УДК 541.183

МИКРОСКОПИЧЕСКИЙ АНАЛИЗ МОРФОЛОГИИ ПОВЕРХНОСТИ ИОНООБМЕННЫХ МЕМБРАН

В. И. Васильева, В. И. Заболоцкий, Н. А. Зайченко, М. В. Гречкина, Т. С. Ботова, Б. Л. Агапов

Воронежский государственный университет, Кубанский государственный университет, г. Краснодар

Методами сканирующей электронной микроскопии и атомной силовой микроскопии исследована морфология поверхности ионообменных мембран. Установлены различия в структуре поверхности гомогенных и гетерогенных мембран, исходных коммерческих и образцов после химического кондиционирования, а также подвергшихся эксплуатации при высокоинтенсивных токовых режимах. Определены микропрофили, размер и доля проводящих участков поверхности гетерогенных мембран.

введение

В настоящее время транспортные и равновесные свойства ионообменных мембран рассматривают с учетом их структурной неоднородности [1]. М.В. Певницкая, В.К. Варенцов и др. [2-4] показали, что гетерогенные ионообменные мембраны имеют неоднородную поверхность, влияющую на их физико-химические и электрохимические характеристики. Влияние геометрической неоднородности поверхности (шероховатости) на электрохимические свойства гомогенных и гетерогенных мембран было обнаружено О.В. Бобрешовой, П.И. Кулинцовым и др. [5], установившими, что форма вольтамперных характеристик и предельная плотность тока выше для гомогенных мембран, чем для гетерогенных. В работах Н.Я. Пивоварова [6, 7] была предпринята попытка учесть неоднородность поверхности мембран, зависящую от инертного полимера и мелкодисперсного ионообменного вещества, и установлено, что отличие в вольтамперных характеристиках гомогенных и гетерогенных мембран связано с сокращением проводящей поверхности последних. В работах Н.Д. Письменской [8, 9] впервые экспериментально доказано, что структурные, физические и химические свойства поверхности ионообменных мембран имеют решающее значение в определении их электрохимического поведения и развитии механизмов приращения переноса ионов на межфазных границах при сверхпредельных токовых режимах.

Чередование в определенном порядке проводящих и непроводящих участков поверхности ионообменных мембран способствует интенсификации массопереноса за счет развития вторичных конвективных течений [10]. Теоретически определены оптимальные размеры проводящих и непроводящих участков, которые могут способствовать развитию электроконвекции [11]. Для понимания закономерностей возникновения и развития конвективной неустойчивости в примембранном слое электролита при сверхпредельных токовых режимах необходима экспериментальная информация о морфологии поверхности мембран, так как реальная картина возникновения вторичных конвективных потоков зависит от структурной неоднородности мембран.

Представление о степени и масштабе неоднородности поверхности ионообменных материалов дают прямые эксперименты по визуализации поверхности, полученные с использованием микроскопических методов [12—19]. Задача данной работы — микроскопический анализ поверхности исходных коммерческих, кондиционированных и подвергшихся температурно-токовому воздействию образцов ионообменных мембран различной природы.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ОБЪЕКТЫ ИССЛЕДОВАНИЯ

Объектами исследования были выбраны выпускаемые ОАО «Щекиноазот» (г. Щекино) в промышленном масштабе гетерогенные мембраны: катионообменная мембрана МК-40, основу которой составляет сильнокислотный ионит КУ-2, и анионообменная мембрана МА-40 на основе полифункционального смешанной основности анионита ЭДЭ-10П. Так же в работе использовались гетерогенные мембраны, выпускаемые в виде опытнопромышленных партий: анионообменная мембрана МА-41И, активным компонентом которой является изопористый сильноосновный анионит АВ-

[©] Васильева В. И., Заболоцкий В. И., Зайченко Н. А., Гречкина М. В., Ботова Т. С., Агапов Б. Л., 2007

17И, и катионообменная мембрана МК-41, содержащая слабокислотный фосфорнокислый катионообменник КФ-1. Технология изготовления гетерогенных мембран на основе углеводородных матриц состоит в том, что из полученных смесей порошков мелкоизмельченного ионообменника (2/3) с размером частиц (5—60)·10⁻⁶ м и полиэтилена низкого давления (1/3) сначала вальцовкой получают листы толщиной около (3-4)-10-4 м, а затем их армируют при повышенной температуре (150—170) °С капроновой тканью толщиной 9.10⁻⁵ м сначала в течение 50 мин при давлении 5 атм, а затем в течение минуты при давление около 290 атм [20-22]. Отечественный аналог гомогенной мембраны Нафион (Nafion) на основе перфторированной матрицы, выпускаемый ОНПО Пластполимер (Санкт-Петербург), имеет марку МФ-4СК. Данный тип химически стойких ионообменных мембран получают на фторуглеродной основе сополимеризацией тетрафторэтилена и перфторвинилового эфира.

