УДК 621.396 ОЦЕНИВАНИЕ ВЕКТОРА УСКОРЕНИЯ ЗАМАСКИРОВАННОГО ПРОСТРАНСТВЕННО ПРОТЯЖЕННОГО ОБЪЕКТА, НАЧИНАЮЩЕГО ДВИЖЕНИЕ НА НЕРАВНОМЕРНОМ ФОНЕ

Р. В. Куцов

Воронежский институт ФСИН России

Поступила в редакцию 17.11.2016 г.

Аннотация. Для аппликативной модели взаимодействия изображения движущегося объекта и фона выполнены синтез и анализ максимально правдоподобного алгоритма оценки вектора ускорения замаскированного пространственно протяженного объекта, начинающего движение на неравномерном фоне. Исследовано влияние истинного значения вектора ускорения на точность оценки.

Ключевые слова: оценка, аппликативная модель, вектор, ускорение, движение, фон, изображение, максимально правдоподобный алгоритм.

Annotation. Synthesis and analysis of the maximum likelihood algorithm for estimation of the spatially extensive object acceleration vector for the applicative model of interaction of moving object image and a background have been carried out. The influence of real value of acceleration vector on effectiveness of estimation is investigated.

Keywords: estimation, applicative model, vector, acceleration, background, image, maximum likelihood algorithm.

введение

В процессе обработки результатов дистанционного наблюдения возникает необходимость в измерении параметров движения объектов по их изображениям [1]. Обычно объекты наблюдаются на некоторой подстилающей поверхности, и сигнал, рассеянный этой поверхностью, представляет собой фоновое излучение (фон). Функционирование измерительных систем в реальных условиях сопровождается шумами, имеющими различную физическую природу, поэтому в задачи системы наблюдения входит одновременно и компенсация пространственно-временного шума, и выделение объекта на мешающем фоне. Высокая разрешающая способность современных систем дистанционного наблюдения приводит к необходимости учета эффекта затенения пространственно-протяженным объектом (ППО) части подстилающей поверхности [1-4]. В работе [1] рассмотрены различные случаи априорной неопределен-

рости движения изображения объекта. При этом скорость движения объекта предполагалась постоянной. Однако встречаются ситуации, когда объект движется с ускорением. В частности, представляет интерес ситуация, когда первоначально неподвижный объект начинает движение с априори неизвестным вектором ускорения. При этом изначально объект может быть замаскирован под фон. Целью данной работы является синтез и

ности относительно величины и вектора ско-

анализ максимально-правдоподобного алгоритма измерения вектора ускорения ППО по его изображению при наличии неравномерного фона.

ПОСТАНОВКА ЗАДАЧИ

Пусть в двумерной области Ω в течение интервала времени [0, T] доступна наблюдению реализация гауссовского случайного поля $\Xi(\mathbf{r}, t)$, где $\mathbf{r} = (x, y)$ – радиус-вектор точки на плоскости, принадлежащей Ω , а t – время. Положим [4], что поле $\Xi(\mathbf{r}, t)$ содержит изображение $s(\mathbf{r} - \mathbf{a}_0 t^2 / 2)$ первона-

[©] Куцов Р. В., 2016

чально неподвижного объекта, начинающего движение с ускорением \mathbf{a}_0 , неподвижный фон $v(\mathbf{r})$ и аддитивный гауссовский пространственно-временной белый шум $n(\mathbf{r}, t)$ с нулевым математическим ожиданием и корреляционной функцией $\langle n(\mathbf{r}_1, t_1)n(\mathbf{r}_2, t_2) \rangle = N_0 \delta(\mathbf{r}_1 - \mathbf{r}_2) \delta(t_1 - t_2)/2$, где N_0 – односторонняя спектральная плотность белого шума.

