ПАРАЛЛЕЛЬНЫЕ АЛГОРИТМЫ ПРИ МОДЕЛИРОВАНИИ ЭЛЕКТРОН-АТОМНОГО РАССЕЯНИЯ В ЛАЗЕРНОМ ПОЛЕ

К. Н. Карелин, А. В. Флегель

Воронежский государственный университет

На примере задачи о рассеянии электрона на короткодействующем атомном потенциале в сильном лазерном поле рассматриваются параллельные методы численного расчета сечений многофотонных процессов на кластерных системах. Разработаны эффективные алгоритмы вычислений с использованием наиболее распространенных технологий параллельного программирования OpenMP и MPI.

введение

С быстрым развитием лазерной техники и появлением сверхинтенсивных лазерных источников с короткой длительностью импульса и частотой от инфракрасного до мягкого рентгеновского диапазона стало возможным обнаружение и изучение большого количества ранее неизвестных явлений, индуцированных лазерными полями. Теоретические исследования таких явлений обусловлены их важностью как для понимания фундаментальных законов взаимодействия электромагнитного излучения с веществом, так и для широкого практического использования. При этом даже в случае взаимодействия сильного лазерного поля с простейшими квантовыми объектами (атомами и отрицательными ионами) часто требуется проведение детального численного анализа с привлечением современных методов параллельного программирования на высокопроизводительных вычислительных системах. Это относится не только к численному решению нестационарного (четырехмерного) уравнения Шредингера — безусловно, сложной расчетной задачи, но и к некоторым исследованиям, базирующимся на модельных, приближенных подходах.

Среди активно изучаемых в последние годы явлений взаимодействия интенсивных лазерных полей с атомами и отрицательными ионами следует отметить процессы надпороговой ионизации (НПИ) атомов, генерации высших гармоник (ГВГ) лазерной накачки, а также вынужденного тормозного поглощения (излучения) при электрон-атомном рассеянии (ЭАР). Одним из наиболее интересных нели-

нейных эффектов в перечисленных многофотонных процессах являются эффекты «плато» (то есть слабая зависимость сечений процессов от числа *п* поглощенных фотонов в широком интервале n). Платообразные структуры в энергетическом спектре фотоэлектронов при НПИ и спектре генерируемого излучения при ГВГ активно исследуются уже более 10 лет (см., напр., обзор [1]), наличие плато в спектрах многофотонного тормозного поглощения при ЭАР было установлено в [2, 3]. Абсолютная величина *n*-фотонных сечений в области плато на несколько порядков меньше, чем в области малых n, поэтому для экспериментального наблюдения высокоэнергетических электронов и высших гармоник важное значение имеет поиск механизмов усиления сечений в области плато. Исследования в данном направлении предполагают проведение детального (численного) анализа зависимостей сечений от таких параметров как интенсивность лазерного поля, энергия электронов и т. д.

В настоящей работе развиваются методы параллельных вычислений для расчета сечений ЭАР в сильном лазерном поле и анализируются различные подходы в распараллеливании вычислений на многопроцессорном кластере: 1) с использованием технологии программирования Ореп MP для систем с общей памятью [4, 5]; 2) с помощью функций библиотеки MPI (*Message Passing Interface*) [4]; 3) комбинированный MPI + Open MP-подход.

ФИЗИЧЕСКАЯ ПОСТАНОВКА ЗАДАЧИ

Теория рассеяния электрона на короткодействующем потенциале $U(\mathbf{r})$ (с радиусом действия $r \sim r_c$), поддерживающем слабосвязанное состояние с орбитальным моментом l и

[©] Карелин К. Н., Флегель А. В., 2008

энергией $E_0 = -\hbar^2 \kappa^2 / 2m (r_c << \kappa^{-1})$, в присутствии лазерного поля развита в работе [6] и состоит в обобщении теории эффективного радиуса [7] для упругого рассеяния электрона на потенциале $U(\mathbf{r})$ на случай рассеяния во внешнем периодическом поле. При таком подходе электронатомное взаимодействие учитывается через длину рассеяния и эффективный радиус, а взаимодействие электрона с лазерным полем учитывается точно.

