ОБУЧЕНИЕ НЕЙРОННОГО КЛАССИФИКАТОРА ТИПА МНОГОСЛОЙНЫЙ ПЕРЦЕПТРОН И АНАЛИЗ РЕЗУЛЬТАТОВ КЛАССИФИКАЦИИ НА СНИМКАХ, ПОЛУЧЕННЫХ СО СПУТНИКА IKONOS, С ИСПОЛЬЗОВАНИЕМ ГЕОИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ

Е. М. Гамбарова

Научно-исследовательский институт аэрокосмической информатики г.Баку, Азербайджан

В данной работе были рассмотрены 3 варианта обучения нейронного классификатора Многослойный Перцептрон с учетом выбора разных классификационных схем. Были определены 12 типов растительности и почв и на их основе построены классификационная схема по 12-ти классам и две дополнительные — «Модифицированная» (по 7-ми классам) и «Оптимальная» — по 5-ти классам. В ходе обучения нейронного классификатора Многослойный Перцептрон четко выявились и обозначились преимущества двух последних классификационных схем. Представлены процедуры отбора примеров для обучения и тестировния, ход и результаты обучения классификатора, а также визуальный анализ картин, представляющих тематические растры результатов классификации и количественные оценки неклассифицированных и нечетко классифицированных элементов сцены.

Работы были проведены для решения реальной прикладной задачи по определению ареалов распространения редких типов растительности, присутствующих на многоспектральных снимках высокого разрешения, полученного со спутника IKONOS.

1. ВВЕДЕНИЕ

Современные технические средства космических исследований природной среды позволяют получать снимки высокого разрешения. Обработка таких космических снимков, включая решение задач распознавания и классификации объектов, требует разработки и применения новейших информационных технологий, включая технологию искусственных нейронных сетей [1]. В работе исследованы принципы обучения нейронного классификатора и дана оценка качества его работы для распознавания и классификации объектов на космических снимках высокого разрешения (IKONOS). Для экспериментальных исследований был использован многоспектральный снимок юго-восточной части Азербайджана, полученный со спутника IKONOS, для участка территории 10×10 км.

Работы были проведены для решения реальной прикладной задачи по определению ареалов распространения редких типов растительности, присутствующих на многоспектральном снимке высокого разрешения, полученного со спутника Ikonos. Для управления проектом, создания дополнительных данных и проведения

совместного пространственного анализа была использована универсальная ГИС ArcView 9.2 фирмы ESRI с расширениями Spatial Analyst и 3D Analyst. Для геометрической коррекции и проведения статистического анализа множеств обучающих примеров была использована программа Erdas Imagine Professional 8.7 фирмы Leica Geosystems. Для автоматической генерации примеров из оконтуренных участков снимка, а также для цикла работ по обучению, тестированию нейронного классификатора и производства им продукции, в среде VBA ArcView 9.2 разработана программная среда, в которой была использована программируемая компонента NeuroSolutions фирмы NeuroDimensions.

2. ВЫБОР ТИПОВ ОБЪЕКТОВ, ПОДЛЕЖАЩИХ РАСПОЗНАВАНИЮ НА МНОГОСПЕКТРАЛЬНОМ СНИМКЕ, И ПОЛУЧЕНИЕ ОБУЧАЮЩЕЙ И ТЕСТИРУЮЩЕЙ ВЫБОРОК

Изначально были определены 12 типов растительности и почв, динамика изменения ареалов распространения которых, по мнению экологов, является индикатором, отражающим антропогенное воздействие на природу изуча-

[©] Гамбарова Е. М., 2007

емой территории. Ниже в таблице приведены названия (в скобках латинские варианты) этих типов растительности.

Экологи представили географические координаты характерных точек распространения этих растений на изучаемой территории. Первоначально эти точки были геокодированы на космоснимке и далее, с помощью процедур, совмещающие полевые изыскания и камеральные работы, были определены участки территорий, из которых можно было извлекать достаточное количество примеров для обучения и тестирования классификатора. В таблице 2 приведены количественные данные по множествам извлеченных из снимка примеров по различным классам. В таблицу 2 добавлены ста-

тистические характеристики, которые дают предварительные оценки по репрезентативности классов.

