из крови человека методами нормальнофазовой хроматографии и электронной спектрофотометрии.

Ключевые слова: 2,4,6-тринитрометилбензол, извлечение, биологический материал

Abstract. The isolation 2,4,6-benzyl threenitromethyl from a blood of the person by an admixture of dissolvents nitrilacetone-acetone is carried out. The technique of definition 2,4,6-benzyl threenitromethyl in extraction from a blood of the person by methods normal phase chromatography and an electron spectrophotometery is developed.

Key words: 2,4,6-benzyl threenitromethyl, extraction, biological material

2,4,6-тринитрометилбензол (2,4,6-тринитротолуол, тол, тротил, ТНТ) (в дальнейшем — 2,4,6-ТНТ) — желтое кристаллическое вещество горького вкуса, без запаха с температурой плавления $80,85\,^{\circ}$ С, плохо растворимое в воде ($0,015\,^{\circ}$ в $100\,^{\circ}$ в оды при $25\,^{\circ}$ С), хорошо — в ацетоне ($109\,^{\circ}$ в $100\,^{\circ}$ ($20\,^{\circ}$ С), хуже — в этаноле ($1,23\,^{\circ}$ в $100\,^{\circ}$ ($20\,^{\circ}$ С) [1,7].

2,4,6-тринитрометилбензол является высокобризантным взрывчатым веществом, используемым в военном деле, в дорожном строительстве, при геологических разраработках, ликвидациях ледяных заторов в паводковый период. Известно его использование в органическом синтезе, в микробиологии, а также в качестве цветореагента в фотометрическом анализе [1, 3, 7].

Рассматриваемое соединение токсично для теплокровных организмов. LD_{50} 2,4,6-тринитрометилбензола для крыс при пероральном введении составляет 510 мг/кг, при перкутанном — 540 мг/кг [2, 6]. Описаны случаи смертельного отравления людей данным соединением. Летальной для человека считается доза 1—2 г [4, 5].

Широкое применение 2,4,6-тринитрометилбензола, его токсические свойства и наличие случаев летального отравления определяют его важное судебно-химическое значение [8].

Многие вопросы химико-токсикологического анализа данного соединения до настоящего времени изучены недостаточно.

Целью настоящего исследования явилась разработка методики определения 2,4,6-тринитрометилбензола в крови.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Объектом исследования явился 2,4,6-тринитрометилбензол (в дальнейшем — 2,4,6-ТНМБ) (фирма «Fluka», содержание основного вещества не менее 99,9%).

Для исследования в каждом опыте брали по 10 г искусственной смеси (кровь человека, содержащая определенное количество 2,4,6-ТНМБ) или такое же количество контрольного образца крови. Изолирование анализируемого вещества из биоматериала осуществляли смесью ацетонитрил-ацетон (1:1) путем двукратного настаивания (каждый раз в течение 45 минут). Соотношение изолирующего агента и биологического объекта при каждом настаивании составляло 2:1 (по массе). Отдельные извлечения объединяли, обезвоживали безводным сульфатом натрия и испаряли растворитель в токе воздуха.

Изучены особенности очистки рассматриваемого вещества, выделенного из биологического материала методом адсорбционной колоночной хроматографии низкого давления. В эксперименте использовалась колонка размером 490×11 мм, заполненная 10 г силикагеля L $40/100\mu$ (фирма «Chemapol», Чехия). Элюентом являлась смесь растворителей гексан-ацетон (8,5:1,5). Элюат собирали в виде отдельных фракций по 2 мл каждая. Анализируемое вещество обнаруживали во фракциях методом TCX (пластины «Силуфол» UV-254, подвижная фаза— система растворителей гексан-этилацетат (6:4), проявление хроматограмм осуществлялось в $V\Phi$ -свете).

Параллельно проводили контрольное хроматографирование на колонке извлечения из 10 г

[©] Шорманов В. К., Омельченко В. А., 2008

крови человека, заведомо не содержащей 2,4,6-ТНМБ.

Фракции элюата, в которых теоретически возможно присутствие анализируемого вещества, объединяли, испаряли и растворяли остаток в 5 мл ацетона. 1 мл полученного раствора вносили в выпарительную чашку и испаряли растворитель в токе воздуха. Остаток растворяли в 25 мл смеси растворителей гексан-диоксан-пропанол-2 (40:5:1) с последующим измерением оптической плотности раствора при 246 нм (смесь растворителей и длина волны соответствуют условиям определения методом нормальнофазовой ВЭЖХ).