В соответствии с аппликативной моделью [1-4], учитывающей эффекты затенения объектом участка фона, полагаем, что изображение объекта занимает часть Ω_s области Ω , а фоновое излучение формируется оставшейся частью области наблюдения. Будем считать, что разрешающая способность системы наблюдения достаточно высока, так что размеры неоднородностей объекта и фона велики по сравнению с размерами элемента разрешения в плоскости наблюдения. Тогда в течение интервала времени [0, T] наблюдению доступна реализация изображения

$$\Xi(\mathbf{r}, t) = s(\mathbf{r} - \mathbf{a}_0 t^2 / 2) I_s(\mathbf{r} - \mathbf{a}_0 t^2 / 2) + + v(\mathbf{r}) \left[1 - I_s(\mathbf{r} - \mathbf{a}_0 t^2 / 2) \right] + n(\mathbf{r}, t),$$
(1)

где $I_s(\mathbf{r}) = 1$ для $\mathbf{r} \in \Omega_s$, и $I_s(\mathbf{r}) = 0$ при $\mathbf{r} \notin \Omega_s$ – индикатор, описывающий форму изображения объекта. В (1) предполагается, что объект движется из заданного положения с априори неизвестным ускорением $\mathbf{a}_0 = a_{0x}\mathbf{i}_x + a_{0y}\mathbf{i}_y$, где \mathbf{i}_x , \mathbf{i}_y – орты осей X и Y прямоугольной системы координат, а a_{0x} , a_{0y} – компоненты вектора \mathbf{a}_0 , представляющие собой его проекции на оси X, Y и принимающие значения из априорных интервалов $A_x = [-a_{x \max} / 2; a_{x \max} / 2],$ $A_y = [-a_{y \max} / 2; a_{y \max} / 2].$

На основе наблюдаемых данных необходимо оценить вектор ускорения объекта, в частности определить величину ускорения объекта и направление его движения.

АЛГОРИТМ И ХАРАКТЕРИСТИКИ ОЦЕНКИ ВЕКТОРА УСКОРЕНИЯ

Оценка максимального правдоподобия (МП) компонент вектора ускорения движения объекта определяется как положение абсолютного (наибольшего) максимума логарифма функционала отношения правдоподобия (ФОП) [4–6]:

$$L(a_{x}, a_{y}) =$$

$$= \frac{2}{N_{0}} \int_{0}^{T} \int_{\Omega} \left\{ \Xi(\mathbf{r}, t) \left[s(\mathbf{r} - \mathbf{a}t^{2}/2) - v(\mathbf{r}) \right] - \frac{1}{2} \left[s^{2}(\mathbf{r} - \mathbf{a}t^{2}/2) - v^{2}(\mathbf{r}) \right] \right\} \times$$

$$\times I_{s}(\mathbf{r} - \mathbf{a}t^{2}/2) d\mathbf{r}dt,$$
(2)

где $\mathbf{a} = a_x \mathbf{i}_x + a_y \mathbf{i}_y$ – вектор с компонентами a_x и a_y .

Логарифм ФОП (2) является функцией двух переменных a_x , a_y , поэтому вначале производится совместная оценка компонент вектора ускорения в соответствии с правилом

$$(\hat{a}_x, \hat{a}_y) = \arg \sup L(a_x, a_y), \ (a_x; a_y) \in A, \ (3)$$

на основе которой формируется оценка вектора ускорения

$$\hat{\mathbf{a}} = \hat{a}_x \mathbf{i}_x + \hat{a}_y \mathbf{i}_y. \tag{4}$$

В формуле (3) через A обозначена двумерная область, в пределах которой $a_x \in A_x$, $a_y \in A_y$.

Подставляя в (2) реализацию наблюдаемых данных (1), представим логарифм ФОП в виде суммы сигнальной составляющей и шумовой функций [5]:

$$L(a_x, a_y) = S(a_x, a_y) + N(a_x, a_y), \qquad (5)$$

где сигнальная составляющая логарифма ФОП

$$S(a_{x}, a_{y}) = \langle L(a_{x}, a_{y}) \rangle =$$

$$= S(a_{x}, a_{y}; a_{0x}, a_{0y}) - S(a_{x}, a_{y}; a_{x}, a_{y}) / 2$$

$$S(a_{1x}, a_{1y}; a_{2x}, a_{2y}) =$$

$$\frac{2}{N_{0}} \int_{0}^{T} \iint_{\Omega} \left[s(x - a_{1x}t^{2} / 2, y - a_{1y}t^{2} / 2) - v(x, y) \right] \times$$

$$\times \left[s(x - a_{2x}t^{2} / 2, y - a_{2y}t^{2} / 2) - v(x, y) \right] \times$$

$$\times I_{s} \left(x - a_{1x}t^{2} / 2, y - a_{1y}t^{2} / 2 \right) \times$$

$$\times I_{s} \left(x - a_{2x}t^{2} / 2, y - a_{2y}t^{2} / 2 \right) dx dy dt$$
(6)