В литературе существуют различные феноменологические оценки [2] необходимого количества примеров и характера их распределения по классам для успешного обучения нейронного классификатора. Приведем некоторые из этих оценок и обоснуем сделанный нами выбор. В первую очередь рассмотрим оценки по общему количеству:

1.
$$N_T = 5 * N_W$$

2. $N_T = 30 * p * N_O$
3. $N_T = 10 * N_W$
4. $N_T = 30 * N_I * (N_I + 1)$
5. $N_T = 60 * N_I * (N_I + 1)$

Таблица 1 Первоначальный набор классов — 12 типов растительности и почв

Номер класса	Полное название растения
Класс 1	Болотистая тростниковая растительность
Класс 2	Болотистый кустарниковый тамариск (Tamarix)
Класс 3	Прибрежная зона: полупустынная растительность
Класс 4	Тростник ложный австралийский (Phragmaties australis)
Класс 5	Солянка древовидная (Salsola ericoides)
Класс 6	Солянка гористая (Salsola nodulosa)
Класс 7	Солянка гористая (Salsola nodulosa) / Полынь Лерха (Artemesia lerchiana)
Класс 8	Солянка гористая (Salsola Nodulosa) / Трава
Класс 9	Полупустынная растительность - поташник каспийский, (Kalidium capsicum)
Класс 10	Полупустынная растительность с доминированием верблюжьей колючки (Alhagi pseudo-
	alhagi)
Класс 11	Голая почва
Класс 12	Солянка гористая (Salsola nodulosa) / голая почва

Таблица 2 Pазмеры трейнинговых и тестовых образцов. 12 классов растительности.

Номер класса	Количество примеров	Количество примеров
помер класса	для обучения	для тестирования
Класс 1	1215	1487
Класс 2	3181	2087
Класс 3	97	63
Класс 4	1891	2055
Класс 5	234	279
Класс 6	2393	2867
Класс 7	690	478
Класс 8	200	147
Класс 9	52	49
Класс 10	40	28
Класс 11	474	553
Класс 12	680	579
Общее	11147	10672
Математическое ожидание	928.9167	889.3333
Средне-квадратическое отклонение	1036.354	976.7583

Условные обозначения в этих формулах выражают следующее:

N₁ — Количество исходных нейронов. В нашем случае — количество спектральных каналов в снимках. Минимальное количество $N_1 = 4$

Максимальное количество $N_1 = 8$

• N₀ — Количество выходных нейронов или распознаваемых классов

В данном случае предопределено количеством индикаторов, определенных экологами:

 \bullet $N_{_{
m H}}$ — Количество нейронов в скрытом

Выбираем из нижеследующих формул минимальное или максимальное значения:

$$N_H = 2*Ni$$
 или $3*Ni$ от 8 до 24
 $N_H = 2*Ni + 1 -$ от 9 до 17

$$N_{H}^{H} = (Ni + No)/2 = \text{от } 8 \text{ до } 10$$

$$N_{H}^{"}$$
 = $(2 + No*Ni + (No*(Ni^2 + Ni)/2 - 3)/(Ni + No)$
- or 57 go 120

$$(2 + No*:Ni + (No*(Ni^2 + Ni)/2 - 3)/(Ni + No)$$

 $N_H min = 57, N_H max = 120$

 \bullet $\rm N_{\rm w}$ — Количество весовых коэффициентов Определяется формулой: $N_{w} = N_{H} * (N_{I} + N_{O})$. Таким образом,

$$N_w min = 8*(4+12) = 684,$$

 $N_w max = 120*(8+12) = 2400$

• р — Количество объектов/нейронов на один класс

$$p = N_1 = \text{от } 3 \text{ до } 8$$

Подытоживая, получаем следующие оценки общего количества примеров:

