КВАНТОВО-ХИМИЧЕСКИЙ РАСЧЕТ ИК СПЕКТРОВ ГИДРАТИРОВАННЫХ КАТИОНОВ

Л. С. Нечаева, Е. В. Бутырская

Воронежский государственный университет

С использованием программы Gaussian 03 исследовано влияние метода расчета и базиса на ИК спектры молекулы воды, димера воды и гидратированных одной и двумя молекулами воды катионов щелочных металлов (Li⁺, Na⁺, K⁺).

введение

Важнейшей проблемой спектроскопии водных растворов солей является изучение влияния иона на частоты колебаний молекул воды. Экспериментальное исследование ИК и КР спектров водных растворов солей выполнено во многих работах [1-9]. ИК и КР спектры водных растворов отражают суммарное влияние катиона, аниона и водородной связи на гидратную оболочку иона [7]. Вследствие сложности структуры водно-солевых растворов к настоящему времени модель взаимодействия ионов с молекулами воды в данных системах не создана [6]. Первым шагом на пути создания такой модели является изучение структуры и ИК спектров гидратированных ионов. Информация о структуре и частотах колебаний гидратированных ионов, свободных от влияния среды, может быть получена методом компьютерного моделирования. Однако правильность результатов зависит от выбора методов и базисов, используемых в моделировании. Большинство работ по компьютерному моделированию гидратированных катионов посвящены расчету их оптимальной структуры [10—17], меньшее число работ — расчету ИК спектров [18—21]. Известно, что базисы при компьютерном моделировании молекулярных систем не являются полными, поэтому на первом этапе всегда возникает проблема выбора адекватного метода и базиса расчета молекулярной системы.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В настоящей работе проведена оптимизация структуры и расчет ИК спектров молекулы воды, димера воды и гидратированных одной и двумя молекулами воды катионов щелочных металлов (Li⁺, Na⁺, K⁺). Для катионов, гидратированных одной молекулой воды, проведен также расчет энтальпий образования. Расчеты проводили с использованием программы Gaussian 03 методами Хартри-Фока (HF), Меллера-Плессета (MP3), функционала плотности Бекке-Ли-Янга-Парра (B3LYP) в базисах 3-21G, 6-31G, 6-31G(d,p), 6-311G(d,p) и в базисах, включающих диффузные функции, 6-31++G(d,p), 6-311++G(d,p). При оптимизации использовалось от 13 базисных функций и 21 примитивного гауссиана (базис 3-21G, молекула H₂O) до 115 базисных функций и 183 примитивных гауссианов (базис 6-311++G(d,p), молекула К⁺ — H₂O... Н₂О). Известно, что при компьютерном моделировании ИК спектров теоретические частоты завышены по сравнению с экспериментальными. Все частоты корректировались с использованием масштабирующих множителей одинаковых для всех частот (метод HF: 0.9085 — базис 3-21G, 0.8992 — базисы 6-31G(d,p) и 6-31++G(d,p), 0.9051 — базисы 6-311G(d,p) и 6-311++G(d,p); метод МР3: 0.937 — базисы 6-31G(d,p) и 6-31++G(d,p), 0.9496 базисы 6-311G(d,p) и 6-311++G(d,p); метод B3LYP: 0.9614 — базисы 6-31G(d,p) и 6-31++G(d,p), 0.9986 — базисы 6-311G(d,p) и 6-311++G(d,p)) [22]. Такой подход позволяет рассчитать частоты, которые можно сравнивать с ангармоническими частотами, непосредственно измеряемыми в экспериментальном спектре. Результаты расчета приведены в табл. 1, 2 и 3, визуализация оптимизированной структуры димера воды и системы Li⁺ — H₂O..H₂O представлена на рисунке 1.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Анализ данных, представленных в таблицах, позволяет сделать следующие выводы.

1. Для молекулы воды лучшее согласие с экспериментом получено для методов MP3 и B3LYP в базисах 6-31G(d,p) и 6-31++G(d,p) (выделено жирным шрифтом в таблице 1). Более точные базисы 6-311G(d,p) и 6-311++G(d,p) дают завышенные значения частот валентных OH-колебаний.