Волновая функция электрона с энергией E и асимптотическим импульсом **р** в потенциале U(r)и световом поле с электрическим вектором $\mathbf{F}(t) =$ = $\mathbf{F}\cos(\omega t)$ выглядит как $\Psi(\mathbf{r},t) = \exp(-i\varepsilon t/\hbar)\Phi(\mathbf{r},t)$, где $\varepsilon = E + u_p$ — квазиэнергия, $u_p = e^2 F^2 / (4m\omega^2)$ средняя колебательная энергия электрона в поле, а периодическая по времени функция $\Phi(\mathbf{r},t)$ есть решение уравнения Шредингера:

$$\begin{bmatrix} i\hbar \frac{\partial}{\partial t} + \varepsilon - U(r) - |e| (\mathbf{r} \cdot \mathbf{F}(t)) \end{bmatrix} \times$$

$$\times \Phi(\mathbf{r}, t) = 0.$$
(1)

Функция $\Phi(\mathbf{r},t)$ имеет вид $\Phi(\mathbf{r},t) = \chi(\mathbf{r},t) + \Phi^{(sc)}(\mathbf{r},t)$, где падающая волна $\chi(\mathbf{r},t)$ есть периодическая часть известной волновой функции $\psi(\mathbf{r},t)$ свободного электрона в поле: $\psi(\mathbf{r},t) = \exp(-i\varepsilon t/\hbar)\chi(\mathbf{r},t)$, а асимптотика рассеянной волны $\Phi^{(sc)}(\mathbf{r},t)$ определяет амплитуду $A_n(\mathbf{p},\mathbf{p}_n)$ и сечение рассеяния с поглощением (n < 0) фотонов

$$\Phi^{(sc)}(\mathbf{r},t)\Big|_{r\to\infty} =$$

$$= \sum_{n=n_{\min}}^{\infty} A_n r^{-1} \exp(ip_n r / \hbar - in\omega t), \qquad (2)$$

$$d\sigma_n / d\Omega_{p_n} = (p_n / p) |A_n(p, p_n)|^2,$$

где $p_n = \sqrt{2m (E + n\hbar \omega)}$ — импульс рассеянного электрона, а суммирование в (2) включает все открытые каналы с $E + n\hbar \omega > 0$.

В дальнейшем рассмотрении ограничимся случаем l=0 (*s*-рассеяние). Вне области действия потенциала U(r) (при $r > r_c$) решение уравнения (1) с асимптотикой расходящейся сферической волны при $r \to \infty$ может быть записано через запаздывающую функцию Грина $G(\mathbf{r}, t; \mathbf{r}', t')$ свободного электрона в поле $\mathbf{F}(t)$ следующим образом:

$$\Phi(\mathbf{r},t) = \chi(\mathbf{r},t) - (2\pi\hbar^2) / (m\kappa) \times \int_{-\infty}^{t} dt' e^{i\varepsilon(t-t')/\hbar} f(t') G(\mathbf{r},t;0,t'),$$
(3)

где $f(t) = \sum_{s} f_{s} e^{-is\omega t}$ — некоторая периодическая функция. В соответствии с нестационарной теорией эффективного радиуса [10] для определения неизвестной функции f(t) решение (3) следует сшить с поведением волновой функции в области малых $r (r < r_{c}): \Phi(r, t) \sim$ $~ \sum_{s} (r^{-1} - B_{0}(\varepsilon + s\hbar\omega)) f_{s} e^{-is\omega t}$, где для коэффициента $B_{0}(E) = -1/a_{0} + r_{0}mE/\hbar^{2}$ используется параметризация через эффективный радиус r_{0} и длину рассеяния a_{0} [9]. Используя для функции Грина $G(\mathbf{r}, t; \mathbf{r}', t')$ фейнмановское представление в записи через классическое действие $S(\mathbf{r}, t; \mathbf{r}', t')$ для электрона в поле $\mathbf{F}(t)$, получим

$$(-ip + B_0(\varepsilon))f(t) + i\frac{r_0}{2}\frac{df}{dt} = c(t) + \frac{1}{\sqrt{4\pi i}} \times$$