1.
$$N_{\pi} = 5 * N_{W}$$
 - от 3420 до 12000

1.
$$N_{_{\rm T}}$$
 = 5 * $N_{_{\rm W}}$ - от 3420 до 12000
2. $N_{_{\rm T}}$ = 30 * p * $N_{_{\rm O}}$ = от 1320 до 2640

$$3. N_{\rm T} = 10 * N_{\rm W}$$
 - от 6840 до 24000

4.
$$N_T = 30 * N_I * (N_I + 1) =$$
от 600 до 2160

3.
$$N_T = 10 * N_W - \text{ or } 6840 \text{ до } 24000$$

4. $N_T = 30 * N_I * (N_I + 1) = \text{ or } 600 \text{ до } 2160$
5. $N_T = 60 * N_I * (N_I + 1) = \text{ or } 1200 \text{ до } 4320$

Как видно, получается очень широкий интервал значений, что затрудняет определение более или менее общего порога значения для количества примеров. Однако, явно, что те оценки, которые учитывают количества весовых коэффициентов, явялются более достоверными. Исходя из этой предпосылки, мы можем оставить только две оценки: 1-ю и 3-ю. В этом случае интервал значений сужается до [3420, 24000]. Среднее количество примеров в наших наборах (как для обучения, так и для тестирования) колеблятся около значения 10000. Теперь рассмотрим оценку распределения примеров по классам: предложим формулу по определению интервала, полученного из нижнего и верхнего порогов количества примеров по отдельным классам:

$$\label{eq:Mht} \begin{split} & \text{Инт} = [\text{N}_{\text{av}} - \alpha \text{*} \text{N}_{\text{msd}}, \, \text{N}_{\text{av}} + \alpha \text{*} \text{N}_{\text{msd}}], \qquad (1) \\ & \text{где N}_{\text{av}} = (\text{N}_{\text{T}}/\text{N}_{\text{O}}) - \text{математическое ожидание,} \\ & \text{N}_{\text{T}} - \text{общее количество примеров для обучения} \\ & \text{или тестирования} = 10000; \, \text{N}_{\text{O}} - \text{количество} \\ & \text{классов,} \, \alpha - \text{действительное число в интервале} \\ & \text{чисел [1, 3], a N}_{\text{msd}} - \text{средне-квадратическое} \\ & \text{отклонение количества примеров по различным} \\ & \text{классам.} \end{split}$$

Из таблицы видно не только то, что примеры очень неравномерно распределены, но и то, что никаких закономерностей нормального распределения примеров по классам нет. К сожалению, невозможно аналитическим образом вычислить количественные значения воздействия характера неравномерности распределения примеров обучения по классам на само обучение. Существуют только феноменальные оценки характера этого влияния, однако, в данном случае и без выполнения этих вычислений, можно прийти к выводу, что классификатор гораздо устойчивее будет распознавать объекты классов под номерами 1, 2 и 4, чем, например, под номерами 3, 9 и 10. Проведенные тесты на основе статистического анализа также подтверждают эти оценки.

Из таблицы видно:

- Классы 1 и 4 очень сильно перекрываются;
- Класс 6 полностью вбирает в себя класс 5;
- Классы 7 и 8 очень сильно перекрываются;
- Класс 10 полностью вбирает в себя классы 9и3.

Таким образом, предварительные тесты подсказывают нам один из возможных вариантов модификации исходной классификационной схемы. Ниже в таблице 4 приведен этот алгоритм этой модификации.

Используя этот алгоритм, мы создаем новые классы, извлекая примеры из одного или нескольких классов исходной классификационной схемы. После создания этого набора (на самом деле два набора: один для обучения, а второй — для тестирования классификатора), состоящего из 7 классов, мы применим по отношению к нему подобный анализ.

Из таблицы видно, что, хотя ни один из классов полностью не находится внутри какоголибо другого, отдельные пары классов очень сильно перекрываются. Так, малозаселенный Класс 7 3 очень сильно перекрывается с классом 7 4. Что касается этого вывода, напомним,