Микроскопический анализ морфологии поверхности проводился для коммерческих, кондиционированных и образцов мембран после токо-температурных воздействий. Кондиционирование мембран осуществляли по общепринятой методике [22].

МЕТОДЫ ИССЛЕДОВАНИЯ

Микроскопические исследования проводили двумя методами:

1) методом сканирующей электронной микроскопии (СЭМ), микроскоп модели JSM-6380 LV (Япония) с напылением золотом на сухих образцах;

2) методом атомно-силовой микроскопии (ACM) с помощью сканирующего зондового микроскопа корпорации NT-MDT модели Solver P47 Рго (Россия, Зеленоград) в полуконтактном режиме на сухих образцах. Сканирование осуществляли кантилевером типа NSG20. Эксперименты проводили на воздухе при температуре 25±1 °C.

Сканирующий электронный микроскоп, работающий только в вакууме, позволяет разрешить детали нанометрового масштаба. С его помощью можно проводить наблюдения с гораздо большей глубиной резкости, чем при работе со световым микроскопом, и получать объемные микрофотографии поверхностей с весьма развитым рельефом. Метод СЭМ требует особой предварительной подготовки исследуемых неэлектропроводных объектов: высушивание влажных образцов (капиллярные силы могут привести к повреждению или изменению структуры полимера) и напыление электропроводящего слоя. Покрытие поверхности мембран слоем золота улучшало качество изображения за счет исключения накопления статистического потенциала на поверхности образца и резкой дифференциации электронного пучка на составляющие по скорости и энергии. Напыление производилось на установке Fin Coat 1100 при вакууме 10⁻¹ мм.рт.ст. методом ионной бомбардировки в диодной системе при постоянном напряжении, толщина покрытия 1—2·10⁻⁷м.

Образцы мембран для исследований представляли собой прямоугольные пластины размером $(4x5) \cdot 10^{-3}$ м. Перед микрофотографированием мембраны выдерживали в термостате при температуре 35 °C в течение 24—48 часов для удаления влаги. Следует отметить, что электронно-микроскопический метод не позволяет исследовать мембранный материал в реальных условиях эксплуатации (набухшее в воде состояние).

В отличие от сканирующей электронной микроскопии (СЭМ), атомная силовая микроскопия (АСМ), позволяющая выявить особенности геометрии поверхности с точностью до 0,1 нм [23, 24], не требует вакуумной сушки образцов и напыления электропроводящего слоя, благодаря чему можно избежать искажений структуры, связанных с жесткими условиями подготовки объекта исследования. Механические повреждения полимера жесткой иглой при полуконтактном АСМ-методе съемки минимальны.

Результаты измерений, полученные с помощью зондового микроскопа, представляли собой геометрические образы (режим «топографии») в виде двумерных и трехмерных цифровых изображений поверхности [24]. На АСМ изображениях проводили различные сечения, вдоль которых строился профиль поверхности. Обработка полученных микропрофилей заключалась в анализе следующих стандартных среднестатистических параметров поверхности: R_v — размах высот (максимальный перепад высот между самой верхней и нижней точками поверхности профиля), R_a — средняя арифметическая шероховатость, R_q — средняя квадратичная шероховатость, R_{z} — шероховатость поверхности по выбранным пяти максимальным высотам и впадинам (среднее абсолютное значение пяти наивысочайших пиков и пяти самых глубоких впадин).

Кроме того, методом отображения фазы («фазовый контраст») была зарегистрирована неоднородность свойств поверхности (химическая гетерогенность).

МЕТОДИКА ОЦЕНКИ ДОЛЕЙ ПРОВОДЯЩЕЙ И НЕПРОВОДЯЩЕЙ ПОВЕРХНОСТЕЙ ГЕТЕРОГЕННЫХ МЕМБРАН

Определение доли проводящей и непроводящей поверхности гетерогенных мембран на основании результатов, полученных с помощью электронной микроскопии, было проведено по методике, предложенной Н.Д. Письменской и др. [8, 9, 25].