– сигнальная функция, а $N(a_x, a_y)$ – шумовая функция, являющаяся реализацией центрированного гауссовского случайного поля с корреляционной функцией

$$\langle N(a_{1x}, a_{1y}) N(a_{2x}, a_{2y}) \rangle = = S(a_{1x}, a_{1y}; a_{2x}, a_{2y}).$$
(8)

Логарифм ФОП (5) является гауссовским случайным полем, поэтому его свойства полностью определяются математическим ожиданием и корреляционной функцией. Согласно (5), (8), сигнальная функция (7) определяет как сигнальную составляющую, так и корреляционную функцию шумовой функции, а значит все свойства логарифма ФОП. При больших значениях отношения сигнал/шум (OCIII) [5] $\rho^2 = S(a_{0x}, a_{0y}; a_{0x}, a_{0y})/4$ TOYность оценок компонент вектора ускорения зависит от поведения сигнальной функции в окрестности ее максимума [6]. Для определения характеристик оценки рассмотрим свойства сигнальной функции $S(a_{1x}, a_{1y}; a_{2x}; a_{2y})$ в малой окрестности точки $(a_{0x}; a_{0y})$. При этом будем полагать, что функции s(x, y) и v(x, y), описывающие интенсивности изображения объекта и фона, непрерывны и непрерывно дифференцируемы.

Рассмотрим случай оценки вектора ускорения изображения прямоугольного объекта со сторонами l_x и l_y , расположенными вдоль координатных осей Х и У соответственно, так что $I_{s}(x, y) = 1$ при $|x| \le l_{x} / 2$, $|y| \le l_{y} / 2$, и $I_{s}(x, y) = 0$ в противном случае. При $|a_{1x} - a_{2x}|T^2 \le 2l_x, |a_{1y} - a_{2y}|T^2 \le 2l_y$ функцию (7) можно записать в виде (9).

Согласно (9) сигнальная функция непрерывно дифференцируема в окрестности точки истинного значения компонент ускорения (a_{0x}, a_{0y}) , за исключением этой точки, где первая производная терпит разрыв первого рода. Аналогично тому, как это сделано в [8], находим, что при

$$\Delta = \max\left(|a_{1x} - a_{0x}|, |a_{2x} - a_{0x}|, |a_{2y} - a_{0y}|, |a_{2y} - a_{0y}|\right) \to 0$$

для функции (7) справедливо асимптотическое разложение

$$S(a_{1x}, a_{1y}; a_{2x}, a_{2y}) =$$

= $z^{2}[1 - \delta_{x} |a_{1x} - a_{2x}| - \delta_{y} |a_{1y} - a_{2y}| - (10)$
 $-\varepsilon_{x}(a_{1x} + a_{2x} - 2a_{0x}) -$
 $-\varepsilon_{y}(a_{1y} + a_{2y} - 2a_{0y})] + o(\Delta),$

где

$$z^{2} = 4\rho^{2} = \frac{2}{N_{0}} \int_{0}^{T} \int_{-l_{y}/2}^{l_{y}/2} \int_{-l_{x}/2}^{l_{x}/2} \left[s(x, y) - \left(x + \frac{a_{0x}t^{2}}{2}, y + \frac{a_{0y}t^{2}}{2}\right) \right]^{2} dxdydt$$
(11)

- учетверенное ОСШ на выходе приемника МП, равное величине сигнальной функции (7) в точке истинного значения ускорения,

$$\varepsilon_{x} = \frac{1}{z^{2}N_{0}} \int_{0}^{T} t^{2} \int_{-l_{y}/2}^{l_{y}/2} \int_{-l_{x}/2}^{l_{x}/2} \left[s(x, y) - \frac{-v\left(x + \frac{a_{0x}t^{2}}{2}, y + \frac{a_{0y}t^{2}}{2}\right) \times \frac{\partial v\left(x + a_{0x}t^{2}/2, y + a_{0y}t^{2}/2\right)}{\partial x} dx dy dt,$$