[©] Нечаева Л. С., Бутырская Е. В., 2007

Л. С. Нечаева, Е. В. Бутырская

Таблица 1

			частоты колебаний, см-1					
структу- ра	метод	базис	деформационное	валентное симметричное	валентное асимметричное	М⁺— О связи		
		6-31G(d.p)	1591.2	3729.5	3834.7			
	HF	6-311G(d.p)	1585.3	3750.3	3836.6			
		6-31++G(d.p)	1555.0	3728.0	3837.5			
		6-311++G(d.p)	1563.3	3748.2	3840.1			
		6-31G(d.p)	1576.1	3647.1	3776.7			
ШО	MD2	6-311G(d.p)	1610.7	3759.8	3841.7			
H ₂ O	MP3	6-31++G(d.p)	1547.2	3686.5	3799.9			
		6-311++G(d.p)	1581.1	3758.9	3847.0			
		6-31G(d.p)	1600.9	3653.6	3762.5			
	B3LYP	6-311G(d.p)	1636.2	3805.1	3902.0			
		6-31++G(d.p)	1539.0	3659.1	3776.9			
		6-311++G(d.p)	1600.1	3813.3	3918.4			
эксперим	ентальны	е частоты для H ₂ O [1]	1590	3650	3750			
	HF	6-31G(d.p)	1614.1	3676.5	3754.2	523.3		
		6-311G(d.p)	1632.0	3690.9	3755.2	519.7		
		6-31++G(d.p)	1616.2	3667.1	3744.3	501.4		
		6-311++G(d.p)	1629.8	3686.8	3751.2	505.8		
		6-31G(d.p)	1592.5	3615.7	3710.2	552.9		
	MD2	6-311G(d.p)	1637.5	3726.9	3786.4	537.7		
Li ⁺ — H ₂ O	MP3	6-31++G(d.p)	1614.3	3652.1	3729.5	503.7		
2		6-311++G(d.p)	1633.9	3712.9	3773.9	521.6		
		6-31G(d.p)	1609.9	3643.4	3720.6	568.6		
	D2137D	6-311G(d.p)	1678.3	3781.3	3848.6	578.4		
	B3LYP	6-31++G(d.p)	1611.1	3629.3	3707.5	529.6		
		6-311++G(d.p)	1677.8	3771.6	3838.8	554.4		
	MP2	aug-cc-pVDZ [20]	1629	3585	3669	506		

Рассчитанные частоты колебаний молекулы воды и системы ион щелочного металла — молекула воды методами HF, MP3, B3LYP в базисах 6-31G(d,p), 6-311G(d,p), 6-31++G(d,p) и 6-311++G(d,p)

Таблица 1 (продолжение)

			частоты колебаний, см-1					
структура	метод	базис	деформационное	валентное симметричное	валентное асимметричное	М ⁺ — О связи		
		6-31G(d.p)	1614.8	3696.6	3777.9	291.2		
		6-311G(d.p)	1629.9	3710.4	3778.2	287.6		
	HF	6-31++G(d.p)	1612.6	3684.3	3765.6	276.6		
		6-311++G(d.p)	1628.7	3702.1	3769.5	275.9		
		6-31G(d.p)	1594.1	3628.9	3726.7	303.6		
	MD2	6-311G(d.p)	1638.9	3741.3	3801.8	302.7		
Na ⁺ — H _a O	MP3	6-31++G(d.p)	1611.6	3662.8	3743.1	283.7		
2		6-311++G(d.p)	1633.6	3727.3	3789.9	288.1		
		6-31G(d.p)	1611.2	3654.3	3735.8	321.2		
	B3LYP	6-311G(d.p)	1676.1	3793.5	3866.4	326.5		
		6-31++G(d.p)	1606.2	3640.0	3722.5	295.7		
		6-311++G(d.p)	1674.5	3785.2	3858.3	306.0		
	MP2	aug-cc-pVDZ [20]	1622	3598	3687	277		
	HF	6-31G(d.p)	1619.0	3705.1	3789.6	198.8		
		6-311G(d.p)	1625.7	3720.1	3790.9	199.7		
		6-31++G(d.p)	1607.4	3696.3	3781.8	186.8		
		6-311++G(d.p)	1620.3	3711.4	3783.0	189.4		
		6-31G(d.p)	1600.9	3632.8	3735.1	218.3		
	MD2	6-311G(d.p)	1641.3	3746.5	3811.1	221.1		
<i>V</i> + U.O	MP 5	6-31++G(d.p)	1598.3	3666.6	3752.4	204.5		
$\mathbf{K} = \mathbf{\Pi}_2 \mathbf{O}$		6-311++G(d.p)	1634.5	3731.7	3798.0	207.6		
		6-31G(d.p)	1621.5	3656.9	3740.8	224.4		
	D2IVD	6-311G(d.p)	1673.6	3797.1	3873.8	235.2		
	DOLIP	6-31++G(d.p)	1602.4	3643.7	3731.4	204.8		
		6-311++G(d.p)	1667.4	3785.3	3863.2	217.9		
	MP2	aug-cc-pVDZ [20]	1618	3604	3699	182		
	HF	TZ2P [21]	1702	3629	3689			