Е. М. Гамбарова

Таблица 3 Статистические характеристики обучающих классов по четырем каналам

	Краснь	ій канал	Зелены	й канал	Голубо	ой канал	Инфракрасный канал		
Цааранна					Мини-		Мини-		
Название	Минимум-	Среднее±	Минимум-	Среднее±	мум-	Среднее±	мум-	Среднее±	
клааса	Максимум	Стан.Откл	Максимум	Стан.Откл	Макси-	Стан.Откл	Макси-	Стан.Откл	
					мум		мум		
Класс 1	241-655	363.5±40.5	398.0 - 725.0	497.9±31.4	356 - 553	418.0±20.0	466 - 1132	820.5±115.8	
Класс 2	264-738	497.8±65.9	391 - 779	574.4±53.2	354 - 605	468.6±33.9	396-821	631.8±52.6	
Класс 3	555-826	704.7±60.4	648 - 878	772.5±56.5	511 - 655	586.1±36.7	481 - 759	649.4±57.4	
Класс 4	216-697	380.7±44.5	362 - 737	498.7 ± 38.0	329 - 553	424.7 ± 22.4	416 - 1394	806± 289.4	
Класс 5	544-981	769.6±95.3	653 - 1008	839.7±77.2	493 - 724	619 ± 50.1	481-941	713.7±100.8	
Класс 6	395-1058	743.2 ± 89.7	523 - 1051	799.2±75.9	409 - 760	609.3 ± 42.8	362 - 1000	698.1±87.8	
Класс 7	554-930	729 ± 55.5	631 - 973	780.1±50.7	493-691	583.7 - 30.1	534-896	700.4 - 50.2	
Класс 8	597—972	784.1±63.5	694 - 994	835.8 ± 51.2	517 - 715	618.6 ± 33.2	541 - 928	738.3±65.7	
Класс 9	639-761	689.0±30.6	684 - 781	722.4±24.4	528 - 598	553 ± 16.1	642-783	698±30.2	
Класс 10	389-870	657.1±139.6	520 - 914	742.8 ± 115.7	424 - 672	561.4 ± 70.2	432—909	696.8±137.9	
Класс 11	760—1104	941.4±64.6	841-1141	1001.8 ± 60.2	607 - 800	709.8±38.0	673 - 1001	851.5±61.1	
Класс 12	613-1047	854.0±75.9	715 - 1078	912±63.3	530 - 768	660.6 ± 40.7	523—975	780.0±76.4	

. Таблица 4
 Набор из 7-ми классов — типов растительности и почв

Номер класса	Полное название растения
Класс 7_1	Исх.Класс 1 + Исх.Класс 4 - Болотистая тростниковая растительность + Тростник ложный австралийский (Phragmaties australis)
Класс 7_2	Исх.Класс 2 - Болотистый кустарниковый тамариск (Tamarix)
Класс 7_3	Исх.Класс 3 + Исх.Класс 9 + Исх.Класс 10 - Полупустынные растительности: Прибрежной зоны + Поташник каспийский (Kalidium capsicum) + Верблюжья колючка (Alhagi pseudoalhagi)
Класс 7_4	Исх.Класс 5 + Исх.Класс 6 - Солянка древовидная (Salsola ericoides) + Солянка гористая (Salsola nodulosa)
Класс 7_5	Исх.Класс 7 + Исх.Класс 8 - Солянка гористая (Salsola nodulosa) / Полынь Лерха (Artemesia lerchiana) + Солянка гористая (Salsola Nodulosa) / Трава
Класс 7_6	Исх.Класс11 - Голая почва
Класс 7_7	Исх.Класс12 - Salsola nodulosa / голая почва

Таблица 5 Статистические характеристики обучающих кластеров из модифицированной 7-ми классовой схемы по четырем каналам

Название	Красны	й канал	Зеленыі	й канал	Голубо	й канал	Инфракрасный канал		
	Минимум-	Среднее±	Минимум-	Среднее±	Минимум-	Среднее±	Минимум-	Среднее±	
клааса	Максимум	Стан.Откл	Максимум	Стан.Откл	Максимум	Стан.Откл	Максимум	Стан.Откл	
Класс 7_1	200-730	381.9 ± 50.7	364.0 - 776.0	506.3±41.2	338 - 586	428.1±24.7	422 - 1347	808.7±226.947	
Класс -7_2	282-810	502.3 ± 78.7	397-833	576.1±67.7	356-626	468.7±41.5	378-869	609.6±64.9	
Класс 7_3	450-884	676.6±84.9	542-904	731.0±73.8	426 - 672	558.8±47.0	429-899	665.4±86.8	
Класс 7_4	442-971	722.3 ± 77.6	548-994	781.3 ± 65.0	461 - 722	602.5±38.9	390-947	680.6 ± 79.4	
Класс 7_5	518-1000	745.6 ± 52.3	607-1010	793.2±44.6	481 - 729	593.4±27.6	508 - 960	714.2± 47.4	
Класс 7_6	790.0—1092	958.6 ± 66.5	873—1142	1018.7 ± 61.7	628-813	720.8±38.8	700 - 994	867.4±61.2	
Класс 7_7	591-1067	865.9 ± 76.8	707-1097	924.7±63.8	521 - 774	666.8±41.1	502 - 989	791.8±77.1	