$$\varepsilon_{y} = \frac{1}{z^{2}N_{0}} \int_{0}^{T} t^{2} \int_{-l_{y}/2}^{l_{y}/2} \int_{-l_{x}/2}^{l_{x}/2} \left[s(x, y) - \frac{-v\left(x + \frac{a_{0x}t^{2}}{2}, y + \frac{a_{0y}t^{2}}{2}\right) \right] \times \frac{\partial v\left(x + a_{0x}t^{2}/2, y + a_{0y}t^{2}/2\right)}{\partial y} dx dy dt,$$

$$S\left(a_{1x}, a_{1y}; a_{2x}, a_{2y}\right) =$$

$$= \frac{2}{N_{0}} \int_{0}^{T} \int_{\left[\max(a_{1y}, a_{2y})T^{2} + l_{y}\right]/2}^{\left[\min(a_{1x}, a_{2x})T^{2} + l_{x}\right]/2}} \int_{0}^{T} \left[s\left(x - \frac{a_{1x}t^{2}}{2}, y - \frac{a_{1y}t^{2}}{2}\right) - v\left(x, y\right)\right] \times$$

$$\times \left[s\left(x - \frac{a_{2x}t^{2}}{2}, y - \frac{a_{2y}t^{2}}{2}\right) - v\left(x, y\right)\right] dx dy dt.$$
(9)

>

Оценивание вектора ускорения замаскированного пространственно протяженного объекта, ...

$$\begin{split} \delta_{x} &= \frac{1}{2z^{2}N_{0}} \int_{0}^{T} t^{2} \int_{-l_{y}/2}^{l_{y}/2} \left\{ \left[s\left(-\frac{l_{x}}{2}, y\right) - \right. \\ &\left. - v\left(-\frac{l_{x}}{2} + \frac{a_{0x}t^{2}}{2}, y + \frac{a_{0y}t^{2}}{2}\right) \right]^{2} + \right. \\ &\left. + \left[s\left(\frac{l_{x}}{2}, y\right) - v\left(\frac{l_{x}}{2} + \frac{a_{0x}t^{2}}{2}, y + \frac{a_{0y}t^{2}}{2}\right) \right]^{2} \right\} dy dt, \\ &\left. \delta_{y} &= \frac{1}{2z^{2}N_{0}} \int_{0}^{T} t^{2} \int_{-l_{x}/2}^{l_{x}/2} \left\{ \left[s\left(x, -\frac{l_{y}}{2}\right) - \left. - v\left(x + \frac{a_{0x}t^{2}}{2}, -\frac{l_{y}}{2} + \frac{a_{0y}t^{2}}{2}\right) \right]^{2} \right\} + \left. \left[s\left(x, \frac{l_{y}}{2}\right) - v\left(x + \frac{a_{0x}t^{2}}{2}, -\frac{l_{y}}{2} + \frac{a_{0y}t^{2}}{2}\right) \right]^{2} \right\} dx dt. \end{split}$$

С помощью (6), (10) находим, что при $\Delta_0 = (|a_x - a_{0x}|, |a_y - a_{0y}|) \rightarrow 0$ сигнальная составляющая логарифма ФОП допускает асимптотическое разложение

$$S(a_{x}, a_{y}) = z^{2} (1 - 2\delta_{x} |a_{x} - a_{0x}| - 2\delta_{y} |a_{y} - a_{0y}|)/2 + o(\Delta_{0}).$$
(12)

Согласно (12) сигнальная составляющая логарифма ФОП (6) достигает своего максимального значения в точке истинного значения вектора ускорения (a_{0x}, a_{0y}) [5]. Положим, что ОСШ $\rho^2 = z^2/4$ достаточно

Положим, что ОСШ $\rho^2 = z^2/4$ достаточно велико при всех значениях a_{0x} , a_{0y} так что оценки компонент вектора ускорения \hat{a}_x , \hat{a}_y являются надежными [6]. Найдем характеристики оценки ускорения, используя метод локально аддитивной аппроксимации [9]. При этом точность оценки будем характеризовать ее дисперсией при фиксированном истинном значении вектора ускорения [6].