Рассчитанные частоты колебаний молекулы воды и системы ион щелочного металла — молекула воды методами HF, MP3, B3LYP в базисах 6-31G(d,p), 6-311G(d,p), 6-31++G(d,p) и 6-311++G(d,p)

Л. С. Нечаева, Е. В. Бутырская

Таблица 2

		метод базис	молекула	молекула воды-донор протона			молекула воды-акцептор протона		
структура	метод			частоты ОН-колебаний, см ⁻¹					
			дефор- мацион.	валент. симм.	валент. асимм.	дефор- мацион.	валент. симм.	валент. асимм.	связи, см ⁻¹
		6-31G(d.p)	1615.6	3686.9	3812.6	1589.4	3725.5	3827.7	
	ШЕ	6-311G(d.p)	1610.1	3708.4	3814.1	1583.2	3743.6	3830.2	
	пг	6-31++G(d.p)	1578.8	3683.6	3815.3	1565.3	3723.9	3829.7	_
		6-311++G(d.p)	1588.5	3706.4	3820.7	1574.2	3743.7	3833.4	
		6-31G(d.p)	1605.7	3577.4	3746.8	1574.4	3631.9	3754.3	
(ILO)	MD2	6-311G(d.p)	1645.0	3715.1	3819.7	1602.8	3755.2	3836.6	
(H ₂ O) ₂	MP3	6-31++G(d.p)	1577.0	3634.0	3774.1	1559.0	3684.2	3792.2	
		6-311++G(d.p)	1615.0	3707.7	3824.6	1589.0	3753.5	3838.4	
		6-31G(d.p)	1627.4	3545.4	3730.4	1597.4	3646.4	3749.8	
	B3LYP	6-311G(d.p)	1661.0	3698.3	3870.8	1630.2	3799.0	3896.3	
		6-31++G(d.p)	1566.3	3547.0	3744.5	1552.2	3659.6	3771.5	
		6-311++G(d.p)	1627.2	3701.5	3887.5	1611.0	3809.5	3909.9	
Экспериментальные час димера воды [25		ие частоты для цы [25]	1618.6	3550.0	3698.8	1601.1	3627.2	3715.0	
		6-31G(d.p)	1605.5	3551.1	3782.3	1590.8	3718.6	3818.3	451.8
	UE	6-311G(d.p)	1619.1	3567.4	3789.3	1590.0	3736.5	3821.9	459.3
	HF	6-31++G(d.p)	1598.2	3565.9	3773.7	1573.4	3716.6	3819.4	429.1
		6-311++G(d.p)	1616.1	3585.0	3782.1	1585.2	3736.2	3824.0	437.6
		6-31G(d.p)	1611.6	3436.8	3735.6	1592.7	3661.3	3762.6	471.9
		6-311G(d.p)	1668.0	3319.0	3792.5	1606.4	3744.7	3819.7	607.1
$L1^{+}(H_2O)_2$	MP3	6-31++G(d.p)	1595.7	3471.7	3732.9	1567.5	3670.7	3775.1	443.2
		6-311++G(d.p)	1626.7	3529.2	3780.0	1595.0	3739.2	3822.3	462.2
		6-31G(d.p)	1629.6	3023.4	3727.6	1568.6	3653.4	3749.0	645.7
		6-311G(d.p)	1695.3	3187.6	3859.2	1633.0	3801.6	3890.3	655.4
	B3LYP	6-31++G(d.p)	1568.6	3234.0	3658.5	1540.4	3542.6	3673.9	487.5
		6-311++G(d.p)	1629.4	3393.5	3801.9	1606.5	3737.6	3822.1	517.6

Рассчитанные частоты колебаний димера воды и системы $M^+ - H_2O...H_2O$ методами HF, MP3, B3LYP в базисах 6-31G(d,p), 6-311G(d,p), 6-31++G(d,p) и 6-311++G(d,p).