Для обнаружения и предварительной идентификации анализируемого соединения, извлеченного из биологического материала, изучена возможность применения хроматографии в тонких слоях гидроксилированного (широкопористый силикагель на пластинах «Силуфол» UV-254) сорбента.

В процессе исследования изучали хроматографическое поведение 2,4,6-ТНМБ и ряда близких по структуре и свойствам нитропроизводных ароматического и гетероциклического ряда в зависимости от природы подвижных фаз.

Для подтверждающей идентификации 2,4,6-ТНМБ, выделенного из крови и очищенного в колонке с силикагелем, применены методы ВЭЖХ и электронной спектрофотометрии.

При поиске условий определения анализируемого соединения методом ВЭЖХ в качестве неподвижной фазы рассмотрен сорбент с гидроксилированной поврхностью Силасорб-600, в качестве подвижных фаз — мало и среднеполярные органические растворители и их двух- и трехкомпонентные смеси. Процесс хроматографирования осуществляли на приборе «Милихром» («Научприбор», Россия), снабженным УФ-детектором. Для оценки особенностей хроматографирования рассчитывали значения времени удерживания (t_R) , объема удерживания (V_R) , коэффициента емкости (k'), числа теоретических тарелок (N) и фактора асимметрии.

Метод ВЭЖХ использовали также для количественного определения 2,4,6-ТНМБ.

Особенности поглощения 2,4,6-ТНМБ электромагнитного излучения исследовали в области дли волн 200-400 нм, используя спектрофотометр СФ-46 («ЛОМО», Россия). При этом в качестве растворяющих сред рассмотрены вода, органические растворители и смеси органических растворителей с водой. Измерения проводили в кварцевых кюветах с толщиной рабочего слоя 10 мм.

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ И ИХ ОБСУЖДЕНИЕ

Изучение хроматографического поведения 2,4,6-ТНМБ в колонке с силикагелем L $40/100\mu$ показало, что в случае использования подвижной фазы гексан-ацетон (8,5:1,5) анализируемое вещество присутствует в 5 и 6 фракциях элюата (9—12 мл).

В контрольных опытах с кровью, не содержащей 2,4,6-ТНМБ, установлено, что фоновое поглощение части элюата, соответствующего фракциям, в которых возможно присутствие рассматриваемого вещества, незначительно и не превышает 0,006 при 246 нм — аналитической длине волны при определении методом ВЭЖХ. Полученный результат позволяет характеризовать предлагаемый вариант очистки на колонке с гидроксилированным сорбентом как достаточно эффективный.

Результаты исследования хроматографической подвижности 2,4,6-ТНМБ в тонком слое гидроксилированного сорбента (пластины «Силуфол» UV-254) представлены в таблице 1.

Как свидетельствуют полученные данные, оптимальными для идентификации анализируемого вещества методом нормальнофазовой ТСХ в присутствии ряда близких по структуре нитропроизводных (1,3-динитробензола, 2,4-динитрометилбензола, и 1,3,-тринитро-1,3,5-триазациклогексана) следует считать подвижные фазы гексан-ацетон (6:4), гексан-этилацетат (6:4) и гексан-пропанол-2 (8:2).

При исследовании спектральных кривых 2,4,6-ТНМБ, полученных в различных растворителях, отмечено присутствие в них 1-2 достаточно интенсивных полос поглощения ($\lambda_{\rm max} = 204$ —234 нм), соответствующих, очевидно, π - π *-переходам в электронной системе бензольного ядра (табл. 2). Это делает принципиально возможным применение метода электронной спектрофотометрии для идентификации 2,4,6-ТНМБ. Как свидетельствуют полученные результаты, в качестве растворителя для определения рассматриваемого соединения, извлеченного из биологического материала, методом УФ-спектрофотометрии целесообразно применение смеси растворителей ацетонитрил-вода (6:4). В данной среде полоса поглощения на спектральной кривой достаточно интенсивна (ε = 20200) и наиболее заметно смещена в сторону инфракрасной области спектра ($\lambda_{\rm max}$ = 234 нм). Это способствует повышению селективности определения анализируемого вещества в присутствии остаточных количеств веществ биологической

Таблица 1 Результаты хроматографирования 2,4,6-тринитрометилбензола и близких по структуре нитросоединений соединений в тонкм слое широкопористого силикагеля (пластины «Силуфол» UV-254)