что этот класс был составлен из примеров, входящих изначально в классы 3, 9 и 10.

Следующий вывод касается пары классов 7_4 и 7_5, содержащие примеры отображений очень близких типов растений. Эти классы также значительно перекрываются.

Эти выводы приводят нас к следующему варианту модификации исходной классификационной схемы. Первое, класс 7_3, составленный из изначальных классов:

- Класс 3 Прибрежная зона: полупустынная растительность,
- Класс 9 Semi desert vegetation, Kalidium caspicum
- Класс10 Semi desert scrub, Alhagi исключить из классификационной схемы, и второе: классы 7_4 и 7_5, составленные, соответственно, из изначальных классов:
 - Исх.Класс 5 + Исх.Класс 6
- Исх.Класс 7 + Исх.Класс 8 объединить в один класс. Таким образом, мы получаем новый набор, состоящий из 5-ти классов, показанный в таблице 6.

Эта картина более благоприятная, хотя перекрытия между классами 5_1 и 5_2, с одной стороны, и классами 5_4 и 5_5, с другой, существует, но есть большая вероятность того, что после обучения нейронного классификатора, он

будет способен выявить тонкие различия между элементами этих типов. Дальнейшее тестирование качества собранных примеров будет производится в самой процедуре обучения.

3. ОБУЧЕНИЕ КЛАССИФИКАТОРА МНОГОСЛОЙНЫЙ ПЕРЦЕПТРОН

Процесс активного обучения классификатора *Многослойный Перцептрон* зависит от разных параметров, значениями которых, в зависимости от условий эксперимента, можно в разной степени варьировать:

- Размер трейнинговых областей
- Количество итераций
- Использование разного количества исходных нейронов
- Параметры быстроты обучения и моментум
- Количество скрытых слоев и количество в них нейронов
 - Вид и тип передаточной функции.

4. РЕЗУЛЬТАТЫ ОБУЧЕНИЯ

Ниже приведены матрицы ошибок (матрицы вероятностей перепутывания) классификации примеров, полученных на тестовых выборках по всем трем классификационным схемам.

Таблица 6 Набор обучающих примеров по 5-ти классовой схеме

Номер класса	Полное название растения
Класс 1	Исх.Класс 1 + Исх.Класс4 - Chal Meadow/Камышовые болота + Камышовые Phragmaties
	australis
Класс 2	Исх.Класс 2 - Chal Meadow/Tamarix Scrub
Класс 3	Исх. Класс 5 + Исх. Класс 6 + Исх. Класс 7 + Исх. Класс 8 - Солянка древовидная (Salsola
	ericoides) + Солянка гористая (Salsola nodulosa) + Солянка гористая (Salsola nodulosa) /
	Полынь Лерха (Artemesia lerchiana) + Солянка гористая (Salsola Nodulosa) / Трава
Класс 4	Исх.Класс11 - Голая почва
Класс 5	Исх.Класс12 - Salsola nodulosa / голая почва

Таблица 7 Статистические характеристики обучающих классов из модифицированной 5-ти классовой схемы по четырем каналам