Таблица 2 (продолжение)

Рассчитанные частоты колебаний димера воды и системы $M^{\scriptscriptstyle +}-H_2OH_2O$ методами HF, MP3,	
ВЗLYP в базисах $6-31G(d,p)$, $6-311G(d,p)$, $6-31++G(d,p)$ и $6-311++G(d,p)$.	

			молек	ула воды-, протона	донор	молеку.	молекула воды-акцептор протона		
структура	метод	етод базис	частоты ОН-колебаний, см-1						$M^{+} - O$
			дефор- мацион.	валент. симм.	валент. асимм.	дефор- мацион.	валент. симм.	валент. асимм.	связи, см ⁻¹
		6-31G(d.p)	1610.3	3604.9	3791.5	1590.0	3723.0	3823.8	252.0
	НF	6-311G(d.p)	1617.1	3622.3	3795.8	1588.2	3739.0	3825.1	246.5
	111	6-31++G(d.p)	1600.2	3612.8	3783.6	1572.2	3719.5	3823.5	232.0
		6-311++G(d.p)	1614.3	3632.1	3790.8	1583.2	3738.5	3827.2	229.5
$N_{2}^{+}(H \cap)$		6-311G(d.p)	1664.3	3476.8	3803.6	1608.0	3748.3	3823.3	356.5
$\operatorname{Na}\left(\Pi_{2}O\right)_{2}$	MP3	6-31++G(d.p)	1599.7	3545.0	3741.6	1567.0	3677.0	3783.0	258.5
		6-311++G(d.p)	1625.1	3608.9	3793.1	1593.9	3744.7	3828.7	251.5
	B3LYP	6-311G(d.p)	1690.8	3380.8	3871.2	1633.1	3802.5	3891.9	390.1
		6-31++G(d.p)	1565.9	3367.1	3690.5	1546.1	3549.0	3695.7	249.7
		6-311++G(d.p)	1626.8	3523.7	3832.4	1608.6	3736.7	3834.0	253.3
		6-31G(d.p)	1616.7	3617.6	3794.7	1590.1	3720.6	3821.3	200.9
	HF	6-311G(d.p)	1619.9	3634.9	3795.8	1588.2	3738.5	3824.8	202.3
		6-31++G(d.p)	1600.8	3625.1	3787.3	1571.7	3719.4	3823.5	184.8
		6-311++G(d.p)	1611.7	3642.2	3793.8	1583.0	3738.4	3827.1	188.5
K+(H O)		6-311G(d.p)	1666.1	3543.2	3806.9	1610.0	3750.1	3825.4	281.5
$\mathbf{K}(\Pi_2 \mathbf{O})_2$	MP3	6-31++G(d.p)	1583.9	3546.3	3751.3	1564.4	3673.1	3776.3	176.3
		6-311++G(d.p)	1628.3	3616.8	3799.8	1594.3	3742.5	3826.0	158.4
		6-311G(d.p)	1690.8	3462.2	3866.9	1635.3	3803.8	3894.1	308.5
	B3LYP	6-31++G(d.p)	1565.8	3379.2	3639.2	1535.5	3541.3	3710.2	186.1
		6-311++G(d.p)	1600.4	3573.8	3861.4	1567.1	3752.5	3846.4	163.0

ВЕСТНИК ВГУ, СЕРИЯ: ХИМИЯ. БИОЛОГИЯ. ФАРМАЦИЯ, 2007, № 2

Рис. 1. Оптимизированная структура димера воды (*a*) и системы Li⁺ — H₂O..H₂O (*б*) (рассчитанная *ab initio*): *1* — молекула воды — донор протона; *2* — молекула — акцептор протона; *3* — катион Li⁺

					Т	аблиц	a 3
Сравнение рассчитанных и экспериментальных	[20] эн	нтальпий с	истем М+ –	– H,O npu 2	98.15 K	u 1 ar	пм