Расчет площади и доли поверхности сухой мембраны, доли проводящей поверхности набухшей мембраны \overline{S}_{wc} , занимаемой ионитом и полиэтиленом проводили по формулам (1—3).

$$S_d = b_d a_d = S_{dn} + S_{dc} , \qquad (1)$$

где S_d — площадь поверхности сухой мембраны, b_d и a_d длина и ширина сухой мембраны; S_{dn} , S_{dc} — площадь поверхности сухой мембраны, занимаемая полиэтиленом и ионообменником соответственно. Доли поверхности мембран, занимаемые ионообменным материалом \overline{S}_{dc} и полиэтиленом \overline{S}_{dn} , равны:

$$\overline{S}_{dc} = S_{dc} / S_d , \qquad (2)$$

$$\overline{S}_{dn} = S_{dn} / S_d \tag{3}$$

Формула (4) для расчета доли проводящей поверхности набухшей мембраны \overline{S}_{wc} — выведена в предположении, что увеличение линейных размеров мембран в процессе набухания происходит, в основном, за счет увеличения размеров ионообменного материала, а площадь непроводящей поверхности (полиэтилена) практически не изменяется [9, 25, 26].

$$\overline{S}_{wc} = \frac{S_w - S_{wn}}{S_w} = \frac{S_w - S_d \cdot S_{dn}}{S_w} \tag{4}$$

где S_w — площадь набухшей мембраны, определенная из расчета, что линейные размеры мембраны при набухании увеличились на (8±2)% для мембран МК-40, МА-40 и АМ-41И и на (7±2)% для мембраны МК-41 [20].

Оценка площади непроводящей (S_{dn}) и проводящей (S_{dc}) поверхностей сухого образца мембраны поводилась по электронномикроскопическим снимкам с предварительным контрастированием изображения. В [8, 9, 26] фотографии обрабатывали с применением графического редактора Corel PHOTO-PAINT (TM) версия 7.467. В данной работе контрастирование изображения было проведено с помощью компьютерной программы Adobe Photoshop CS2 версия 9,0: проводящие участки поверхности мембран были окрашены в белый цвет, а участки, соответствующие полиэтилену, — в черный (рис. 1).

Использование встроенной функции «Гистограмма» для графического редактора позволило провести определение процентного соотношения цветов, которое соответствовало соотношению площадей проводящей и непроводящей поверхностей мембраны в воздушно-сухом состоянии. Для определения размера проводящих участков поверхности на микрофотографиях измеряли их диаметр в различных направлениях и вычисляли среднее значение.

Для оценки погрешности определения проводящих и непроводящих участков анализировали 4—5 микрофотографий, полученных для различных участков поверхности исследуемой мембраны. Процедуру обработки каждой микрофотографии повторяли 8—10 раз. Статистическая обработка результатов показало, что относительное

Рис. 1. Электронные микрофотографии поверхности мембраны МК-41 при увеличении 500: фото (1) и контрастированное изображение (2)

Рис. 2. Микрофотографии поверхности мембран МК-40 (1) и МФ-4СК (2), полученные методом электронной микроскопии при увеличении 500

стандартное отклонение находилось в интервале 0,02—0,10.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Полученные электронные микрофотографии исходных образцов гетерогенной мембраны МК-40 и гомогенной мембраны МФ-4СК представлены на рис. 2. Видно, что геометрия поверхности гетерогенной мембраны МК-40 даже отдаленно не напоминает плоскость. Большая часть поверхности экранирована связующим — полиэтиленом, а зерна ионообменника занимают малую долю. Результаты по определению доли проводящей поверхности показали, что она составляет всего лишь 0,05±0,01. Данный эффект авторы [9, 15] объяснили выдавливанием более пластичного полиэтилена из объема гетерогенных мембран в процессе их прессования и последующей прокатки (эффект капсулирования), что требует изменений в существующей технологии производства гетерогенных ионообменных мембран.

Микрофотография исходной гомогенной мембраны МФ-4СК демонстрирует достаточную однородность образца (рис. 2.2). Однако на поверхности визуализируются выпуклости и впадины ионообменного материала. Из работы [27] известно о негомогенности поверхности подобных мембран на наноуровне, которая сохраняется после насыщения образца водой в равновесных условиях.