Обозначим через $L_x(a_x)$, $L_y(a_y)$ статистически независимые гауссовские случайные процессы с математическими ожиданиями

$$\left\langle L_x(a_x)\right\rangle = z^2 \left(1 - 4\delta_x \left|a_x - a_{0x}\right|\right) / 4,$$

$$\left\langle L_y(a_y)\right\rangle = z^2 \left(1 - 4\delta_y \left|a_y - a_{0y}\right|\right) / 4$$

и корреляционными функциями

$$B_{x}(a_{1x}, a_{2x}) = z^{2}[1 - 2\delta_{x}|a_{1x} - a_{2x}| - 2\varepsilon_{x}(a_{1x} + a_{2x} - 2a_{0x})]/2,$$

$$B_{y}(a_{1y}, a_{2y}) = z^{2} [1 - 2\delta_{y} | a_{1y} - a_{2y} | -2\varepsilon_{y} (a_{1y} + a_{2y} - 2a_{0y})] / 2$$

соответственно. Из (9), (12) следует, что статистические характеристики гауссовских случайных полей $L(a_x, a_y)$ (5) и $L_x(a_x) + L_y(a_y)$ асимптотически совпадают в малой окрестности точки (a_{0x}, a_{0y}) , поэтому при достаточно больших ОСШ характеристики МП оценок компонент вектора ускорения \hat{a}_x и \hat{a}_y приближенно совпадают с найденными в [8] характеристиками положений абсолютных максимумов случайных процессов $L_x(a_x)$ и $L_y(a_y)$ соответственно. Используя результаты [8], находим, что надежные оценки компонент вектора ускорения являются несмещенными, т. е. $b(\hat{a}_x) = \langle \hat{a}_x - a_{0x} \rangle = 0, \ b(\hat{a}_y) = \langle \hat{a}_y - a_{0y} \rangle = 0, \ a$ их дисперсии определяются формулами

$$D(\hat{a}_{x}) = \left\langle \left(\hat{a}_{x} - a_{0x}\right)^{2} \right\rangle = \frac{13}{2z^{4}\delta_{x}^{2}} = \frac{26}{Q_{x}^{2}},$$

$$D(\hat{a}_{y}) = \left\langle \left(\hat{a}_{y} - a_{0y}\right)^{2} \right\rangle = \frac{13}{2z^{4}\delta_{y}^{2}} = \frac{26}{Q_{y}^{2}}, \quad (13)$$

где

$$Q_{x} = \frac{1}{N_{0}} \int_{0}^{T} t^{2} \int_{-l_{y}/2}^{l_{y}/2} \left\{ \left[s\left(-\frac{l_{x}}{2}, y\right) - \frac{1}{N_{0}} \int_{0}^{T} t^{2} \int_{-l_{y}/2}^{1} \left\{ \left[s\left(-\frac{l_{x}}{2}, y\right) - \frac{1}{N_{0}} \right]^{2} + \left[s\left(\frac{l_{x}}{2}, y\right) - \frac{1}{N_{0}} \right]^{2} + \left[s\left(\frac{l_{x}}{2}, y\right) - \frac{1}{N_{0}} \right]^{2} \right\} dy dt,$$

$$- v \left(\frac{l_{x}}{2} + \frac{a_{0x}t^{2}}{2}, y + \frac{a_{0y}t^{2}}{2} \right)^{2} \right]^{2} dy dt,$$

$$Q_{y} = \frac{1}{N_{0}} \int_{0}^{T} t^{2} \int_{-l_{x}/2}^{l_{x}/2} \left\{ \left[s\left(x, -\frac{l_{y}}{2}\right) - \frac{1}{N_{0}} + \frac{a_{0y}t^{2}}{2} \right)^{2} + \left[s\left(x, \frac{l_{y}}{2}\right) - \frac{1}{N_{0}} + \frac{a_{0y}t^{2}}{2} + \frac{a_{0y}t^{2}}{2} \right)^{2} + \left[s\left(x, \frac{l_{y}}{2}\right) - \frac{1}{N_{0}} + \frac{a_{0y}t^{2}}{2} + \frac{a_{0y}t^{2}}{2} \right)^{2} \right\} dx dt.$$

Согласно (4) оценка вектора ускорения является несмещенной, т. е. $b(\hat{\mathbf{a}}) = \langle \hat{\mathbf{a}} - \mathbf{a}_0 \rangle = 0$, а ее дисперсия

$$D(\hat{\mathbf{a}}) = \left\langle (\hat{\mathbf{a}} - \mathbf{a}_0)^2 \right\rangle = D(\hat{a}_x) + D(\hat{a}_y) =$$
$$= 26 \left(Q_x^{-2} + Q_y^{-2} \right).$$