M ⁺ — H O	Метол	базис	$-\Delta H_{29}$	_{ов,} ккал/моль
	Тистод		расчет	эксперимент [20]
		6-31G(d,p)	38.72	
	HF	6-311G(d,p)	38.49	
		6-31++G(d,p)	35.31	
L'+ ILO		6-311++G(d,p)	35.42	24.0
$L1^{\circ} - H_2O$		6-31G(d,p)	35.83	34.0
	DUVD	6-311G(d,p)	40.83	
	BSLIP	6-31++G(d,p)	35.04	
		6-311++G(d,p)	35.57	
		6-31G(d,p)	27.89	
	HF B3LYP	6-311G(d,p)	27.18	
		6-31++G(d,p)	24.97	
N ₂ + UO		6-311++G(d,p)	24.62	24.0
$Ma^2 - H_2O$		6-31G(d,p)	30.29	24.0
		6-311G(d,p)	29.45	
		6-31++G(d,p)	25.14	
		6-311++G(d,p)	25.02	
		6-31G(d,p)	19.56	
		6-311G(d,p)	19.45	
	HF	6-31++G(d,p)	17.62	
V+ U.O		6-311++G(d,p)	17.52	17.0
$K = H_2 O$		6-31G(d,p)	21.33	17.9
		6-311G(d,p)	21.51	
	BOLIF	6-31++G(d,p)	17.75	
		6-311++G(d,p)	18.07	

ВЕСТНИК ВГУ, СЕРИЯ: ХИМИЯ. БИОЛОГИЯ. ФАРМАЦИЯ, 2007, № 2

Расчет с менее точными базисами 3-21G и 6-31G приводит к результатам неудовлетворительно согласующимся с экспериментом, поэтому эти данные в таблицах опущены.

2. Для димера воды лучше соответствуют экспериментальным значениям частоты ИК спектра, рассчитанные методами MP3/6-31G(d,p) и B3LYP/6-31G(d,p), 6-31++G(d,p) (выделено жирным шрифтом в таблице 2). При использовании более высоких базисов 6-311G(d,p) и 6-311++G(d,p) для всех методов также как и для молекулы воды получены завышенные значения частот валентных OH-колебаний получены и для метода HF/6-31G(d,p), 6-31++G(d,p). Мы исследовали открытую форму димера воды (рис. 1), так как по данным работы [23] эта форма соответствует наиболее устойчивой структуре.

3. Экспериментальные частоты ИК спектров систем М⁺ — (H,O) авторам не известны, за исключением системы Cs⁺ — H₂O, для которой в работе [8] получены экспериментальные значения частоты симметричного OH-колебания $v_{sym}^{OH} =$ 3636 см⁻¹ и частоты асимметричного ОН-колебания $V_{as}^{OH} = 3758 \text{ см}^{-1}$. Для выбора наиболее корректного метода и базиса расчета проведено сравнение рассчитанных нами данных с результатами компьютерного моделирования ИК спектров гидратированных катионов [20] и сравнение рассчитанных энтальпий систем М⁺ — (H₂O) с экспериментальными. Для литиевой и натриевой форм методы МРЗ и B3LYP в базисах 6-31G(d,p), 6-31++G(d,p) дают наиболее хорошее согласование с данными расчета [20] (выделено жирным шрифтом в таблице 1). Частоты валентных ОН-колебаний и колебаний металл — вода, полученные в настоящей работе, больше соответствующих частот, полученных в [20]. Однако, экспериментальные частоты валентных ОН-колебаний для структуры Cs⁺ — H₂O [8] также больше соответствующих частот рассчитанных в [20] (таблица 4). По данным работы [20] $v_{\text{слиг}}^{OH}$ и V_{as}^{OH} для систем $K^+ - H_2O$, $Rb^+ - H_2O$ и $Cs^+ - H_2O$ Н₂О получились практически независимыми от типа катиона. Этот результат, а также близость экспериментальных частот валентных ОН-колебаний гидратной воды калиевой, рубидиевой и цезиевой форм солей полистриролсульфоновой кислоты при низкой степени гидратации [26] позволили предположить, что экспериментальные частоты валентных колебаний комплекса Cs⁺ — H₂O близки к экспериментальным частотам комплекса К+ — Н₂О. Поэтому проведено сравнение рассчитанных

Таблица 4

Рассчитанные [20] и экспериментальные
частоты валентных ОН-колебаний структуры
$Cs^+ - HO$

	-	
$\mathrm{Cs}^{\scriptscriptstyle +}-\mathrm{H}_{2}\mathrm{O}$	расчет [20], см ⁻¹	эксперимент [8], см ⁻¹
\mathcal{V}^{OH}_{sym}	3602	3636
\mathcal{V}^{OH}_{as}	3701	3758

частот валентных ОН-колебаний калиевой формы, гидратированной одной молекулой воды, с экспериментом [8] для цезиевой формы. Наиболее хорошее согласование получено для методов МРЗ и B3LYP в базисах 6-31G(d,p) и 6-31++G(d,p) (выделено жирным шрифтом в таблице 1).