Анализ микроструктуры поверхности мембран подтвердил результаты электронной микроскопии и элементного анализа, представленные в работах Н.Д. Письменской, Г.Ю. Лопатковой и соавторов [9, 25, 26] показавших, что участки выхода ионообменных зерен достаточно равномерно распределены по поверхности гетерогенных мембран и их размеры составляют (10—30)·10⁻⁶ м, а размеры неоднородностей поверхности гомогенных мембран имеют порядок 10⁻⁶ м.

Химическое кондиционирование позволило удалить с поверхности нежелательные включения, примеси, остатки мономеров и стабилизировать структуру полимерного каркаса. После кондиционирования на микрофотографиях образцов гетерогенных мембран более четко визуализировались фазы ионообменника, полиэтилена и армирующей ткани (рис. 3).

После кондиционирования заметно увеличилась доля проводящих участков поверхности мембран и их размеры. Например, для мембраны МА-41И, характеризующейся наибольшим значением неэкранированной полиэтиленом поверхности, ее величина возросла почти в два раза и в набухшем состоянии составляла 0,30±0,01. Сравнение результатов по определению доли проводящей и непроводящей поверхности гетерогенных мембран представлено в таблице 1.

Полученные данные количественно согласуются с результатами [9, 26], установившими, что доля полиэтилена на поверхности мембран МК-40, МА-40 и МА-41 составляет 72—83% при его объемной доле внутри мембраны 30—40%.

На рис. 4 представлено сравнение ACM-изображений исходных (1, 3, 5) и после кондиционирования (2, 4, 6) образцов мембраны МК-40. Для образцов мембран после кондиционирования установлен сильно выраженный рельеф поверхности, обусловленный расширением щелей, пор, микротрещин в процессе набухания, а также формой и геометрией зерен ионообменника, в местах выхода Микроскопический анализ морфологии поверхности ионообменных мембран

Таблица 1

Тип мембраны	Образцы мембран					
	Исходные	После кондиционирования		После токо-температурного воздействия		
	Сухие	Сухие	Набухшие	Сухие	Набухшие	
МК-40	0,05±0,01	0,107±0,009	0,234±0,008	0,14±0,02	0,27±0,02	
MK-41	0,070±0,008	0,09±0,01	0,21±0,01	0,19±0,02	0,29±0,02	
MA-40	0,063±0,006	0,10±0,02	0,231±0,008	0,19±0,03	0,31±0,02	
МА-41 И	0,087±0,008	0,18±0,02	0,30±0,01	0,22±0,03	0,34±0,02	

Доля проводящей поверхности сухих и набухших образцов ионообменных мембран

Рис. 3. Микрофотографии поверхности кондиционированных мембран МК-40 (1), МК-41 (2), МА-41 (3) и МА-40 (4), полученные методом электронной микроскопии при увеличении 500

Рис. 4. Морфология и микропрофиль поверхности катионообменной мембраны МК-40, полученные методом атомно-силовой микроскопии: трехмерное изображение (1, 2), двумерное изображение (3, 4), микропрофиль по линии сечения поверхности (5, 6) исходного (1, 3, 5) и после кондиционирования (2, 4, 6) образцов. Сканируемое поле $(5 \times 5) \cdot 10^{-6}$ м

которых на поверхность пленка полиэтилена разорвана. В таблице 2 представлены результаты измерений стандартных параметров шероховатости при различной площади сканирования исследуемых образцов мембран. Количественные показатели характеризуют шероховатость всей площади исследуемого участка («интегральные измерения»). Влияние токо-температурного воздействия на электрохимические и структурные изменения в мембранах отмечалось Н.П. Березиной и др. [28], связавших расслоение полимерной композиции и увеличение доли порового пространства мембраны МК-40 с перестройкой полимерного каркаса из-за деструкции вследствие перегрева. В.А. Макарова, М.В. Певницкая и др. [29, с. 122] потерю селективности ионообменных мембран МК-40 и МА-40 при нагревании в воде при 80 °C объясняли изменениями в структуре мембран, вызванными расширением пор и появлением сквозных каналов.

Представление о степени и масштабе неоднородности поверхности гетерогенной ионообменной мембраны МК-40 после эксплуатации при высокоинтенсивных токовых режимах дают полученные с различным масштабом увеличения микрофотографии (рис. 5) и АСМ-изображения (рис. 6) ее поверхности. Внешний вид поверхности свидетельствует о возрастании количества и объема пор, расширении старых и появлении новых трещин, увеличении расслоения полиэтилена при воздействии электрического тока и перепада температур.