Подвижные фазы	2,4,6-тринитро-		1,3-тринитро- 1,3,5-триаза- циклогексан		2,4-динитро- толуол		1,3-динитро- бензол	
	Rf	Rs	Rf	Rs	Rf	Rs	Rf	Rs
Пропанол-2	0,86	1,10	0,59	0,76	0,80	1,03	0,78	1,00
Тетрахлорметан	0,14	0,74	0,00	0,00	0,21	1,12	0,19	1,00
Дихлорэтан	0,83	1,00	0,39	0,47	0,85	1,02	0,83	1,00
Толуол	0,78	1,24	0,08	0,13	0,69	1,10	0,63	1,00
Тетрахлорметан-этилацетат (8:2)	0,89	1,17	0,18	0,24	0,81	1,07	0,76	1,00
Тетрахлорметан-ацетонитрил (8:2)	0,72	0,96	0,54	0,72	0,78	1,04	0,75	1,00
Тетрахлорметан-ацетон (2:8)	0,79	1,01	0,65	0,83	0,78	1,00	0,78	1,00
Тетрахлорметан-ацетон (8:2)	0,84	1,12	0,22	0,29	0,80	1,07	0,75	1,00
Тетрахлорметан-диоксан (5:5)	0,89	1,01	0,48	0,48	0,92	0,55	0,88	1,00
Гексан-ацетон (8,5:1,5)	0,38	1,05	0,02	0,06	0,38	1,05	0,36	1,00
Гексан-ацетон (6:4)	0,67	1,08	0,49	0,79	0,64	1,03	0,62	1,00
Гексан-этилацетат (2:8)	0,88	0,89	0,89	0,91	0,98	0,99	0,99	1,00
Гексан-этилацетат (6:4)	0,68	1,26	0,17	0.32	0,56	1.04	0,54	1.00
Гексан-пропанол-2 (6:4)	0,92	1,07	0,45	0,52	0,87	1,01	0,86	1,00
Гексан-пропанол-2 (8:2)	0,51	1,21	0,13	0,31	0,47	1,12	0,42	1,00

матрицы, интенсивность поглощение которых уменьшается с ростом длины волны.

УФ-спектр анализируемого вещества, извлеченного из крови и очищенного на колонке с силикагелем L 40/100µ, в среде смеси растворителей ацетонитрил-вода (6:4) в значительной степени совпадал с таковым вещества-стандарта. Это свидетельствует о высокой степени очистки 2,4,6-ТНМБ методом адсорбционной колоночной хроматографии и целесообразности применения электронной спектрофотометрии для идентификации этого вещества в извлечениях из биологического материала.

Исследование особенностей определения 2,4,6-ТНМБ методом ВЭЖХ показало, что оптимальные условия хроматографирования при использовании сорбента «Силасорб-600» (колонка размерами 64×2 мм) могут быть достигнуты в случае применения подвижной фазы гексан-диоксан-пропанол-2 (40:5:1). Температура колонки в процессе определения составляла $20\,^{\circ}$ С, скорость подачи подвижной фазы — 50 мкл/мин, скорость движения диаграммной ленты — 720 мм/час, вре-

мя измерения — 0,2 с, масштаб регистрации — 0,4 е.о.п. Значения оптической плотности регистрировали при длине волны 246 нм. Рассчитанные для данных условий хроматографирования значения ряда характеристик составили: 7,14 мин (время удерживания), 357 мкл (объем удерживания),

Таблица 2 Основные оптические характеристики электронных спектров 2,4,6-ТНМБ в различных растворяющих средах

Растворяющая среда	λ_{max} , HM	E _{1cm} 1%	3
Этанол	204 228	542 722	15660 20885
Ацетонитрил	231	746	21790
Ацетонитрил-вода (6:4)	234	771	20200
Метанол	224	532	15255
Метанол-вода (6:4)	230	717	18615
Пропанол-2	225	601	17365
Пропанол-2 — вода (6:4)	228	750	19520

1,23 (коэффициент емкости), 4733 (число теоретических тарелок), 0,92% (фактор асимметрии пика).

Открываемый минимум 2,4,6-ТНМБ методом ВЭЖХ составил 0,01 мкг в хроматографируемой пробе.

На хроматограмме 2,4,6-ТНМБ, выделенного из биологического материала, при сравнении ее с хроматограммой вещества-стандарта не обнаруживаются дополнительные пики или заметное увеличение фонового поглощения. При этом параметры хроматографирования анализируемого соединения, выделенного из крови, совпадают с соответствующими параметрами стандартного вещества.