Сравнение рассчитанных энтальпий с экспериментальным позволяет сделать вывод, что лучшее согласование расчета с экспериментом для структуры $Li^+ - H_2O$ обеспечивает метод B3LYP, базис 6-31++G(d,p), для структуры Na⁺ - H₂O - метод HF, базис 6-311++G(d,p), для структуры K⁺ - H₂O - метод B3LYP, базис 6-31++G(d,p) (выделено жирным шрифтом в таблице 3). Поскольку наибольшей вклад в энтальпию дают низкочастотные колебания, то данные методы и базисы лучше воспроизводят частоты колебаний связи катион - кислород молекулы воды.

4. Проанализируем систему M^+ — H,O...H,O. Мы исследовали катион, гидратированный двумя молекулами воды, связанными между собой водородной связью М⁺ — H₂O...H₂O. Такая структура имеет более высокую энергию, чем структура, в которой молекулы воды гидратируют катион с разных сторон Н₂О — М⁺ — Н₂О, так как энергия связи катион — вода больше энергии водородной связи. Поэтому структура М⁺ — H₂O…H₂O соответствует локальному минимуму (в ИК спектре оптимизированной структуры отсутствуют мнимые частоты), а структура Н₂О — М⁺ — Н₂О — глобальному минимуму. Однако структура М⁺ — H₂O...H₂O интересна для изучения влияния катиона на характеристики водородной связи и влияния образования Н-связи на частоты ОН-колебаний, что важно для теории растворов. Структура катион — димер воды для литиевой формы представлена на рисунке 1, б. Заметим, при использовании методов МРЗ и ВЗLYP в базисе 6-31G(d,p) оптимизация приводит к структуре $H_2O - M^+ - H_2O$ (M = Na, K), поэтому данные для этих методов и базиса в таблице 2 не приведены. Так же как для случая структуры $M^+ - H_2O$, присоединение катиона к димеру уменьшает все частоты валентных ОН-колебаний воды. Более сильный сдвиг наблюдается для молекулы водыдонора протона, к которой присоединяется катион (рис. 1, δ).

В литературе отсутствуют экспериментальные ИК спектры структур М⁺ — H₂O…H₂O. В работе [21] методом HF/TZ2P были рассчитаны частоты валентных ОН колебаний структуры

$$H_2O - K^+ - (H_2O)_2 \dots H_2O$$
 (1)

Рассчитанные нами частоты валентных ОНколебаний системы К⁺ — H₂O...H₂O должны быть больше соответствующих частот структуры (1) вследствие эффекта кооперативности водородной связи. Полученная нами частота валентного симметричного ОН-колебания воды-донора протона системы K^+ —(H₂O), получилась равной: 3543 см⁻¹ (MP3/6-311G(d,p)), 3462 cm⁻¹ (B3LYP/6-311G(d,p)), 3546 см⁻¹ (МР3/6-31++G(d,p)), 3379 см⁻¹ (ВЗLYР/6-31++G(d,p)), 3574 см⁻¹ (B3LYP/6-311+G(d,p)) и более 3616 см⁻¹ для остальных методов и базисов. В [21] для этой частоты получено значение 3598 см⁻¹. Сравнение результатов расчета частот [20] и [21] (табл. 1) структуры К⁺ — Н₂О и оценка точности расчета [20] (табл. 4) позволяет предположить, что ошибка расчета частоты 3598 см⁻¹ [21] составляет ~ 50 см⁻¹. Таким образом, сравнение наших результатов с расчетом [21] позволяет сделать вывод, что лучшее согласование для частот валентных ОН-колебаний молекулы воды — донора протона наблюдается при использовании МРЗ/6-31++G(d,p). Заметим, однако, что для этого метода значения валентных ОН-колебаний молекулы воды — акцептора протона систем М⁺ — H₂O...H₂O получились выше соответствующих экспериментальных частот димера воды. Это обусловлено тем, что метод МРЗ дает завышенные значения данных частот димера воды и сдвиг вследствие поля катиона не компенсирует это завышение.