Название	Красны	й канал	Зеленый	і канал	Голубо	й канал	Инфракрасный канал		
клааса	Минимум-	Среднее±	Минимум-	Среднее±	Минимум-	Среднее±	Минимум-	Среднее±	
Kilaaca	Максимум	Стан.Откл	Максимум	Стан.Откл	Максимум	Стан.Откл	Максимум	Стан.Откл	
Класс 5_1	200-730	381.9±50.7	364.0 - 776.0	506.3±41.2	338 - 586	428.1±24.7	422—1347	808.7±226.947	
Класс -5_2	282-810	502.3±78.7	397-833	576.1±67.7	356 - 626	468.7±41.5	378-869	609.6±64.9	
Класс 5_3	442-1000	728.2±72.7	548-1010	784.4±60.7	461 - 729	600.2±36.6	390-960	689.1± 74.1	
Класс 5_4	790-1092	958.6±66.5	873-1142	1018.7±61.7	628-813	720.8±38.8	700-994	867.4±61.2	
Класс 5_5	591-1067	865.9 ± 76.8	707 - 1097	924.7±63.8	521 - 774	666.8±41.1	502-989	791.8±77.1	

Таблица 8

Матрица ошибок распознования тестовых образцов, проведенных классификатором Иногослойный Перцептрон, обученного на трейнинговых образцах из «Максимального набора» (12 классов)

Кол. прав. откл. прим.	1000	1821	0	1183	77	1625	277	27	22	5	264	462	6763
Кол. прим.	1295	2373	0	1529	160	1721	324	92	24	5	273	529	8309 8309
Класс12	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	1.907	97.881	472
Класс11	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	94.986	8.014	287
Класс 9 Класс 10 Класс 11 Класс 12	0.000	57.143	0.000	19.048	0.000	0.000	0.000	0.000	0.000	23.810	0.000	0.000	21
Класс 9	0.000	26.667	0.000	0.000	0.000	0.000	0.000	0.000	73.333	0.000	0.000	0.000	30
Knacc 6 Knacc 7 Knacc 8	0.000	0.000	0.000	0.000	33.871	44.355	0.000	21.774	0.000	0.000	0.000	0.000	124
Класс 7	0.000	11.340	0.000	0.000	7.216	1.546	71.392	6.443	0.515	0.000	0.000	1.546	388
Класс 6	0.000	0.528	0.000	0.000	0.704	95.308	2.111	1.349	0.000	0.000	0.000	0.000	1705
Класс 5	0.000	0.000	0.000	0.000	59.690	20.155	0.000	0.000	0.000	0.000	0.000	20.155	129
Класс 4	14.847	21.517	0.000	63.636	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	1859
Класс 3	0.000	3.030	0.000	0.000	3.030	24.242	30.303	3.030	0.000	0.000	0.000	36.364	33
Kracc 1 Kracc 2 Kracc 3 Kracc 4	1.004	96.197	0.000	2.747	0.000	0.000	0.053	0.000	0.000	0.000	0.000	0.000	1893
Класс 1	660.87	5.702	0.000	21.199	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	1368
Класс	Класс 1	Класс 2	Класс 3	Класс 4	Класс 5	Класс 6	Класс 7	Класс 8	Класс 9	Класс 10	Класс11	Класс12	Итого

Из приведенных выше матриц ошибок мы произвели оценку общего уровня корректности (ОУК) классификации по формуле:

 $OVK = 100 \%*(K\Pi K\Pi/OK\Pi),$

где КПКП — количество правильно отклассифицированных примеров; ОКП — общее количество примеров.

Для данных из таблицы 8 (ОУК) оказался равным 81.39 %, что подтвердило сделанные на основе предварительных тестов выводы о неадекватности исходной 12-ти классовой классификационной схемы. Так, хотя по отдельным классам, таким как 1-й, 2-й и 6-й проценты корректного распознавания были достаточно высоки, но по отдельным классам, таким как 3-й и 10-й, результаты классификации оказались непредсказуемыми. А 8-ой класс серьезным образом заслонился 7-м классом. Также была обнаружена взаимная перекрываемость классов 1, 2 и 4, с одной стороны, и классов 5, 6, 7 и 8 — с другой.

По 7-ми классовой классификационной схеме значение ОУК, вычисленное по данным из матрицы ошибок (таблица 9) оказалось равным 85.8 % .Значение ОУК повысилось, но все еще существенно ниже чем желаемый 90 %-ный порог.

Выводы, сделанные по результатам тестирования работы нейронного классификатора, обученного по 7-ми классовой классификационной схеме, в основном подтвердили результаты предварительных статистических тестов о целесообразности рассмотрения 5-ти классовой схемы. Значение ОУК по данным таблицы 10 оказалось равным 91.45 %. Этот результат является приемлемым.