Установлено наличие линейной зависимости между содержанием 2,4,6-ТНМБ в хроматографируемой пробе (интервал концентраций (0,01—0,16 мкг) и площадью хроматографического пика (см²). Исходя из этого, строили калибровочный график и рассчитывали его уравнение, которое в данном случае имело вид:

$$S = 42,550424 \cdot C - 0,03278$$
.

При определении 2,4,6-ТНМБ методом ВЭЖХ в субстанции относительная ошибка среднего результата не превышала 1,5 %.

На основе результатов предварительных исследований предложена методика определения 2,4,6-ТНМБ в биологическом материале.

МЕТОДИКА ОПРЕДЕЛЕНИЯ 2,4,6-ТНМБ В БИОЛОГИЧЕСКОМ МАТЕРИАЛЕ

ИЗОЛИРОВАНИЕ 2,4,6-ТНМБ

10 г биологического материала (крови человека), содержащего определенное количество анализируемого соединения, заливали 20 г смеси ацетонитрил-ацетон (1:1), выдерживали 45 минут, периодически перемешивая. Извлечение отделяли от твердых частиц биоматериала, а операцию настаивания повторяли в вышеописанных условиях. Вытяжки объединяли, пропускали через стеклянный фильтр диаметром 4 см со слоем безводного сульфата натрия толщиной 1,5—2,0 см, слой сульфата натрия промывали порцией ацетонитрила объемом 20 мл. Оба фильтрата объединяли в выпарительной чашке и испаряли растворитель в токе воздуха при комнатной температуре до получения сухого остатка.

ОЧИСТКА НА КОЛОНКЕ С СИЛИКАГЕЛЕМ

Сухой остаток растворяли в 2-3 мл ацетона, смешивали полученный раствор с 1,5 г силикагеля L 40/100 µ и, после испарения растворителя, вносили данную смесь в стеклянную хроматографи-

ческую колонку размером 490 × 11 мм, предварительно заполненную 8,5 г силикагеля L 40/100µ. Содержимое колонки уплотняли путем равномерного постукивания по внешней поверхности ее стенок. Хроматографирование осуществляли, используя в качестве элюента систему растворителей гексан-ацетон (8,5:1,5). Элюат собирали отдельными фракциями по 2 мл каждая. Фракции с 5 по 6 включительно объединяли, испаряли в токе воздуха при температуре 16—22 °C. Остаток растворяли в 5 мл ацетона.

ПРЕДВАРИТЕЛЬНАЯ ИДЕНТИФИКАЦИЯ МЕТОДОМ ТСХ

На линии старта трех хроматографических пластин «Силуфол» UV-254 (10×7 см) наносили по 0,4 мл ацетонового раствора в виде полосы. Хроматографировали в стеклянных камерах внутренним объемом около 600 см3 в присутствии вещества-свидетеля, используя в качестве подвижной фазы систему растворителей гексан-пропанол-2 (8:2). Хроматограммы проявляли в УФ-свете. Исследуемое вещество идентифицировали по величине Rf, совпадающей с величиной Rf веществасвидетеля (0,51 ± 0,02).

ПОДТВЕРЖДАЮЩАЯ ИДЕНТИФИКАЦИЯ МЕТОДОМ УФ-СПЕКТРОФОТОМЕТРИИ

После предварительного хроматографирования методом ТСХ анализируемое вещество элюировали из сорбента 5—10 мл ацетонитрила, элюат разбавляли водой до объемного соотношения 6: 4. Светопоглощение полученного раствора исследовали в УФ-части спектра. При необходимости анализируемый раствор разбавляли. 2,4,6-ТНМБ идентифицировали по форме спектральной кривой и положению максимумов характерных полос поглощения, совпадающим с таковыми стандарта 2,4,6-ТНМБ.

ПОДТВЕРЖДАЮЩАЯ ИДЕНТИФИКАЦИЯ И КОЛИЧЕСТВЕННОЕ ОПРЕДЕЛЕНИЕ МЕТОДОМ ВЭЖХ

1 мл ацетонового раствора вносили в выпарительную чашку и испаряли растворитель в токе воздуха при температуре 16—22 °C. Остаток растворяли в смеси 2,5 мл диоксана и 0,5 мл пропанола-2, прибавляли 20 мл гексана, количественно переносили в мерную колбу вместимостью 25 мл и доводили объем содержимого колбы до метки смесью гексан-диоксан-пропанол-2 (40:5:1). 2—8 мкл полученного раствора вводили в хроматограф Процесс хроматографирования осуществляли в колонке размером 64×2 мм, заполненной сорбентом с гидроксилрованной поверхностью «Силасорб

Таблица 3 Результаты определения 2,4,6-ТНМБ в крови

Внесено 2,4,6- ТНМБ (мг) в 10 г крови	Найдено,% $(n = 5, p = 0.95)$					
	\overline{X}	S	S_{x}	$\Delta \overline{X}$		
1,0	88,41	3,32	1,48	4,12		
4,0	89,19	2,44	1,09	3,03		
10,0	89,53	2,15	0,96	2,67		

600», используя подвижную фазу гексан-диоксанпропанол-2 (40:5:1).