Метод B3LYP дает на наш взгляд заниженные значения V_{sym}^{OH} молекулы воды-донора протона для M = Li, Na. Данные значения для M = Li (3023 см⁻¹ — 6-31G(d,p); 3188 см⁻¹ — 6-311G(d,p); 3234 см⁻¹ — 6-31++G(d,p) и 3394 см⁻¹— 6-311++G(d,p)) меньше частоты валентного OH-колебания гидратной воды (3458 см⁻¹) экспериментального ИК спектра литиевой соли полистиролсульфоновой кислоты [26] и рассчитанных в [20, 21] частот ИК спектров. Но это единственный метод, который в базисе 6-31++G(d,p) дает более низкие, чем экспериментальные для димера воды, значения частот валентных ОН-колебаний воды – акцептора протона систем $M^+ - H_2O...H_2O$. Заметим, что вывод о заниженности частот ОН-колебаний молекулы воды — донора протона сделан на основе анализа работ [20, 21, 26], в которых рассмотрены системы, не точно совпадающие с исследованными в настоящей работе.

Анализ рассчитанного ИК спектра структур М⁺ — $H_2O...H_2O$ показывает, что метод HF/6-31G(d,p), 6-31++G(d,p), 6-311G(d,p), 6-311++G(d,p) дает частоты валентных OH-колебаний, значения которых больше соответствующих экспериментальных значений димера воды. Это обусловлено тем, что полученные частоты v_{sym}^{OH} и v_{as}^{OH} димера воды методом Хартри-Фока в данных базисах завышены по сравнению с экспериментом. Поэтому мы не рекомендуем использовать метод HF для расчета частот валентных OH-колебаний гидратированных катионов. Заметим, однако, что метод Хартри-Фока дает хорошее согласование рассчитанной частоты деформационного колебания димера воды с экспериментом.

На основании выше сказанного для расчета ИК спектров структур $M^+ - H_2O...H_2O$ мы рекомендуем методы MP3/6-31++G(d,p) и B3LYP/6-31++G(d,p) как наилучшие из исследованных.

ЗАКЛЮЧЕНИЕ

Проведенный расчет позволяет заключить, что проблема выбора адекватного метода и базиса расчета ИК спектров даже с учетом масштабирования является достаточно сложной. Рекомендованные масштабирующие множители одинаковые для всех частот не всегда обеспечивают хорошее согласование рассчитанного спектра с экспериментальным. В случае гидратированных катионов выбор наилучшего метода и базиса расчета осложняется отсутствием надежных экспериментальных ИК спектров. При расчете частот валентных ОН-колебаний исследованных систем, по мнению авторов наилучшими из рассмотренных методов являются MP3/6-31++G(d,p) и B3LYP/6-31++G(d,p).

СПИСОК ЛИТЕРАТУРЫ

1. Эйзенберг Д., Клауцман В. Структура и свойства воды. Л.: Гидрометиоиздат, 1975. 279 с.

2. Walrafen G.E, Fisher M.R., Hokmabadi M.S., Yang W.-H., Chu Y.C., Monosmith B. Temperature dependence of the low- and high-frequency Raman scattering from liquid water // J. Chem.Phys. 1986. V. 85. P. 6970—6975.

3. *Furic K., Ciglenecki I., Cosovic B.* Raman Spectroscopic study of sodium chloride water solutions // J. Mol. Structure. 2000. V. 6. P. 225–234.

4. *Rull F., De Saja J.A.* Effect of electrolyte concentration on the Raman spectra of water in aqueous solutions. // J. Raman Spectrosc. 1986. V. 17. № 2. P. 167–172.

5. *Terpstra P., Combes D., Zwick A.* Effect of salts on dynamics of water: A Raman spectroscopy study // J. Chem. Phys. 1990. V. 92. № 1. P. 65–70.

6. Буриков С.А., Доленко Т.А., Великотный П.А., Сугоняев А.В., Фадеев В.В. Проявление гидратации ионов неорганических солей в форме валентной полосы комбинационного рассеяния молекул воды. // Опт. и спектр. 2005. Т. 98. №2. С. 269—273.

7. *Kleeberg H., Luck W.A.* Experimental tests of the H-bond cooperativity // Z. phys. Chemie. 1989. V. 270. №3. P. 613—625.

8. *Weinheimer C. J., Lisy J. M.* Vibrational predissociation spectroscopy // J. Chem.Phys. 1996. V.105. P. 2938— 2941.