$$\times \int_0^{\infty} \frac{d\tau}{\tau^{3/2}} e^{iE\tau} \left[f(t-\tau)e^{iu_p\tau + iS(t,t-\tau)} - f(t) \right],$$

$$(4)$$

где $c(t) = \chi(\mathbf{r} = 0, t), S(t, t') \equiv S(0, t; 0, t').$

В уравнении (4) и всюду ниже используются следующие безразмерные единицы: амплитуда поля *F* измеряется в единицах $F_0 =$ $= (2m |E_0|^3)^{1/2} / |e|\hbar$, энергия и частота в единицах $|E_0|$ и $|E_0|/\hbar$, а импульс и длина в единицах $\hbar\kappa$ и κ^{-1} .

Решение неоднородного интегро-дифференциального уравнения (4) в общем случае может быть получено только численно. Для этих целей его удобно переписать в виде системы линейных неоднородных алгебраических уравнений для коэффициентов Фурье f_s функции f(t). Эта система распадается на две несвязанных системы: одна для коэффициентов $f_s \equiv f_{2k+\delta}$ с четными индексами s ($\delta = 0$), другая — с нечетными ($\delta = 1$):

$$\sum_{j'=-\infty}^{\infty} M_{k,k'}(\boldsymbol{\varepsilon}_{\delta}) f_{2k'+\delta} = c_{2k+\delta}, \qquad (5)$$

где $\varepsilon_{\delta} = E + u_p + \delta \omega$, величины $c_{2k+\delta}$ являются коэффициентами Фурье функции c(t):

$$c_{s} = i^{s} \sum_{m=-\infty}^{\infty} J_{2m-s} \left(\frac{2 \left(\mathbf{F} \cdot \mathbf{p} \right)}{\omega^{2}} \right) J_{m} \left(\frac{u_{p}}{2\omega} \right), \quad (6)$$

где $J_n(x)$ — функция Бесселя первого рода. Матричные элементы $M_{k,k}$ в (5) имеют вид (ср. [4]):

$$M_{k,k'}(\varepsilon) = \delta_{k,k'}(-i\sqrt{\varepsilon + 2k\omega} + B_0(\varepsilon + 2k\omega)/2) - \frac{i^{k-k'}}{\sqrt{4\pi i}} \int_0^{\infty} \frac{d\tau}{\tau^{3/2}} e^{i(\varepsilon + (k+k')\omega)\tau} \times (7) \times \left[e^{i(\lambda(\tau) - u_p\tau)} J_{k-k'}(z(\tau)) - \delta_{k,k'} \right],$$

ВЕСТНИК ВГУ, СЕРИЯ: СИСТЕМНЫЙ АНАЛИЗ И ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ, 2008, №1

27

$$\lambda(\tau) = \frac{4u_p}{\omega^2 \tau} \sin^2 \frac{\omega \tau}{2},$$
$$z(\tau) = \frac{u_p}{\omega} \sin \omega \tau - \lambda(\tau).$$

При известном решении системы уравнений (5) функция $\Phi(\mathbf{r},t)$ в (3) становится полностью определенной, а ее асимптотика (2) при $r \to \infty$ дает амплитуду *s*-рассеяния:

$$A_{n}(\mathbf{p},\mathbf{p}_{n}) = \sum_{s=-\infty}^{\infty} i^{n-s} f_{s} \times \times \sum_{m=-\infty}^{\infty} J_{2m+n-s}\left(\frac{2(\mathbf{F}\cdot\mathbf{p}_{n})}{\boldsymbol{\omega}^{2}}\right) J_{m}\left(\frac{u_{p}}{2\boldsymbol{\omega}}\right).$$
(8)