Результаты по определению доли проводящей и непроводящей поверхности мембран МК-40 показали, что после токо-температурного воздействия доля проводящих участков поверхности увеличилась по сравнению с кондиционированным образцом на 15—20% и составляла в набухшем состоянии 0,27 \pm 0,02. Размеры участков выхода ионообменных зерен на поверхность мембраны составляли (5—30)·10⁻⁶м и наиболее крупные из них были сопоставимы с толщиной диффузионного слоя ~10⁻⁴ м.

Из анализа трехмерного цифрового образа поверхности мембраны, полученного методом атомносиловой микроскопии, следует, что ее поверхность после токо-температурных воздействий (рис. 6) имела более рельефную структуру по сравнению с поверхностью мембраны после кондиционирования. Обнаружено, что при грубом увеличении (сканируемое поле $10^{-5} \times 10^{-5}$ м²) отдельные локальные макронеоднородности рельефа имели модуляции по высоте порядка ($2,7\pm0,8$)· 10^{-7} м и составляли тысячные доли толщины диффузионного пограничного слоя. Средний масштаб шероховатости R_a характеризовался размерами $1,4\cdot10^{-8}$ м.

При предположении, что изменение толщины мембраны в процессе набухания на (30±5)% [20] происходит за счет увеличения размера ионообменника, для влажного образца мембраны МК-40 характерно соответствующее увеличение измеренных параметров шероховатости. Полученные результаты оказались несколько заниженными по сравнению с данными Н.Я. Пивоварова [6] по профилографированию образцов набухших мембран МК-40, установившего, что их поверхность характеризуется как ровными, так и пилообразными участками со слабовыраженной сферичностью общей протяженностью по длине и высоте (0,5—20)·10⁻⁶ м. К сожалению, метод традиционной профилографии не позволял в процессе регистрации профилей непосредственно фиксировать микроструктуру образца.

Таблица 2

Образцы мембран. Площадь сканирования, мкм ²	Размах высот <i>R_y</i> , нм	Средняя арифме- тическая шерохо- ватость <i>R_a</i> , нм	Средняя квадра- тичная шерохо- ватость R_{q^2} нм	Шероховатость поверхности R _z , нм
1. Исходные коммерческие				
67,5×67,5	1878,42	105,71	147,87	946,85
5×5	132,67	7,38	11,34	65,91
3×3	62,73	5,20	7,04	31,36
2. После кондиционирования				
10×10 5×5	179,39 148,86	9,55	14,31	88,04
3. После токо-температурного		9,18	13,21	74,25
воздействия				
10×10	326,42	13,59	21,34	160,92
4×4	104,31	8,76	11,66	52,07
2×2	67,07	5,06	7,58	33,53

Параметры шероховатости поверхности катионообменной мембраны МК-40 в воздушно-сухом состоянии

Puc. 5. Микрофотографии поверхности катионообменной мембраны МК-40 после эксплуатации при высокоинтенсивных токовых режимах, полученные методом сканирующей электронной микроскопии при увеличении 500 (1, 2) и 2700 (3, 4)

ЗАКЛЮЧЕНИЕ

Проведено комплексное исследование морфологии поверхности ионообменных мембран методами сканирующей электронной микроскопии и атомной силовой микроскопии. Визуализированы различия в структуре поверхности гомогенных и гетерогенных мембран, исходных коммерческих, образцов после кондиционирования и подвергшихся эксплуатации при высокоинтенсивных токовых режимах. Установлено увеличение размеров и доли проводящих участков поверхности у образцов после кондиционирования по сравнению с исходными.

Анализ полученных методом ACM микропрофилей поверхности мембран позволил определить стандартные параметры поверхности — среднюю величину шероховатости и дисперсию этой характеристики. Обнаружено, что отдельные макронеоднородности рельефа кондиционированной гетерогенной мембраны МК-40 в воздушно-сухом состоянии имели модуляции по высоте 1,8·10⁻⁷м, а шероховатость поверхности характеризовалась размером 9·10⁻⁸м. У образцов гетерогенных мембран, подвергшихся токо-температурному воздействию было отмечено увеличение степени шероховатости поверхности, средняя величина которой составила 10⁻⁷м.

Микрофотографии и АСМ-изображения получены в ЦКПНО ВГУ. Работа выполнена при поддержке РФФИ, грант № 06-03-96676.