9. Vaden T. D., Forinash B., Lisy J. M. Rotational structure in the asymmetric OH stretch of $Cs^+(H_2O)Ar // J$. Chem. Phys. 2002. V. 117. No10. P. 4628—4631.

10. *Lin Su, Jordan P. C.* Structures and energetics of monovalent ion-water microclusters // J. Chem.Phys. 1988. V. 89. P. 7492—7501.

11. *Feller D., Glendening E. D., Woon D. E.* An extended basis set ab initio study of alkali metal cation-water clusters // J. Chem.Phys. 1995. V.103. P. 3526—3542.

12. *Glendening E. D., Feller D.* Cation-water interactions: the $M^+(H_2O)$, clusters for alkali metals, M = Li, Na, K, Rb, and Cs. // J. Phys. Chem. 1995. V. 99. P. 3060–3067.

13. *Kaupp M., Schleyer P. R.* Do low-coordinated group 1—3 cations M"+L, ($Mn^+ = K^+$, Rb^+ , Cs^+ , Ca^{2+} , Sr^{2+} , Ba^{2+} , Sc^{3+} , Y^{3+} , La^{3+} ; $L = NH_3$, H_2O , HF; m = 1—3) with a formal NoMeGas electron configuration favor regular or "abnormal" shapes? // J. Phys. Chem. 1992. V. 96. P. 7316—7323.

14. *Carrillo-Tripp M., Saint-Martin H., Ortega-Blake I.* A comparative study of the hydration of Na and K with refined polarizable model potentials // J. Chem.Phys. 2003. V.118. №15. P. 7062—7073.

15. Шапошник В.А., Бутырская Е.В., Чудин П.М. Компьютерное моделирование гидратации катионов в водных растворах и ионообменниках // Сорбционные и

хроматографические процессы. 2002. Т. 2. Вып. 3. С. 287—294.

16. Spangberg D., Hermansson K. Many-body potentials for aqueous Li⁺, Na⁺, Mg²⁺, and Al³⁺: comparison of effective three-body potentials and polarizable models. // J. Chem.Phys. 2004. V. 120. №10. P. 4829—4843.

17. Rempe S. B., Pratt L. R., Hummer G., Kress J. D. The Hydration Number of Li+ in Liquid Water. // J. Am. Chem. Soc. 2000. V.122. P. 966—967.

18. Lee C. E., Lee H. M., Tarakeshwar P., Kim K. S. Structures, energies, and spectra of aqua-silver (I) complexes // J. Chem. Phys. 2003. V.119. №15. P. 7725—7736.

19. *Kim J., Lee S., Cho S. J., Mhin B. J., Kim K. S.* Structures, energetics, and spectra of aqua-sodium(I): thermodynamic effects and nonadditive interactions // J. Chem. Phys. 1995. V. 102. P. 839—849.

20. Lee H. M., Tarakeshwar P., Park J., Kolaski M. R., Yoon Y. J., Yi Hai-Bo, Kim W. Y., Kim K. S. Insights into the structures, energetics, and vibrations of monovalent cation-(water)₁₋₆ clusters. // J. Chem. Phys. A. 2004. V.108. P. 2949—2958.

21. *Lee H. M., Kim J., Lee S., Mhin B. J., Kim K. S.* Aqua-potassium (I) complexes: Ab initio study // J. Chem. Phys. 1999. V.111. № 9. P. 3995–4004.

22. *Scott A.P., Radom L.* Harmonic vibrational frequencies: an evaluation of Hartree-Fock, Møller-Plesset, quadratic configuration interaction, density functional theory, and semiempirical scale factors. // J.Phys.Chem. 1996. V.100. № 41. P. 16502—16513.

23. *Schröder K.P.* A method for the separate computation of intermolecular vibrational frequencies with application on the H₂O...HF and $(H_2O)_n$ (n = 2—6) complexes. // Chem. Phys. 1988. V. 123. P. 91—101.

24. *Хавин З.Я., Рабинович В.А.* Краткий химический справочник. Л.: Химия, 1977. 376 с.

25. Fredin L., Nelander B., Ribbegård G. Infrared spectrum of the water dimer in solid nitrogen. I. Assignment and force constant calculations // J.Chem.Phys. 1977. V. 66. №9. P. 4065—4072.

26. *Цундель Г.* Гидратация и межмолекулярное взаимодействие. М.: Мир, 1972. 404 с.