АНАЛИЗ ОСНОВНЫХ СООТНОШЕНИЙ И МЕТОДЫ ВЫЧИСЛЕНИЙ

Основной проблемой численного анализа амплитуды рассеяния $A_n(\mathbf{p},\mathbf{p}_n)$ (8) является расчет коэффициентов f, удовлетворяющих системе линейных уравнений (5). Отметим, что наиболее сложными, с точки зрения точности расчетов, являются комбинации параметров, для которых $E = \mu \omega$ и $E = \operatorname{Re}[\varepsilon_0(F, \omega)] - u_n + \mu \omega$ (где μ — целое, $\varepsilon_0(F, \omega)$ — комплексная квазиэнергия слабосвязанного состояния электрона в поле U(r)). В первом случае, соответствующем закрытию каналов вынужденного *µ*-фотонного излучения, матрица М вычисляется в точках ветвления, для которых сходимость интегралов в (7) заметно ухудшается (корневую структуру $M_{kk'} = M_{kk'} [(E - \mu \omega)^{1/2}]$ в окрестности $E = \mu \omega$ см., например, в [6]). Второй случай соответствует резонансу на квазидискретном уровне (виртуальный захват электрона атомом в процессе рассеяния), для которого справедливо соотношение det $[M(\varepsilon_0(F, \omega) + \mu \omega)] = 0$. Заметим, однако, что для вещественных Е полного вырождения М не наблюдается.

Хотя формально количество уравнений в (5) неограниченно, фактически в вычислениях учитывается их конечное число, зависящее от параметров лазерного поля и энергии электрона. Зависимость функции Бесселя $J_n(x)$ от параметра n в области n > |x| >> 1 является быстро затухающей и определяется асимптотическим выражением [9]

$$J_n(x) \approx \frac{1}{\sqrt{2\pi\nu}} e^{\nu - n \operatorname{arth}(\nu/n)},$$

$$v = \sqrt{n^2 - x^2}.$$
(9)

Переписав выражение (6) для c_s в виде

$$\begin{split} c_s &= i^s \big[J_{-s}(x) J_0(y) + \\ &+ \sum_{m=1}^{\infty} J_m(y) \left(J_{2m \cdot s}(x) + (-1)^{s+m} J_{2m+s}(x) \right) \bigg] \end{split}$$

где $x = 2(\mathbf{F} \cdot \mathbf{p}) / \omega^2$, $y = u_p / (2\omega)$, нетрудно убедиться в затухании c_s с ростом |s| в области |2y-s| > x. На рис. 1 представлена зависимость коэффициентов c_s от индекса *s* для параметров x = 40.6, y = 6.5 (соответствующие значения параметров поля и энергии электрона в безразмерных единицах указаны в подписи к рисунку). Видно, что для данных параметров необходимо учитывать $s_{\text{max}} \sim 170$ ненулевых чисел c_s , а следовательно примерно такое же количество уравнений в системе (5).

Анализируя структуру матрицы *M*, отметим некоторые полезные для расчетов свойства. Вопервых, непосредственно из определения (7) следуют соотношения симметрии:

$$M_{k,k'}(E) = M_{k-k',0}(E + 2k'\omega),$$

$$M_{k,k'(E)} = M_{k',k}(E).$$
(10)

Во-вторых, с ростом $d = k - k' > d_c$ относительный вклад $M_{k+d,k}(E)$ в решение системы (5) резко уменьшается. Подробный анализ зависимости элементов $M_{k,k'}$ от d = k - k' выполнен в работе [10], где с использованием асимптотики функции Бесселя (9) получена аналитическая оценка $M_{d,0}$ для больших d:

$$M_{d,0} \approx \sqrt{\frac{\omega}{4\beta\tau_1}} \left| J_d(z_1) \right| e^{-(d+E/\omega - |z_1|)^2/(4\beta)}, \quad (11)$$
$$d > |z_1|,$$

Рис. 1. Зависимость абсолютной величины свободных коэффициентов c_s системы уравнений (5) от индекса *s* для рассеяния электронов с энергией $E = 16\omega = 2.48$, направленных вдоль линейной поляризации лазерного поля с параметрами: $\omega = 0.155$, F = 0.31.

где $\tau_1 = 4.086$ — точка глобального максимума функции $|z(\tau)|(7), z_1 = z(\tau_1), \beta = k |z''(\tau_1)|/(2|z_1|)$. Из выражения (11) видно, что критическое значение d, начиная с которого $M_{d,0}$ затухает, определяется соотношением $d_c \approx |z_1|$.