5. АНАЛИЗ РЕЗУЛЬТАТОВ КЛАССИФИКАЦИИ

После проведения процедуры обучения по двум классификационым схемам, по ним были проведены автоматические классификации по всей сцене, охватываемой космоснимком для распознавания объектов из соответствующих классов. Для проведения оценки качества продуктов классификаторов, были проведены процедуры верификации на основе независимо выбранных множествах примеров, которые показали приемлемые результаты для 5-ти классовой схемы (выше 90 % корректно классифицированных примеров). Кроме того, был сделан визуальный анализ картин, представля-

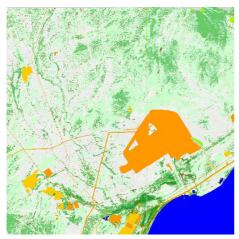
Таблица 9 Матрица ошибок распознования тестовых образцов, проведенных классификатором Многослойный Перцептрон, обученного на трейнинговых образцах из «Модифицированного набора» (7 классов)

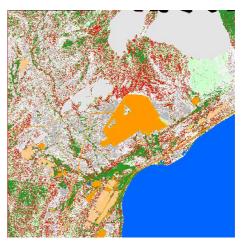
Класс	Класс 1	Класс 2	Класс 3	Класс 4	Класс 5	Класс 6	Класс 7	Кол. прим.		Кол. прав. отклас. прим.
Класс 1	87.23	5.23	5.95	0.00	0.00	0.00	0.00	2919	9	2815
Класс 2	12.77	94.72	27.38	0.21	9.18	0.00	0.00	2281		1793
Класс 3	0.00	0.00	27.38	0.07	2.15	0.00	0.00	36		23
Класс 4	0.00	0.00	19.05	81.37	22.07	0.00	0.42	2437	7	2306
Класс 5	0.00	0.05	14.29	10.97	65.63	0.00	0.00	660		336
Класс 6	0.00	0.00	0.00	0.00	0.00	90.59	1.69	268		260
Класс 7	0.00	0.00	5.95	7.37	0.98	9.41	97.88	708		462
Итого	3227	1893	84	2834	512	287	472	9309	9309	7995

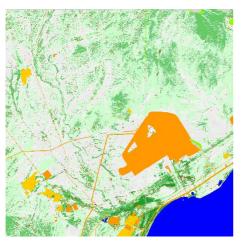
Таблица 10 Матрица ошибок распознования тестовых образцов, проведенных классификатором Многослойный Перцептрон, обученного на трейнинговых образцах из «Оптимального набора» (5 классов плюс ноль-класс)

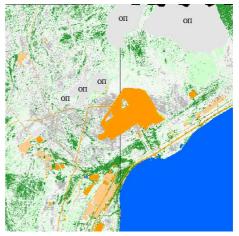
Класс	Класс 1	Класс 2	Класс 3	Класс 4	Класс 5	Кол. прим.	Кол. прав. откл. прим.
Класс 1	93.67	1.59	0.00	0.00	0.00	2727	2680
Класс 2	6.33	97.16	2.12	0.00	0.00	3114	2871
Класс 3	0.00	1.25	97.44	0.00	0.17	2887	2849
Класс 4	0.00	0.00	0.00	97.52	2.48	251	236
Класс 5	0.00	0.00	0.44	2.48	97.35	607	588
Итого	2861	2955	2924	242	604	9586 9586	9238

ющих тематические растры результатов классификации, и количественные оценки неклассифицированных и нечетко классифицированных элементов сцены с активным использованием возможностей ГИС.

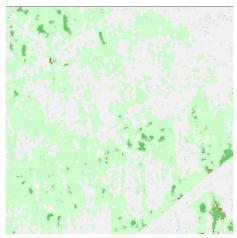

Ниже на рисунках показаны тематические растровые изображения, отображающие результаты классификации данных по всей сцене, охватываемой космоснимком. Условные обозначения классов в изображениях различными градациями серого цвета хотя и неидентичны, но достаточно близки, что позволяет проводить наглядное сравнение. При совместном визуальном анализе обоих растров будут возникать одинаковые восприятия классов объектов, являющимися одинаковыми или очень близкими по своему составу. Так, те пиксели, которые классификаторы смогли идентифицировать, представлены светлыми оттенками серого.