ВЕСТНИК ВГУ, СЕРИЯ: СИСТЕМНЫЙ АНАЛИЗ И ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ, 2016, № 4 151

Найдем характеристики надежных оценок величины ускорения и направления движения объекта, которое будем характеризовать углом между вектором ускорения и осью X. Согласно (13) точность оценок компонент вектора ускорения повышается с увеличением ОСШ, так что \hat{a}_x , \hat{a}_y можно представить в виде $\hat{a}_x = a_{0x} + \varepsilon \xi$, $\hat{a}_y = a_{0y} + \varepsilon \eta$, где ξ и η – статистически независимые случайные величины с нулевыми математическими ожиданиями и дисперсиями $\langle \xi^2 \rangle = D(\hat{a}_x)/\varepsilon^2$ и $\langle \eta^2 \rangle = D(\hat{a}_y)/\varepsilon^2$, а $\varepsilon \to 0$ при $z^2 \to \infty$. Тогда оценки модуля ускорения $\hat{a} = \sqrt{\hat{a}_x^2 + \hat{a}_y^2}$ и направления движения $\hat{\varphi} = \operatorname{arctg}(\hat{V}_y/\hat{V}_x)$ могут быть представлены в виде

$$\hat{a} = \sqrt{\left(a_{0x} + \varepsilon\xi\right)^2 + \left(a_{0y} + \varepsilon\eta\right)^2}$$
$$\hat{\varphi} = \operatorname{arctg}\left(\frac{a_{0y} + \varepsilon\eta}{a_{0x} + \varepsilon\xi}\right).$$

Разлагая эти выражения в ряд Маклорена по ε , получаем, что при больших значениях ОСШ

$$\hat{a} = a_0 + \varepsilon \left(\xi \cos \varphi_0 + \eta \sin \varphi_0\right) + o(\varepsilon),$$
$$\hat{\varphi} = \varphi_0 + \varepsilon \left(\xi \sin \varphi_0 + \eta \cos \varphi_0\right) / a_0 + o(\varepsilon), \quad (15)$$

где $a_0 = \sqrt{a_{0x}^2 + a_{0y}^2}$ – истинное значение модуля ускорения объекта, а угол $\varphi_0 = \arctan\left(V_{0y}/V_{0x}\right)$ определяет истинное направление движения. Используя (15), находим, что надежные МП оценки модуля ускорения и направления движения являются несмещенными, т. е. $b(\hat{a}) = \langle \hat{a} - a_0 \rangle = 0$, $b(\hat{\varphi}) = \langle \hat{\varphi} - \varphi_0 \rangle = 0$, а их дисперсии определяются выражениями

$$D(\hat{a}) = \left\langle (\hat{a} - a_0)^2 \right\rangle =$$

= $26 \left(Q_x^{-2} \cos^2 \varphi_0 + Q_y^{-2} \sin^2 \varphi_0 \right),$
 $D(\hat{\varphi}) = \left\langle (\hat{\varphi} - \varphi_0)^2 \right\rangle =$
= $26 \left(Q_x^{-2} \sin^2 \varphi_0 + Q_y^{-2} \cos^2 \varphi_0 \right) / a_0^2.$