Таким образом, для численного решения системы уравнений (5) необходимо вычислить две симметричные матрицы $M(\varepsilon)$ и $M(\varepsilon+\omega)$, состоящие из $2k_{\max}+1$ строк ($2k_{\max}+1=s_{\max}/2$), в которых ненулевые (дающие вклад) элементы лежат на прямых |k-k'| = d ($0 \le d \le d_{\max}$), параллельных главной диагонали (в дальнейшем их будем называть просто «диагоналями»).

Для численного расчета несобственного интеграла в выражении (7) от быстро осциллирующей и медленно затухающей функции используется следующий алгоритм. Представим интеграл в выражении (7) в виде

$$\int_{0}^{\infty} \frac{d\tau}{\tau^{1/2}} e^{i\alpha\tau} h(\tau) =$$

$$= \frac{1}{\sqrt{4\pi i}} \int_{-\infty}^{\infty} \frac{H(w)}{\sqrt{w - \alpha}} dw, \qquad (12)$$

$$H(w) = \int_{-\infty}^{\infty} h(t) e^{iwt} dt.$$

Комплексная функция h(t) в выражении (12) не имеет сингулярностей во всей области определения $(-\infty, \infty)$, а ее Фурье-образ H(w) дает основной вклад в интеграл по w на конечном интервале. Хотя формально вычисление $M_{k,k}$ сводится теперь к расчету двумерного несобственного интеграла, реальное время вычислений всей матрицы M заметно сокращается: во-первых, для нахождения Фурье-образа H(w) может быть использован эффективный алгоритм быстрого дискретного преобразования Фурье (FFT — Fast Fourier Transform):

$$h(t) \rightarrow h_{j} = h(t_{j} = j\Delta t) \xrightarrow{FFT}$$

$$\xrightarrow{FFT} H_{n} = H(w_{n} = n\Delta w),$$

$$j = 0, ..., N - 1, \ n = -N / 2, ..., N / 2,$$

$$\Delta w = \pi / \Delta t.$$
(13)

(заметим, что для достижения приемлемой точности расчетов в рассматриваемых задачах число вычисляемых точек в алгоритме (13) $N \ge 2^{2^2}$); во-вторых, для всех элементов диагонали с k=k'+d функцию H(w) следует вычислять один раз. Наконец, после интерполяции функции H(w) на отдельном отрезке $[w, w+\Delta w]$ интеграл по w в (10) сводится к вычислению суммы, не содержащей сингулярных членов.

ПАРАЛЛЕЛЬНАЯ РЕАЛИЗАЦИЯ НА ВЫЧИСЛИТЕЛЬНОМ КЛАСТЕРЕ

Тот факт, что расчет диагоналей с k=k'+dматрицы M, определенной в (7), может быть произведен независимо друг от друга, является основой для распараллеливания вычислений. В качестве базовой подзадачи для параллельных алгоритмов, предлагаемых в работе, можно использовать расчет одной диагонали $M_d \equiv M_{k+d,k}$ ($-k_{max} \le k \le k_{max}$) с фиксированным d. Расчеты производились на кластере кафедры цифровых технологий факультета компьютерных наук ВГУ (кластер состоит из трех вычислительных узлов, содержащих по четырехядерному процессору Intel Core Quad 2.4 ГГц).

В первом подходе к распараллеливанию расчетной задачи с целью полной загрузки всех четырех ядер одного узла кластера предлагается использование технологии OpenMP, в рамках которой с помощью директив компилятора создаются дополнительные потоки внутри последовательного кода расчетной программы, и вычисление диагоналей M_{d} распределяется между ядрами одного узла. Преимуществами такого подхода являются относительная простота программной реализации, единство последовательного и параллельного кода, а также отсутствие необходимости подключения дополнительных библиотек. К недостаткам можно отнести невозможность выполнения программы с OpenMP директивами на вычислительных системах с распределенной памятью, то есть более чем на одном узле кластера.