СПИСОК ЛИТЕРАТУРЫ

1. Березина Н.П. Структурная организация ионообменных мембран / Н.П. Березина, Н.А. Кононенко. — Краснодар : Изд-во Кубан. гос. ун-та, 1996. — 49 с.

Микроскопический анализ морфологии поверхности ионообменных мембран

Рис. 6. Трехмерное изображение поверхности (1) и микропрофиль по линии поверхности (2, 3) катионообменной мембраны МК-40 после эксплуатации при высокоинтенсивных токовых режимах, полученные методом атомносиловой микроскопии. Сканируемое поле $4 \cdot 10^{-6} \times 4 \cdot 10^{-6} \text{м}^2$ (1, 3), $10^{-5} \times 10^{-5} \text{м}^2$ (2)

2. Певницкая М.В. Зависимость физико-химических свойств гетерогенных ионообменных мембран от их структуры / М.В. Певницкая, В.К. Варенцов, К.Х. Урусов // Изв. СО АН СССР. Сер хим. наук. — 1969. — Вып. 6, №4. — С. 18—24.

3. Варенцов В.К. Связь электрохимических свойств ионообменных мембран с состоянием их поверхности / В.К. Варенцов, М.В. Певницкая // Изв. СО АН СССР. Сер хим. наук. — 1971. — Вып. 4, № 9. — С. 124—127.

4. Варенцов В.К. Электропроводность ионообменных мембран и неоднородность их строения / В.К. Варенцов, М.В. Певницкая // Изв. СО АН СССР. Сер хим. наук. 1973. — Вып.2, №4. — С. 3—8.

5. Балавадзе Э.М. Концентрационная поляризация в процессе электродиализа и поляризационные характеристики ионоселективных мембран / Э.М. Балавадзе, О.В. Бобрешова, П.И. Кулинцов // Успехи химии. — 1988. — Т. 57, № 6. — С. 103—114.

6. *Пивоваров Н.Я.* Гетерогенные ионообменные мембраны в электродиализных процессах / Н.Я. Пивоваров. — Владивосток: Дальнаука, 2001. — 112 с.

7. Пивоваров Н.Я. Влияние гетерогенности ионообменных мембран на предельный ток и вид вольтамперных характеристик / Н.Я. Пивоваров, В.П. Гребень, В.Н. Кустов, А.П. Голиков, И.Г. Родзик // Электрохимия. — 2001. — Т.37, № 8. — С. 941—952.

Письменская Н.Д. Сопряженная конвекция раствора у поверхности ионообменных мембран при интенсивных токовых режимах / Н.Д. Письменская, В.В. Никоненко, Е.И. Белова, Г.Ю. Лопаткова, Ф. Систа, Ж. Пурсели, К. Ларше // Электрохимия. — 2007. — Т. 43, № 3. — С. 325—345.

9. Письменская Н.Д. Сопряженные эффекты концентрационной поляризации в электродиализе разбавленных растворов: дис. ... д.х.н.: 02.00.05: защищена 26.10.04 / Н.Д. Письменская. — Краснодар, 2004. — 405 с. 10. Заболоцкий В.И. Перенос ионов в мембранах / В.И. Заболоцкий, В.В. Никоненко. — М.: Наука, 1996. — 390 с.

11. Уртенов М.Х. Математические модели электромембранных систем очистки воды / М.Х. Уртенов, Р.Р. Сеидов. — Краснодар: Изд-во Кубан. гос. ун-та, 2000. — 140 с.

12. Магонов С.Н. Сканирующая силовая микроскопия полимеров и родственных материалов / С.Н. Магонов // Высокомолекулярные соединения. — 1996. — Т.38, № 1. — С. 143—182.

13. *Бухараев А.А.* Диагностика поверхности с помощью сканирующей силовой микроскопии (обзор) / А.А. Бухараев, Д.В. Овчинников, А.А. Бухараева // Заводская лаборатория. — 1997. — Т.66, №5. — С. 10—25.

14. Филатов Д.О. Исследование топографии поверхности твердых тел методом АСМ в контактном режиме / Д.О. Филатов, А.В. Круглов, Ю.Ю. Гущина // Физика твердого тела: лаб. Практикум ; под ред. А.Ф. Хохлова. — М.: Высш. школа, 2001. — Т. 1. — С. 229—251.

15. *Салдадзе Г.К.* Пористая структура гетерогенных ионообменных мембран / Г.К. Салдадзе // Ионселективные мембраны и электромембранные процессы. — М.: НИИТЭХим. — 1986. — С. 18—24.