ВЛИЯНИЯ ТЕКСТУРЫ ИЗОБРАЖЕНИЯ И ИСТИННОГО ЗНАЧЕНИЯ ВЕКТОРА УСКОРЕНИЯ НА ТОЧНОСТЬ ОЦЕНОК

Влияние истинного значения ускорения движения объекта на точность оценки рассмотрим на примере квадратного объекта размером $l \times l$, стороны которого ориентированы вдоль осей Х и У соответственно. Пусть на фоне с пятнистой текстурой рисунка $v(x, y) = v_0 \left[1 + m \cos(2\pi x/\Theta) \cos(2\pi y/\Theta) \right]$ наблюдается изображение объекта, совпадающее с фоном в начальный момент времени, границы которого параллельны координатным осям и проходят через точки экстремума фона (рис. 1). Здесь $\Theta = l/N$ – период текстуры, *N* – натуральное число. На рис. 2, 3 показаны зависимости нормированных дисперсий оценок вектора $D_0(\hat{\mathbf{a}}) = T^6 v_0^4 l^2 m^4 D(\hat{\mathbf{a}}) / 26 N_0^2$ и модуля ускорения $D_0(\hat{a}) = T^6 v_0^4 l^2 m^{4'} D(\hat{a}) / 26 N_0^2$ от величины $\Psi = a_0 T^2 / 2\Theta$, определяющей число пятен, укладывающихся на пути, пройденном изображением объекта за время наблюдения. Линии 1 соответствуют $\phi_0 = 0^\circ$, линии 2 – $\varphi_0 = 30^\circ$, линии 3 – $\varphi_0 = 45^\circ$. На рис. 4 показана зависимость нормированной дисперсии оценки направления движения $D_0(\hat{\varphi}) = T^2 v_0^4 l^2 m^4 \Theta^2 D(\hat{\varphi}) / 26 N_0^2$ от его истинного значения φ_0 . Линия 1 соответствует $\Psi = 0,25$, линия 2 – $\Psi = 1$, линия 3 – $\Psi = 4$.

Отметим, что с уменьшением m, когда изображение объекта и фон становятся более однородными, дисперсия оценки увеличивается как m^{-4} . При больших значения Ψ , когда за время наблюдения объект проходит несколько размеров неоднородности фона, дисперсии оценок величины и вектора ускорения, а так же направления движения практически перестают зависеть от истинных значений величины ускорения и направления движения объекта.

ЗАКЛЮЧЕНИЕ

В работе найдены структура измерителя и характеристики надежной оценки вектора ускорения замаскированного пространственно протяженного объекта, начинающего движение на неоднородном фоне. Определена Оценивание вектора ускорения замаскированного пространственно протяженного объекта, ...

точность оценок модуля ускорения и направления движения объекта. Показано, что при наличии неоднородного фона величина истинного значения вектора ускорения объекта может оказывать существенное влияние на точность оценок.

Рис. 1. Текстура фона и начальное положение объекта

дисперсии оценки вектора ускорения от величины Ψ

СПИСОК ЛИТЕРАТУРЫ

1. Куцов Р. В. Оценка параметров движения объекта по изображению при наличии аппликативного фона / Р. В. Куцов // Вестн. Воронежского института ФСИН России. – 2014. – № 3. С. 5–10.

2. Бычков А. А. Обнаружение протяженных затеняющих фон объектов / А. А. Бычков, В. А. Понькин // Автометрия. – 1992. – № 4. С. 33–40.

3. Потенциальные возможности обнаружения и маскирования движущихся объектов на неравномерных фонах / В. В. Ефремов [и др.] // Информационно-измерительные и управляющие системы. – 2003. – № 4. С. 24–29.

4. *Куцов Р. В.* Обнаружение объекта, начинающего движение с неизвестным ускорением / Р. В. Куцов // Вестн. Воронежского института ФСИН России. –2016. – № 1. С. 13–20.

5. *Куликов Е. И*. Оценка параметров сигналов на фоне помех / Е. И. Куликов, А. П. Трифонов. – М. : Сов. радио, 1978. – 296 с.

6. *Трифонов А. П.* Совместное различение сигналов и оценка их параметров на фоне помех / А. П. Трифонов, Ю. С. Шинаков. – М. : Радио и связь, 1986. – 268 с.

7. Ильин В. А., Позняк Э. Г. Основы математического анализа. Часть II. – М. : Наука, 1980. – 447 с.

8. Куцов Р. В. Характеристики оценки ускорения замаскированного объекта, начи-

Р. В. Куцов

нающего движение на неравномерном фоне / Р. В. Куцов // Вестн. Воронежского института ФСИН России. –2016. – № 4. С. 6–12.

9. Трифонов А. П. Эффективность обнаружения разрывного случайного радиоим-

Куцов Р. В. — канд. физ.-мат. наук, доцент, заместитель начальника организационно-научного и редакционного отдела ФКОУ ВО Воронежский институт ФСИН России. E-mail: kutsov@mail.ru пульса с неизвестными временем прихода и центральной частотой / А. П. Трифонов, А. В. Захаров // Радиотехника и электроника. – 2000. – № 11. – С. 1329–1337.

Kutsov R. V. — candidate of physical and mathematical sciences, associate professor, the deputy chief of the organizational-scientific and editorial department of the Russia Federal Penitentiary Service.

E-mail: kutsov@mail.ru