Второй метод вычислений связан с использованием функций библиотеки МРІ для приема-передачи сообщений между различными узлами кластера и ядрами внутри одного узла. Для обеспечения динамической балансировки вычислительной нагрузки (время вычисления диагоналей уменьшается с ростом d) между имеющимися ресурсами кластера используется схема «менеджер-исполнители». В соответствии с ней для управления распределением нагрузки в системе выделяется отдельный процесс-менеджер, которому доступна информация обо всех имеющихся подзадачах. Остальные процессы системы являются исполнителями, которые для получения вычислительной нагрузки обращаются к процессу-менеджеру с помощью MPI-функций (отметим, что поскольку процесс-менеджер не выполняет расчетных действий, он может быть запущен на одном ядре вместе с процессом-исполнителем). Завершение вычислений происходит в момент, когда процессы-исполнители завершили решение всех переданных им подзадач.

Основой третьего подхода является комбинированное использование технологии OpenMP для распределения работы внутри одного многоядерного узла и функций МРІ для передачи информации между узлами кластера. Такая схема может быть особенно эффективна при интенсивном коммуникационном взаимодействии между процессами с передачей большого количества данных. В таком случае не требуется дублировать и передавать данные, необходимые процессам, работающим на разных ядрах одного и того же узла кластера, поскольку совместный доступ к ним обеспечивается OpenMP-директивами. В этом варианте нами используется описанная выше схема «менеджер-исполнители» с некоторыми изменениями: как и во втором подходе, в системе выделяется отдельный процесс-менеджер и процессыисполнители, взаимодействующие с помощью МРІ-функций, однако базовой подзадачей является вычисление сразу четырех (по количеству ядер в узле) диагоналей матрицы М. Процесс-исполнитель с помощью OpenMP директив создает дополнительные нити и производит параллельный расчет четырех диагоналей (см. рис. 2).

РЕЗУЛЬТАТЫ ВЫЧИСЛИТЕЛЬНОГО ЭКСПЕРИМЕНТА

АНАЛИЗ ЭФФЕКТИВНОСТИ МЕТОДОВ РАСПАРАЛЛЕЛИВАНИЯ

Как уже отмечалось, основное время расчетов (≈ 99 %) при вычислениях амплитуды рассеяния

тратится на решение системы уравнений для коэффициентов f_s (5), причем главной вычислительной задачей является расчет элементов матрицы M (7). Для анализа эффективности описанных выше алгоритмов параллельных вычислений приведем результаты расчетов f_s для следующих параметров: E=2.48, $\omega=0.155$, F=0.31.

Время последовательной программы (работа одного процессорного ядра) является базовым параметром в анализе эффективности параллельных алгоритмов и в нашем случае составляет $T_1 = 4070$ секунд. Использование технологии OpenMP для распараллеливания вычислений на четырех ядрах (P = 4) привело к существенному сокращению времени работы программы: выполнение параллельного алгоритма с OpenMP-директивами заняло $T_4^{\text{OMP}} = \hat{1}118$ секунд, а результаты для коэффициента ускорения вычислений $S_p^{
m OMP}=T_1\,/\,T_p^{
m OMP}=3.64\,$ и эффективности использования процессоров $\hat{E}_{\scriptscriptstyle P}^{\scriptscriptstyle
m OMP}=S_{\scriptscriptstyle P}^{\scriptscriptstyle
m OMP}$ / P=0.91 оказались близки к максимально возможным значениям $S_{P,\max} = P = 4$, $E_{\rm max} = 1.3$ аметим также, что для матриц M с большим количеством диагоналей (для рассматриваемых параметров $d_{\text{max}} = 40$) значения S_P^{OMP} и E_{P}^{OMP} увеличиваются.

Второй из предложенных подходов, заключающийся в динамическом распределении вычислений между ядрами всех доступных процессоров кластера с использованием функций MPI, позволяет исследовать зависимость времени выполнения программы $T_P^{\rm MPI}$, коэффициента ускорения вычислений $S_P^{\rm MPI} = T_1 / T_P^{\rm MPI}$ и эффективности использования процессоров $E_P^{\rm MPI} = S_P^{\rm MPI} / P$ от числа P задействованных процессов-исполнителей (см. табл.).