16. Селеменев В.Ф. Порометрический анализ ионообменников, насыщенных аминокислотами / В.Ф. Селеменев, М.В Матвеева, Г.А. Чикин, В.А. Устиновский, В.Ю. Хохлов // Журн. физ. химии. — 1996. — Т. 70, № 2. — С. 370—372.

17. Селеменев В.Ф. Исследование морфологии поверхности анионитов АВ-17-2П и АВ-17-8, насыщенных пролином / В.Ф. Селеменев, А.Н. Зяблов, В.Н. Чиканов, М.В. Матвеева, А.Ю. Текучев // Сорбционные и хроматографические процессы. — 2001. — Т. 1, Вып. 5. — С. 905—909.

18. Дьяконова О.В. Исследование состояния поверхности мембран на основе полиамидокислоты / О.В. Дьяконова, А.Н. Зяблов, В.В. Котов, Т.В. Елисеева, В.Ф. Селеменев, В.В. Фролова // Сорбционные и хроматографические процессы. — 2005. — Т.5, № 4. — С. 501—506.

19. Жиброва Ю.А. Метод сканирующей зондовой микроскопии в изучении структуры пор слабоосновных анионообменников / Ю.А. Жиброва, А.Н. Зяблов, Т.В. Елисеева, В.Ф. Селеменев // Сорбционные и хроматографические процессы. — 2004. — Т. 4, № 6. — С. 819—823.

20. Ионитовые мембраны. Грануляты. Порошки: каталог / Г.З. Нефедова, З.Г. Климова, Г.С. Сапожникова; под ред. А.Б. Пашкова. — М.: НИИТЭХим, 1977. — 31 с.

21. Гаршина Т.И. Ионообменные мембраны производства ОАО «Щекиноазот» / Т.И. Гаршина, Л.П. Маркова // Российская научная конференция «Ионный перенос в органических и неорганических мембранах», 22—25 мая 2006 г.: материалы. — Краснодар, Туапсе: Изд-во Куб. гос. ун-та. — 2006. — С. 44.

22. Березина Н.П. Физико-химические свойства ионообменных материалов / Н.П. Березина, Н.А. Кононенко, Г.А. Дворкина, Н.В. Шельдешов. — Краснодар: Изд-во Кубан. гос. ун-та, 1999. — 82 с.

23. *Рыков С.А.* Сканирующая зондовая микроскопия полупроводниковых материалов и наноструктур / С.А. Рыков; под ред. В.И. Ильина, А.Я. Шика. — С-Пб.: Наука, 2001. — 53с.

24. Сканирующая зондовая микроскопия биополимеров / под ред. И.В. Яминского. — М.: Научный мир, 1997. — 88 с.

25. Лопаткова Г.Ю. Метод оценки проводящей поверхности гетерогенных мембран / Г.Ю. Лопаткова, Е.И. Володина, Н.Д. Письменская, В.В.Никоненко // Всероссийская конф., «Мембранная электрохимия. Ионный перенос в органических и неорганических мембранах»: 24—28 мая 2004 г.: тезисы. — Краснодар: Изд-во Куб. гос. ун-та. — 2004. — С. 29.

26. Лопаткова Г.Ю. Влияние свойств поверхности ионообменных мембран на их электрохимическое поведение в сверхпредельных токовых режимах: дис. ... канд. хим. наук: 02.00.05: защищена 20.12.06 / Г.Ю. Лопаткова. — Краснодар, 2006. — 180 с.

27. Березина Н.П. Электротранспортные и гидрофильные свойства перфторированных мембран НАФИ-ОН-117 и МФ-4СК / Н.П. Березина, С.В. Тимофеев, С. Дюран-Видаль, Л. Ролле // Наука Кубани. — 2000. — Т.5 (ч.2). — С. 34—35.

28. *Березина Н.П.* Диагностика ионообменных мембран после реального электродиализа / Н.П. Березина, О.П. Ивина, Д.В. Рубинина; Кубан.гос.ун-т. — Краснодар, 1990. — 11с. — Деп.в ОНИИТЭХим г. Черкассы 20.02.90, №166—хп 90.

29. *Гнусин Н.П.* Электрохимия гранулированных ионитов / Н.П. Гнусин, В.Д. Гребенюк. — Киев: Наукова думка, 1972. — 178 с.