Температура колонки в процессе определения составляла $20\,^{\circ}$ С, скорость подачи подвижной фазы — $50\,$ мкл/мин, скорость движения диаграммной ленты — $720\,$ мм/час, время измерения — $0,2\,$ с, масштаб регистрации — $0,4\,$ е.о.п. Оптическую плотность регистрировали при длине волны $246\,$ нм.

Анализируемое соединение идентифицировали на основе характерного значения времени (объема) удерживания.

Количественное содержание 2,4,6-ТНМБ рассчитывали, исходя из площади хроматографического пика, с использованием уравнения калибровочного графика и пересчитывали на навеску, предварительно добавленную в модельную смесь.

Результаты количественного определения рассматриваемого соединения в крови представлены в таблице 3.

Как свидетельствуют полученные данные, при изменении содержания 2,4,6-ТНМБ в биологическом материале в интервале концентраций 1,0—10,0 мг при постоянной массе крови (10 г) изменение среднего значения степени извлечения незначительно и не превышает 1,5 %. Это позволяет предположить, что взаимодействие анализируемого соединения с эндогенными веществами биожидкости не приводит к образованию достаточно прочных связей.

Разработанная методика позволяет определить в модельных смесях с кровью до 88,41—89,53 %

2,4,6-ТНМБ от первоначально внесенного количества (1,0—10,0 мг в 10 г биоматериала) с достаточными для подобного рода исследований воспроизводимостью и правильностью. Открываемый минимум составляет 0,07 мг анализируемого вещества в 100 г биологического объекта.

выводы

- 1. Рассмотрена возможность изолирования 2,4,6-тринитрометилбензола из крови смесью растворителей ацетонитрил-ацетон (1:1).
- 2. Для очистки рассматриваемого соединения, выделенного из биологического материала, от остаточных количеств веществ биологической матрицы применена адсорбционная хроматография низкого давления в колонках с силикагелем L 40/100µ.
- 3. Разработана методика идентификации и количественного определения 2,4,6-тринитрометилбензола в извлечениях из крови человека с использованием методов нормальнофазовой хроматографии (ТСХ, ВЭЖХ) и электронной спектрофотометрии.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Грушко Я.М.* Вредные органические соединения в промышленных выбросах в атмосферу. Л.: Химия, 1986. 207 с.
- 2. Измеров Н.Ф., Саноцкий И.В., Сидоров Н.К. Параметры токсических промышленных ядов при однократном воздействии. М.: Медицина, 1977. 240 с.
- 3. *Коренман И.М.* Фотометрический анализ. М.: Химия, 1975. 370 с.
- 4. *Лудевиг Р., Лос К*. Острые отравления. М.: Медицина, 1983. 559 с.
- 5. *Могош* Γ . Острые отравления. Бухарест: Медицинское издательство, 1984. 580 с.
- 6. Предельно-допустимые концентрации вредных веществ в воздухе и воде. М.:Химия, 1975. 456 с.
- 7. Химический энциклопедический словарь / Под ред. И.Л. Кнунянца. М.: Советская энциклопедия, 1983. 491 с.
- 8. Омельченко В.А., Шорманов В.К. Изучение особенностей изолирования 2,4,6-тринитрометилбензола из биологического материала // Проблемы экспертизы в медицине. 2007. Т. 7, № 2. С. 48—52.

Шорманов В. К. — профессор кафедры фармацевтической, токсикологической и аналитической химии Курского государственного медицинского университета; тел. (4712) 588-135

Омельченко В. А. — сотрудник кафедры фармацевтической, токсикологической и аналитической химии Курского государственного медицинского университета; тел. (4712) 588-135

Shormanov V. K. — Kursk State University, faculty of pharmaceutical, toxicological and analytical chemistry; tel.: (4712) 588-135

Omelchenko V.A. — Kursk State University, faculty of pharmaceutical, toxicological and analytical chemistry; tel.: (4712) 588-135