Puc. 2. Структура матрицы М и схема распределения вычислительной нагрузки между ядрами узлов кластера для гибридного OpenMP+MPI алгоритма. Серым тоном отмечена учитываемая в вычислениях часть матрицы

Таблица

Показатели эффективности работь	l
параллельного алгоритма	

Р	$T_P^{ m MPI}$, ceĸ.	$S_P^{ m MPI}$	$E_P^{ m MPI}$
2	2072	1.96	0.98
4	1079	3.77	0.94
6	705	5.77	0.96
8	584	6.97	0.87
10	485	8.40	0.84
12	406	10.11	0.84

Из представленных в табл. результатов видно, что для используемого кластера предложенный алгоритм вычислений оказывается весьма эффективным и позволяет сократить время вычислений более чем в 10 раз при полной загрузке 12-процессорных ядер. Уменьшение эффективности $E_p^{\rm MPI}$ с ростом числа используемых процессоров объясняется главным образом неравномерной загрузкой используемых процессоров и затратами времени на коммуникационные операции между менеджером и исполнителями.

Отметим, что время работы программы с четырьмя процессами-исполнителями $T_4^{\rm MPI}$ отличается от времени выполнения параллельного алгоритма с OpenMP-директивами на четырех ядрах $T_4^{\rm OMP}$ не более чем на 4 %. Поэтому при вычислениях в рамках одного многоядерного процессора (с учетом всех преимуществ в программной реализации) использование технологии OpenMP вполне обоснованно. Подчеркнем, однако, что применение MPI-функций позволяет масштабировать программу на произвольное число узлов кластера.

Исследование эффективности третьего метода вычислений, основанного на гибридном OpenMP+MPI алгоритме, показало, что при загрузке всех 12 ядер кластера время вычислений составляет $T_{12}^{\text{OMP+MPI}} = 440 \text{ с., что превосхо$ дит время работы «чистой» МРІ-программы на том же количестве ядер $T_{12}^{\text{MPI}} = 406 \text{ с. на } 9 \%.$ Причиной такого увеличения времени расчетов является различное время вычислений передаваемого на узел кластера блока из четырех диагоналей и обязательная синхронизация работы нитей по окончании расчета блока, вследствие чего закончившие вычисления ядра процессора простаивают в ожидании завершения работы самой «медленной» нити. Таким образом, гибридный OpenMP+MPI алгоритм в рамках используемой модели, не требующей интенсивной передачи больших объемов данных между ядрами кластера, представляется наименее эффективным.

ЧИСЛЕННЫЕ РЕЗУЛЬТАТЫ ДЛЯ СЕЧЕНИЯ РАССЕЯНИЯ

Рассмотренные выше параллельные алгоритмы, реализующие возможности многопроцессорных кластеров по ускорению вычислений сечений ЭАР в присутствии лазерного поля существенно упрощают исследования спектров рассеянных электронов в широкой области параметров поля и энергий. В работе [6] анализируются аномальные усиления сечений рассеяния в спектрах многофотонного поглощения, связанные с пороговыми явлениями при закрытии каналов многофотонного излучения. На рис. З а приведен пример такого усиления для рассеяния электронов с энергиями, близкими 16ћ*w* на атоме водорода (*a*₀*к*=1.453, *r*₀*к*=0.623, $|E_0|$ =0.755эВ — энергия связи иона H⁻) в поле СО₂-лазера с интенсивностью *I*=1.44х10¹¹ Вт/см². Из рисунка видно значительное (до порядка величины) различие сечений

Рис. 3. Дифференциальное сечение $d\sigma_n / d\Omega_{\mathbf{p}_n}$ *е-H*-рассеяния на нулевой угол (вдоль направления линейной поляризации излучения) для CO₂-лазера ($\hbar \omega$ =0.117эВ) с интенсивностью *I*=1.44×10¹¹Вт/см². а) зависимость от числа *n* поглощенных фотонов для указанных на рисунке энергий *E* налетающего электрона; b) зависимость $d\sigma_n / d\Omega_{\mathbf{p}_n}$ от энергии *E* в области чётного и нечётного порога вынужденного испускания для ряда значений *n*, указанных на рисунке

 $d\sigma_n / d\Omega_{\mathbf{p}_n}$ в области плато при изменении энергии *E* на ±0.01эВ (объяснение этого эффекта см. в [6]). На рис. 3(б) приведена пороговая структура энергетической зависимости $d\sigma_n / d\Omega_{\mathbf{p}_n}$ в окрестностях E=15 $\hbar\omega$ и 16 $\hbar\omega$ в различных каналах *n*-фотонного поглощения.