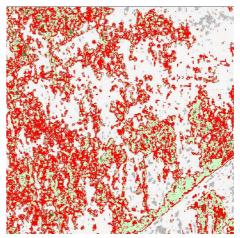

Общий показ изображений на рис. 1 показывает, что тематический растр, отображающий классификацию по 12-ти классовой схеме, визуально очень сильно искажен представлением неидентифицированных пикселей черным цветом. Также видно, что в правом изображении

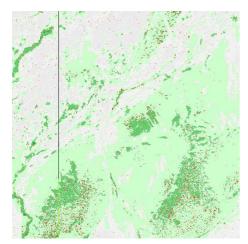

темносерые цвета более значимы, чем в левом. Для лучшего представления рассмотрим эти изображения в более близком ракурсе. Для этого увеличим масштаб и выберим участки, где наиболее ясно заметны различия между изображениями.


На этом фрагменте сцены наиболее ярко видно различие качества работы двух классификаторов: количество неклассифицированных пикселей на правом снимке так велико, что приходится полностью отказаться от принятия результатов на этом фрагменте. Фрагмент на левом снимке, отражающий результаты классификации по 5-ти классовой схеме, достаточно ясно показывает высокую вариативность характера распределения различных типов растительности на данном участке.

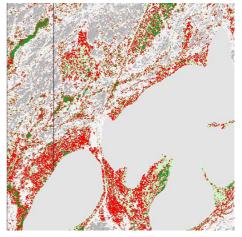
Рассмотрим другой фрагмент (рис. 3), где, хотя и присутствует заметное количество пикселей, которых классификатор по 12-ти классовой схеме не смог распознать, имеется другая характерная особенность — тонкие переходы между типами высоковегетирующей растительности. На рисунке, который находится слева, заметны различия между различными типами







а) по 5-ти классовой классификационной схеме 6) по 12-ти классовой классификационной схеме Puc.2. Результаты классификации (неклассифицированные пиксели представлены черным цветом). Фрагмент 1



Обучение нейронного классификатора типа многослойный перцептрон и анализ результатов...

б) по 12-ти классовой классификационной схеме

Puc. 4. Результаты классификации (неклассифицированные пиксели представлены черным цветом). Фрагмент 3

болотной растительности, тогда как на правом снимке мы видим сплошной темновато серый, указывающий на один единственный тип растительности.

На рис. 4 отражен фрагмент, большая часть которого изначально экспертным путем была оценена как «Открытая или пустая площадь» (см. сплошные серые пятна на левом рисунке), где находится неиспользуемая земля, и на которой не имеется какая либо ценная растительность. И т.к. предварительное тестирование классификатора по 12-ти классовой схеме на данном участке также показало неудовлетворительные результаты, эти площади были исключены из подлежащей классификации по 12-ти классовой схеме. Однако результаты классификации по 5-ти классовой схеме указали на наличие на этих площадях интересующие нас типы растительности, что было подтверждено полевыми исследованиями.

Результаты анализа качества продуктов выявили следующие особенности пространс-

твенного распространения исследуемых объектов, которые наиболее сильно влияют на интерпретацию результатов работы классификатора:

- Высокая пространственная вариативность характера распределения различных типов на конокретном локальном участке.
- Тонкие переходы между типами распознаваемых объектов.

ЛИТЕРАТУРА

- 1. Kavzoglu T., Mather P. M. The use of backpropagating artificial neural networks in land cover classification, INT. J. Remote Sensing, 10 December, 2003, Vol. 24, № 23, 4907—4938.
- 2. Wang F. 1994b, The use of artificial neural networks in a geographical information system for agricultural land-suitability assessment. Environment and Planning A, 26, 265–284.
- 3. Paola J. D., Schowengerdt R. A. 1995a, A detailed comparison of backpropagation neural network and maximum-likelihood classifiers for urban land use classification. IEEE Transactions on Geoscience and Remote Sensing, 33, 981–996.

Статья принята к опубликованию 25 декабря 2006 г.