ЗАКЛЮЧЕНИЕ

Исследуемая в работе модель электронатомного рассеяния в присутствии интенсивного лазерного поля представляет собой один из примеров полуаналитического решения проблемы, когда роль вычислительных методов в анализе изучаемого явления сведена к минимуму. Однако, как показали представленные в данной статье результаты, даже в этом случае время расчетов может оказаться значительным, а алгоритмы параллельных вычислений, уменьшающие это время, весьма эффективными.

Рассмотренные в работе подходы к распараллеливанию вычислений на многоядерном кластере основаны на наиболее распространенных средствах параллельного программирования для систем с общей и распределенной памятью. В рамках проводимых расчетов, не требующих интенсивной передачи между узлами кластера больших объемов данных, наиболее эффективным оказался алгоритм динамической балансировки вычислительной нагрузки между процессорами с использованием функций библиотеки МРІ. При этом, в случае вычислений на многопроцессорной системе с общей памятью (например, современные ЭВМ на базе многоядерных процессоров) может эффективно применяться технология OpenMP, автоматически распределяющая вычислительную нагрузку и не требующая значительных временных затрат на программную реализацию.

Используемые методы параллельных вычислений существенно упростили исследования спектров ЭАР в широкой области изменения параметров поля и энергий и могут использоваться для численного анализа других процессов при взаимодействии интенсивного лазерного поля с атомными системами.

СПИСОК ЛИТЕРАТУРЫ

1. Above-threshold ionization. From classical features to quantum effects / W. Becker, F. Grabson, R. Kopold et al. // Adv. At. Mol. Opt. Phys. -2002. - Vol. 48. - P. 35.

2. Эффекты плато в спектрах электрон-атомного рассеяния в сильном лазерном поле / Н. Л. Манаков, А. Ф. Старас, А. В. Флегель, М. В. Фролов // Письма в ЖЭТФ. — 2002. — Т. 76. — С. 316.

3. Circularly polarized laser field-induced rescattering plateaus in electron-atom scattering / A. V. Flegel, M. V. Frolov, N. L. Manakov, A. F. Starace // Phys. Lett. A. - 2005. - Vol. 334. - P. 197.

4. *Воеводин В.В.* Параллельные вычисления / В. В. Воеводин, Вл. В. Воеводин. — СПб. : БХВ-Петербург, 2002.

5. The OpenMP API specification for parallel programming / www. openmp.org.

6. Пороговые явления в электрон-атомном рассеянии в лазерном поле / Н. Л. Манаков, А. Ф. Старас, А. В. Флегель, М. В. Фролов // Письма в ЖЭТФ. — 2008. — Т. 87. — С. 99.

7. Ландау Л.Д. Квантовая механика. / Л. Д. Ландау, Е. М. Лифшиц. — М. : Физматлит, 2001.

8. Model-Independent Quantum Approach for Intense Laser Detachment of a Weakly-Bound Electron / M. V. Frolov, N. L. Manakov, E. A. Pronin, A. F. Starace // Phys. Rev. Lett. — 2003. — Vol. 91. — P. 053003.

9. Абрамовиц М. Справочник по специальным функциям / М. Абрамовиц, И. А. Стиган. — М. : Наука, 1979.

10. Cotoffs of high-energy plateaus for atomic processes in an intense elliptically polarized laser field / A. V. Flegel, M. V. Frolov, N. L. Manakov, A. F. Starace // J. Phys. B: At. Mol. Opt. Phys. — 2005. — Vol. 38. — P. L27.